The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Obtaining Insect Flour
2.3. Obtaining the Protein Preparation
2.4. Defatting of Flour
2.5. Calculation of Extraction Yield and Efficiency
2.6. Nutritive Value
2.7. Minerals Content
2.8. Determination of the Amino Acid Composition, Calculation of the Limiting Amino Acid Index and the Essential Amino Acid Integrated Index (EAAI)
2.9. In Vitro Digestion
2.10. ABTS+ (2,20-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid) Radical) Scavenging Activity
2.11. DPPH· (2,2-Diphenyl-1-picrylhydrazyl Radical) Scavenging Activity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Value and Mineral Content
3.2. Amino Acid Content and the Chemical Score of Protein Quality
3.3. Antioxidant Activity of Protein Hydrolysates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Wageningen, U.R., Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014; ISBN 9789251075968. [Google Scholar]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- EFSA Scientific Committee Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 1–29. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Karaś, M.; Jakubczyk, A.; Zieliński, D.; Baraniak, B. Edible Insects as Source of Proteins; Springer International Publishing: New York City, NY, USA, 2019; pp. 389–441. ISBN 9783319545288. [Google Scholar]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H.M. Gluten-free bread with cricket powder—Mechanical properties and molecular water dynamics in dough and ready product. Foods 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- Mlcek, J.; Borkovcova, M.; Bednarova, M. Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine—A review. J. Cent. Eur. Agric. 2014, 15, 225–237. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food Sci. Technol. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B.; Jakubczyk, A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020, 1–9. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019, 6. [Google Scholar] [CrossRef]
- Placentino, U.; Sogari, G.; Viscecchia, R.; De Devitiis, B.; Monacis, L. The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods 2021, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Vangsoe, M.T.; Thogersen, R.; Bertram, H.C.; Heckmann, L.H.L.; Hansen, M. Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial. Nutrients 2018, 10, 1357. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Chung, S.J. Effect of explicit frames on the sensitivity and acceptance of mealworm in protein shake. Food Qual. Prefer. 2023, 109, 104924. [Google Scholar] [CrossRef]
- Ren, L.; Yang, F.; Gu, C. A study of the purchase intention of insect protein food as alternative foods for fitness proteins. Heliyon 2023, 9, e20239. [Google Scholar] [CrossRef]
- Pippinato, L.; Gasco, L.; Di Vita, G.; Mancuso, T. Current scenario in the European edible-insect industry: A preliminary study. J. Insects Food Feed. 2020, 6, 371–381. [Google Scholar] [CrossRef]
- Zielińska, E. Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules 2022, 27, 6339. [Google Scholar] [CrossRef] [PubMed]
- Girón-Calle, J.; Alaiz, M.; Vioque, J. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Res. Int. 2010, 43, 1365–1370. [Google Scholar] [CrossRef]
- Bußler, S.; Rumpold, B.A.; Fröhling, A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: Impact on microbial load and quality attributes in comparison to dry heat treatment. Innov. Food Sci. Emerg. Technol. 2016, 36, 277–286. [Google Scholar] [CrossRef]
- Chatsuwan, N.; Nalinanon, S.; Puechkamut, Y.; Lamsal, B.P.; Pinsirodom, P. Characteristics, Functional Properties, and Antioxidant Activities of Water-Soluble Proteins Extracted from Grasshoppers, Patanga succincta and Chondracris roseapbrunner. J. Chem. 2018, 2018, 6528312. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2010; pp. 2–4. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 18–63. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 10 September 2023).
