Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Preparation of NADES
2.4. Determination of Polarity
2.5. Determination of Viscosity
2.6. Ultrasound-Assisted Extraction (UAE)
2.7. HPLC-MS-MS Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. HPLC-MS-MS Analysis of Phenolics in R. canina Defatted Seed Extracts
3.2. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Market Insights, 2022. Rosehip Extracts Market Size, By Product (Oil, Powder), By Grade (Food Grade, Cosmetic Grade) by Application (Pharmaceuticals & Nutraceuticals, Personal Care & Cosmetics {Hair Care, Skin Care}, Foods & Beverages {Tea, Jam, Soup}, Animal Feed), 2022–2030. Available online: https://www.gminsights.com/industry-analysis/rosehip-extract-market (accessed on 23 July 2023).
- Zhou, M.; Sun, Y.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Road to a bite of rosehip: A comprehensive review of bioactive compounds, biological activities, and industrial applications of fruits. Trends Food Sci. Technol. 2023, 136, 76–91. [Google Scholar] [CrossRef]
- Kazaz, S.; Baydar, H.; ErbaS, S. Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech J. Food Sci. 2009, 27, 178–184. [Google Scholar] [CrossRef]
- Ilyasoğlu, H. Characterization of rosehip (Rosa canina L.) seed and seed oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef]
- Javanmard, M.; Asadi-Gharneh, H.A.; Nikneshan, P. Characterization of biochemical traits of dog rose (Rosa canina L.) ecotypes in the central part of Iran. Nat. Prod. Res. 2018, 32, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Medveckienė, B.; Kulaitienė, J.; Jarienė, E.; Vaitkevičienė, N.; Hallman, E. Carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) cultivated in Lithuania. Appl. Sci. 2020, 10, 5337. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef]
- Vladić, J.; Kovačević, S.; Aladić, K.; Jokić, S.; Radman, S.; Podunavac-Kuzmanović, S.; Duarte, A.R.; Jerković, I. Innovative strategy for aroma stabilization using green solvents: Supercritical CO2 extracts of Satureja montana dispersed in deep eutectic solvents. Biomolecules 2023, 13, 1126. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.C.; Haghbakhsh, R.; Marques, R.; Paiva, A.; Carlyle, L.; Duarte, A.R.C. Evaluation of deep eutectic systems as an alternative to solvents in painting conservation. ACS Sustain. Chem. Eng. 2021, 9, 15451–15460. [Google Scholar] [CrossRef]
- Vladić, J.; Kovačević, S.; Rebocho, S.; Paiva, A.; Jokić, S.; Duarte, A.R.; Jerković, I. A new green approach for Lavandula stoechas aroma recovery and stabilization coupling supercritical CO2 and natural deep eutectic solvents. Sci. Rep. 2023, 13, 12443. [Google Scholar] [CrossRef] [PubMed]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Salgın, U.; Salgın, S.; Ekici, D.D.; UludaĿ, G. Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. J. Supercrit. Fluids 2016, 118, 194–202. [Google Scholar] [CrossRef]