- Jorhem, L.; Engman, J.; Arvidsson, B.-M.; Åsman, B.; Åstrand, C.; Gjerstad, K.O.; Haugsnes, J.; Heldal, V.; Holm, K.; Jensen, A.M.; et al. Determination of Lead, Cadmium, Zinc, Copper, and Iron in Foods by Atomic Absorption Spectrometry after Microwave Digestion: NMKL1 Collaborative Study. J. AOAC Int. 2000, 83, 1189–1203. [Google Scholar] [CrossRef]
- Smith, D.M. Protein Separation and Characterization Procedures. In Food Analysis; Heldman, D.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 261–281. ISBN 9781441914781. [Google Scholar]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Van Huis, A.; Boekel, M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Monro, J.A.; Wallace, A.; Mishra, S.; Eady, S.; Willis, J.A.; Scott, R.S.; Hedderley, D. Relative glycaemic impact of customarily consumed portions of eighty-three foods measured by digesting in vitro and adjusting for food mass and apparent glucose disposal. Br. J. Nutr. 2010, 104, 407–417. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; De Groot, L.C.P.G.M.; Saris, W.H.M.; Van Loon, L.J.C. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef]
- Becker, W.; Lyhne, N.; Pedersen, A.N.; Aro, A.; Fogelholm, M.; Phórsdottir, I.; Alexander, J.; Anderssen, S.A.; Meltzer, H.M.; Pedersen, J.I. Nordic Nutrition Recommendations 2004—integrating nutrition and physical activity. Scand. J. Nutr. 2016, 48, 178–187. [Google Scholar] [CrossRef]
- Finke, M.D.; Oonincx, D. Insects as Food for Insectivores; Elsevier: Amsterdam, The Netherlands, 2013; p. 4538. ISBN 9780123914538. [Google Scholar]
- Verhoeckx, K.C.M.; van Broekhoven, S.; den Hartog-Jager, C.F.; Gaspari, M.; de Jong, G.A.H.; Wichers, H.J.; van Hoffen, E.; Houben, G.F.; Knulst, A.C. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem. Toxicol. 2014, 65, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Broekman, H.; Verhoeckx, K.C.; Den Hartog Jager, C.F.; Kruizinga, A.G.; Pronk-Kleinjan, M.; Remington, B.C.; Bruijnzeel-Koomen, C.A.; Houben, G.F.; Knulst, A.C. Majority of shrimp-allergic patients are allergic to mealworm. J. Allergy Clin. Immunol. 2016, 137, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic risks of consuming edible insects: A systematic review. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Hinton, P.S. Iron and the endurance athlete. Appl. Physiol. Nutr. Metab. 2014, 39, 1012–1018. [Google Scholar] [CrossRef]
- Zastrow, M.L.; Pecoraro, V.L. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014, 53, 957–978. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176. [Google Scholar] [CrossRef]
- Beck, K.L.; von Hurst, P.R.; O’Brien, W.J.; Badenhorst, C.E. Micronutrients and athletic performance: A review. Food Chem. Toxicol. 2021, 158. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 2006, 136. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Pino, J.M.M.; Escamilla, E.P.; Alvarado, M.P.; Lagunez, J.O.; de Guevara Ladron, O. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Hopkins, W.G. Impact of Dietary Antioxidants on Sport Performance: A Review. Sport. Med. 2015, 45, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Lima, G.P.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- Gliszczynska-Swiglo, A.; Szymusiak, H. Interakcje miȩdzy składnikami suplementów diety na przykładzie kwercetyny i witaminy c. Zywn. Nauk. Technol. Jakosc/Food. Sci. Technol. Qual. 2009, 16, 278–285. [Google Scholar]
- Zhang, J.; Du, H.; Zhang, G.; Kong, F.; Hu, Y.; Xiong, S.; Zhao, S. Identification and characterization of novel antioxidant peptides from crucian carp (Carassius auratus) cooking juice released in simulated gastrointestinal digestion by UPLC-MS/MS and in silico analysis. J. Chromatogr. B 2019, 1136, 121893. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein–derived antioxidant peptides. J. Food Biochem. 2019, 2, e12761. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current Trends of Bioactive Peptides—New Sources and Therapeutic Effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Market Data Forecast Europe Sports Nutrition Market by Product Type, End-User, Distribution Channel and Industry Forecast to 2025. Available online: https://www.researchandmarkets.com/reports/3976185/europe-sports-nutrition-market-by-type, (accessed on 10 September 2023).
Protein (%) | Fat (%) | Ash (%) | Carbohydrates (%) | Moisture (%) | Energy 100 g (kcal) | |
---|---|---|---|---|---|---|
flour | 65.06 ± 0.73 c | 17.53 ± 2.19 a | 5.1 ± 0.13 c | 7.57 ± 0.68 b | 4.75 ± 0.22 d | 448 ± 5.2 a |
defatted flour | 73.68 ± 0.62 a | 2.9 ± 0.33 c,d | 5.72 ± 0.09 b | 10.03 ± 0.54 a | 7.66 ± 0.31 c | 361 ± 6.1 d |
protein preparation | 71.91 ± 0.5 b | 9.26 ± 0.19 b | 3.16 ± 0.18 e | 8.36 ± 0.44 b | 7.31 ± 0.08 c | 404 ± 4.9 b |
whey protein concentrate | 75 ± 0.5 a | 4.2 ± 0.3 c | 4.49 ± 0.07 d | 11 ± 0.48 a | 12.41 ± 1.36 a | 382 ± 4.4 c |
micellar casein | 75 ± 0.44 a | 0.9 ± 0.08 d | 7.23 ± 0.03 a | 8 ± 0.39 b | 9.61 ± 0.34 b | 340 ± 5.7 e |
Minerals Content (mg/100 g d.w.) | ||||||
---|---|---|---|---|---|---|
Fe | Ca | Zn | Mg | K | Na | |
flour | 3.86 ± 0.1 c | 223.78 ± 0.34 c | 19.29 ± 0.23 a | 79.69 ± 0.17 d | 1248 ± 9.7 b | 325.7 ± 0.56 d |
defatted flour | 4.59 ± 0.15 b | 207.74 ± 0.25 d | 19.01 ± 0.18 a | 89.74 ± 0.15 b | 1529 ± 6.7 a | 346.86 ± 0.54 c |
protein preparation | 7.23 ± 0.21 a | 16.08 ± 0.11 e | 11.98 ± 0.12 b | 18.58 ± 0.11 e | 343.4 ± 2.0 e | 564.49 ± 0.36 a |
whey protein concentrate | 2.75 ± 0.09 d | 674.9 ± 0.54 b | 0.9 ± 0.03 d | 86.64 ± 0.26 c | 684.5 ± 2.1 c | 526.52 ± 0.17 b |
micellar casein | 1.0 ± 0.02 e | 1921 ± 8.2 a | 8.07 ± 0.1 c | 105.4 ± 0.54 a | 584.2 ± 1.12 d | 149.5 ± 0.14 e |
Recommended daily intake (mg/day) (FAO, 2004) | 7.5–58.8 | 100–1300 | 3–14 | 220–260 | 4700 | 1500 |
Amino Acids | Tested Forms of Cricket (Gryllodes sigillatus) | Tested Commercial Forms of Supplements | WHO/FAO/UNU Reference Protein 1 | ||||
---|---|---|---|---|---|---|---|
Flour | Defatted Flour | Protein Preparation | Whey Protein Concentrate | Micellar Casein | (mg/g Protein) | (mg/kg Body Mass/Day) | |
Isoleucine *B | 28.6 ± 0.07 e | 34.4 ± 0.06 c | 31.2 ± 0.05 d | 49.0 ± 0.2 a | 38.3 ± 0.09 b | 30 | 20 |
Leucine *B | 43.1 ± 0.1 e | 49.7 ± 0.08 d | 62.0 ± 0.1 c | 81.1 ± 0.12 a | 72.7 ± 0.12 b | 59 | 39 |
Lysine * | 35.3 ± 0.09 e | 39.4 ± 0.05 d | 52.4 ± 0.11 c | 73.5 ± 0.15 a | 61.7 ± 0.08 b | 45 | 30 |
Methionine * | 15.4 ± 0.04 e | 15.9 ± 0.04 d | 21.6 ± 0.08 a | 16.8 ± 0.07 c | 21.3 ± 0.07 b | 16 | 10 |
Cysteine * | 10.5 ± 0.05 d | 11.9 ± 0.04 c | 13.9 ± 0.06 b | 16.7 ± 0.07 a | 4.1 ± 0.02 e | 6 | 4 |
Total sulphur a.a. ** | 25.9 ± 0.09 d | 27.8 ± 0.08 c | 35.5 ± 0.14 a | 33.5 ± 0.14 b | 25.4 ± 0.09 e | 22 | 14 |
Phenylalanine * | 20.2 ± 0.11 d | 23.0 ± 0.07 c | 32.4 ± 0.09 b | 23.0 ± 0.05 c | 37.6 ± 0.07 a | 30 | 25 |
Tyrosine | 30.2 ± 0.08 d | 36.8 ± 0.1 b | 33.7 ± 0.11 c | 19.9 ± 0.05 e | 40.4 ± 0.09 a | ||
Total aromatic a.a. *** | 50.4 ± 0.19 d | 59.8 ± 0.17 c | 66.1 ± 0.2 b | 42.9 ± 0.1 e | 78 ± 0.16 a | 30 | 25 |