- Jakovljević, M.; Moslavac, T.; Bilić, M.; Aladić, K.; Bakula, F.; Jokić, S. Supercritical CO2 extraction of oil from rose hips (Rosa canina L.) and cornelian cherry (Cornus mas L.) seeds. CJFST 2018, 10, 197–205. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Vinkler, P.; Lakatos, B.; Illés, V.; Then, M. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresour. Technol. 2002, 82, 195–201. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Dugo, L.; Gentili, A.; Mondello, L.; De Gara, L. Choline-chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee ground. J. Pharm. Biomed. Anal. 2020, 189, 113421. [Google Scholar] [CrossRef] [PubMed]
- Kaoui, S.; Chebli, B.; Ait Baddi, G.; Basaid, K.; Mir, Y. Response surface modeling and optimization of the extraction conditions using lactic acid-based deep eutectic solvents as green alternative extraction media for Mentha pulegium. Phytochem. Anal. 2022, 33, 906–914. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Ye, X.Q.; Fang, Z.X.; Chen, J.C.; Xu, G.H.; Liu, D.H. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma mandarin (Citrus unshiu Marc.) peels. J. Agric. Food Chem. 2008, 56, 5682–5690. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M.; Goulas, V.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
NADES Composition | Abbreviation | Molar Ratio |
---|---|---|
Betaine/lactic acid | BE:LA | 1:5 |
Betaine/glycerol | BE:Gly | 1:2 |
Lactic acid/proline | LA:Pro | 3:1 |
Lactic acid/glucose/water | LA:Glu:W | 5:1:3 |
Lactic acid/glycerol/water | LA:Gly:W | 3:1:3 |
Menthol/lauric acid | M:LA | 4:1 |
Thymol/carvacrol | T:C | 1:1 |
Menthol/thymol | M:T | 1:1 |
Sample | Quinic Acid | Protocatechuic Acid | p-Coumaric Acid | Gallic Acid | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | Kaem-3-O-Glc | Lut-7-O-Glc | Quer-3-O-Glc + Gal |
---|---|---|---|---|---|---|---|---|---|---|
BE:Gly 30 | 0.44 ± 0.12 l | 0.66 ± 0.12 h | <LoQ | <LoQ | n.d. | n.d. | <LoQ | <LoQ | <LoQ | 2.70 ± 1.03 f |
BE:Gly 60 | 125.30 ± 5.14 j–l | 3.04 ± 0.40 gh | 1.18 ± 0.25 a | 4.43 ± 0.55 e | n.d. | n.d. | <LoQ | 1.61 ± 0.29 g | 0.86 ± 0.22 a | 9.37 ± 1.77 ef |
BE:Gly 90 | 110.23 ± 7.36 j–l | 2.90 ± 0.13 gh | <LoQ | 4.33 ± 0.81 e | n.d. | n.d. | <LoQ | 2.53 ± 0.72 fg | 0.70 ± 0.14 a | 7.07 ± 1.42 ef |
BE:LA 30 | 42.21 ± 2.12 kl | 2.09 ± 0.04 gh | <LoQ | 3.94 ± 0.55 e | <LoQ | n.d. | <LoQ | 1.33 ± 0.99 g | <LoQ | 5.72 ± 0.55 f |
BE:LA 60 | 22.16 ± 3.21 kl | 2.35 ± 0.29 gh | <LoQ | <LoQ | <LoQ | n.d. | <LoQ | 2.79 ± 1.51 fg | 0.58 ± 0.42 a | 4.16 ± 1.82 f |
BE:LA 90 | 267.44 ± 7.04 ij | 14.19 ± 2.47 a–d | 1.52 ± 0.79 a | 6.67 ± 1.05 c–e | 3.95 ± 0.48 a | n.d. | <LoQ | 19.40 ± 0.71 bc | 1.46 ± 0.15 a | 24.44 ± 3.18 bc |