Threonine * | 23.8 ± 0.12 e | 27.4 ± 0.12 d | 34.1 ± 0.15 b | 51.3 ± 0.12 a | 32.7 ± 0.1 c | 23 | 15 |
Valine *B | 33.5 ± 0.1 e | 38.4 ± 0.1 d | 38.8 ± 0.14 c | 45.2 ± 0.15 b | 49.0 ± 0.12 a | 39 | 26 |
Total essential a.a. | 199.9 ± 0.68 e | 228.2 ± 0.56 d | 272.5 ± 0.78 c | 339.9 ± 0.93 a | 313.3 ± 0.67 b | 242 | 165 |
Total BCAA | 105.2 ± 0.27 e | 122.5 ± 0.24 d | 132 ± 0.29 c | 175.3 ± 0.47 a | 160 ± 0.33 b | ||
Histidine | 14.0 ± 0.07 d | 17.7 ± 0.15 b | 16.8 ± 0.13 c | 13.0 ± 0.07 e | 21.3 ± 0.08 a | ||
No essential a.a. | |||||||
Aspartic acid | 49.7 ± 0.15 e | 58.5 ± 0.21 c | 74.2 ± 0.21 b | 84.2 ± 0.21 a | 53.0 ± 0.09 d | ||
Serine | 25.1 ± 0.09 e | 30.0 ± 0.15 d | 30.9 ± 0.08 c | 35.2 ± 0.07 b | 41.9 ± 0.12 a | ||
Glutamic acid | 71.4 ± 0.17 e | 80.0 ± 0.17 d | 100.9 ± 0.24 c | 138.6 ± 0.27 b | 163.6 ± 0.21 a | ||
Proline | 33.9 ± 0.12 d | 37.3 ± 0.09 c | 29.0 ± 0.1 e | 42.1 ± 0.09 b | 79.7 ± 0.2 a | ||
Glycine | 31.5 ± 0.09 b | 35.6 ± 0.06 a | 31.4 ± 0.07 b | 10.7 ± 0.07 d | 13.8 ± 0.05 c | ||
Alanine | 45.4 ± 0.16 b | 54.2 ± 0.12 a | 41.2 ± 0.12 c | 38 i.3 ± 0.08 d | 23.7 ± 0.04 e | ||
Arginine | 38.4 ± 0.11 c | 44.9 ± 0.09 b | 49.5 ± 0.08 a | 16.1 ± 0.03 e | 26.1 ± 0.07 d | ||
Total a.a. | 550 ± 1.72 e | 635.1 ± 1.7 d | 694 ± 1.92 c | 754.7 ± 1.87 b | 780.9 ± 1.62 a |
Amino Acids | Chemical Score of Protein Quality (CS) (%) | ||||
---|---|---|---|---|---|
Flour | Defatted Flour | Protein Preparation | Whey Protein Concentrate | Micellar Casein | |
Isoleucine | 95.33 | 114.67 | 104.00 | 163.33 | 127.67 |
Methionine | 96.25 | 99.38 | 135.00 | 105.00 | 133.13 |
Leucine | 73.05 | 84.24 | 105.08 | 137.46 | 123.22 |
Threonine | 103.48 | 119.13 | 148.26 | 223.04 | 142.17 |
Lysine | 78.44 | 87.56 | 116.44 | 163.33 | 137.11 |
Phenylalanine | 67.33 | 76.67 | 108.00 | 76.67 | 125.33 |
Valine | 85.90 | 98.46 | 99.49 | 115.90 | 125.64 |
EAAI | 85.68 | 97.16 | 116.61 | 140.68 | 130.61 |
Amino acid limiting | Phenylalanine | Phenylalanine | Valine | Phenylalanine | Leucine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, E.; Pankiewicz, U. The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes. Foods 2023, 12, 3654. https://doi.org/10.3390/foods12193654
Zielińska E, Pankiewicz U. The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes. Foods. 2023; 12(19):3654. https://doi.org/10.3390/foods12193654
Chicago/Turabian StyleZielińska, Ewelina, and Urszula Pankiewicz. 2023. "The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes" Foods 12, no. 19: 3654. https://doi.org/10.3390/foods12193654
APA StyleZielińska, E., & Pankiewicz, U. (2023). The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes. Foods, 12(19), 3654. https://doi.org/10.3390/foods12193654