LA:Glu:W 30 | 5650.28 ± 41.15 e | 7.76 ± 0.91 ef | 2.05 ± 1.05 a | 8.12 ± 1.22 cd | <LoQ | 1.33 ± 0.58 a | <LoQ | 13.77 ± 1.05 cd | 1.43 ± 0.58 a | 20.47 ± 2.51 cd |
LA:Glu:W 60 | 13,895.34 ± 152.89 b | 10.33 ± 1.13 c–e | 2.15 ± 0.71 a | 8.29 ± 0.17 cd | 4.08 ± 1.21 a | 1.32 ± 0.47 a | <LoQ | 21.43 ± 4.08 b | 1.64 ± 0.22 a | 28.86 ± 2.41 ab |
LA:Glu:W 90 | 22,428.68 ± 125.63 a | 10.03 ± 1.98 de | 2.27 ± 0.96 a | 9.76 ± 0.73 c | 4.14 ± 1.79 a | 1.71 ± 0.11 a | <LoQ | 25.40 ± 1.38 ab | 1.70 ± 0.79 a | 33.38 ± 1.24 a |
LA:Gly:W 30 | 10,435.87 ± 48.79 c | 12.55 ± 3.07 b–d | 2.59 ± 0.25 a | 17.96 ± 2.08 ab | 4.11 ± 0.10 a | 2.38 ± 1.03 a | <LoQ | 28.48 ± 1.87 a | 1.51 ± 0.68 a | 29.62 ± 1.33 ab |
LA:Gly:W 60 | 6342.17 ± 91.87 d | 11.61 ± 1.25 b–e | 2.25 ± 0.97 a | 16.42 ± 1.52 b | 3.76 ± 0.87 a | 2.07 ± 0.22 a | <LoQ | 30.19 ± 3.50 a | 1.35 ± 0.72 a | 25.37 ± 4.18 bc |
LA:Gly:W 90 | 6331.49 ± 66.87 d | 13.88 ± 1.39 a–d | 2.22 ± 0.18 a | 20.16 ± 1.47 a | 4.13 ± 1.32 a | 1.63 ± 0.71 a | <LoQ | 31.24 ± 4.74 a | 1.39 ± 0.17 a | 26.16 ± 2.49 bc |
LA:Pro 30 | 1068.55 ± 41.30 g | 7.41 ± 1.00 ef | 1.42 ± 0.49 a | 7.01 ± 0.91 c–e | <LoQ | 0.98 ± 0.18 a | <LoQ | 4.50 ± 0.55 e–g | 1.07 ± 0.44 a | 13.61 ± 1.08 de |
LA:Pro 60 | 692.98 ± 87.39 h | 5.17 ± 1.04 fg | 0.89 ± 0.38 a | 5.93 ± 0.35 de | <LoQ | 1.02 ± 0.51 a | <LoQ | 4.28 ± 0.88 e–g | <LoQ | 7.75 ± 2.87 ef |
LA:Pro 90 | 1324.69 ± 18.69 f | 18.09 ± 2.17 a | 1.41 ± 0.14 a | 8.68 ± 0.71 cd | 3.53 ± 0.75 a | 1.27 ± 0.34 a | 1.222 ± 0.19 | 13.24 ± 2.46 cd | 1.25 ± 0.75 a | 16.97 ± 3.87 d |
M:LA 30 | 242.55 ± 3.71 ij | 14.45 ± 0.88 abc | <LoQ | <LoQ | <LoQ | n.d. | n.d. | <LoQ | <LoQ | <LoQ |
M:LA 60 | 160.76 ± 5.81 i–l | 14.91 ± 1.08 ab | <LoQ | <LoQ | <LoQ | n.d. | n.d. | 10.10 ± 2.58 de | <LoQ | <LoQ |
M:LA 90 | 261.13 ± 9.22 ij | 14.02 ± 0.55 a–d | <LoQ | <LoQ | n.d. | n.d. | n.d. | <LoQ | <LoQ | <LoQ |
M:T 30 | 269.20 ± 4.28 ij | <LoQ | <LoQ | <LoQ | n.d. | n.d. | n.d. | 8.95 ± 1.89 de | <LoQ | <LoQ |
M:T 60 | 183.47 ± 14.82 i–k | 13.77 ± 2.00 b–d | <LoQ | <LoQ | n.d. | n.d. | n.d. | 9.97 ± 1.34 de | <LoQ | <LoQ |
M:T 90 | 186.95 ± 3.33 i–k | 13.72 ± 1.56 b–d | <LoQ | <LoQ | n.d. | n.d. | n.d. | 8.57 ± 2.29 d–f | <LoQ | <LoQ |
T:C 30 | 241.53 ± 8.21 ij | <LoQ | <LoQ | <LoQ | n.d. | n.d. | n.d. | <LoQ | <LoQ | <LoQ |
T:C 60 | 303.15 ± 4.98 i | 14.02 ± 0.33 a–d | n.d. | <LoQ | n.d. | n.d. | n.d. | <LoQ | <LoQ | <LoQ |
T:C 90 | 170.84 ± 4.36 i–k | 13.71± 0.75 b–d | n.d. | <LoQ | n.d. | n.d. | n.d. | 9.63 ± 2.12 de | <LoQ | <LoQ |
Sample | Apigenin | Baicalein | Naringenin | Catechin | Epicatechin | Epigallocatechin Gallate | Quercetin | Isorhamnetin | Rutin | Quercitrin | Amentoflavone |
---|---|---|---|---|---|---|---|---|---|---|---|
BE:Gly 30 | <LoQ | <LoQ | n.d. | 9.07 ± 1.29 k | n.d. | n.d. | <LoQ | 1.41 ± 0.56 b | <LoQ | 2.15 ± 0.97 h | 4.09 ± 1.62 b |
BE:Gly 60 | n.d. | <LoQ | 0.85 ± 0.26 d | 52.34 ± 3.58 i | n.d. | n.d. | <LoQ | <LoQ | 7.21 ± 1.54 cd | 10.60 ± 1.84 fg | <LoQ |
BE:Gly 90 | n.d. | <LoQ | 0.43 ± 0.15 d | 39.49 ± 2.98 ij | n.d. | n.d. | <LoQ | <LoQ | 2.77 ± 0.04 e–g | 7.74 ± 1.45 gh | <LoQ |
BE:LA 30 | n.d. | <LoQ | n.d. | 8.84 ± 1.56 k | n.d. | <LoQ | <LoQ | 5.03 ± 1.23 a | 2.42 ± 0.47 fg | 7.70 ± 0.70 gh | 10.69 ± 2.41 a |
BE:LA 60 | n.d. | <LoQ | <LoQ | 12.49 ± 2.09 k | n.d. | <LoQ | <LoQ | <LoQ | 1.73 ± 0.18 g | 6.35 ± 1.03 gh | <LoQ |
BE:LA 90 | <LoQ | <LoQ | 1.29 ± 0.39 cd | 131.45 ± 5.12 fg | n.d. | <LoQ | 20.19 ± 1.58 bc | <LoQ | 4.64 ± 1.02 d-g | 36.14 ± 2.48 cd | <LoQ |
LA:Glu:W 30 | <LoQ | <LoQ | 1.80 ± 0.18 cd | 10.37 ± 1.09 k | n.d. | <LoQ | 15.82 ± 0.88 cd | <LoQ | 5.46 ± 1.00 de | 31.92 ± 4.89 de | <LoQ |
LA:Glu:W 60 | <LoQ | <LoQ | 2.86 ± 0.76 a–c | 158.81 ± 3.14 e | n.d. | <LoQ | 23.43 ± 2.14 b | 0.68 ± 0.32 b | 10.20 ± 0.95 ab | 39.15 ± 3.74 bc | <LoQ |
LA:Glu:W 90 | <LoQ | <LoQ | 3.70 ± 1.09 a | 192.76 ± 4.18 d | n.d. | <LoQ | 30.79 ± 1.33 a | <LoQ | 6.52 ± 0.26 cd | 48.18 ± 3.40 a | <LoQ |
LA:Gly:W 30 | <LoQ | 0.31 ± 0.12 a | 1.85 ± 0.98 b–d | 571.93 ± 14.78 a | 5.433 a | n.d. | 22.32 ± 0.45 b | 0.84 ± 0.17 b | 13.12 ± 2.41 a | 45.62 ± 1.55 ab | <LoQ |
LA:Gly:W 60 | <LoQ | 0.34 ± 0.09 a | 2.56 ± 0.63 a–c | 468.06 ± 11.08 b | n.d. | n.d. | 21.90 ± 0.84 b | <LoQ | 4.94 ± 1.09 def | 39.18 ± 1.87 bc | <LoQ |
LA:Gly:W 90 | <LoQ | <LoQ | 3.46 ± 0.47 ab | 434.58 ± 13.55 c | n.d. | <LoQ | 34.70 ± 1.04 a | 1.33 ± 0.78 b | 8.80 ± 0.41 bc | 34.66 ± 0.74 c–e | <LoQ |
LA:Pro 30 | <LoQ | <LoQ | 0.81 ± 0.14 d | 72.62 ± 2.58 h | n.d. | <LoQ | 12.95 ± 0.22 d | <LoQ | 6.18 ± 0.61 cd | 17.45 ± 2.43 f | <LoQ |
LA:Pro 60 | <LoQ | <LoQ | 0.56 ± 0.29 d | 34.19 ± 0.78 j | n.d. | <LoQ | 11.56 ± 2.70 d | <LoQ | 2.56 ± 0.22 e–g | 11.69 ± 2.54 fg | <LoQ |
LA:Pro 90 | n.d. | <LoQ | 0.48 ± 0.17 d | 151.62 ± 2.19 e | n.d. | n.d. | 19.40 ± 3.14 bc | <LoQ | 4.42 ± 0.74 de | 28.44 ± 1.47 e | <LoQ |
M:LA 30 | <LoQ | n.d. | <LoQ | 39.18 ± 1.14 ij | n.d. | n.d. | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ |
M:LA 60 | <LoQ | n.d. | <LoQ | 39.74 ± 0.75 ij | n.d. | n.d. | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ |
M:LA 90 | <LoQ | n.d. | <LoQ | 39.32 ± 0.87 ij | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
M:T 30 | <LoQ | n.d. | <LoQ | 121.23 ± 3.17 fg | n.d. | n.d. | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ |
M:T 60 | <LoQ | n.d. | <LoQ | 39.47 ± 0.75 ij | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
M:T 90 | <LoQ | n.d. | <LoQ | 38.79 ± 1.13 ij | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
T:C 30 | <LoQ | n.d. | <LoQ | 115.97 ± 4.41 g | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
T:C 60 | <LoQ | n.d. | <LoQ | 134.46 ± 2.87 f | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
T:C 90 | <LoQ | n.d. | <LoQ | 38.86 ± 1.16 ij | n.d. | n.d. | <LoQ | n.d. | <LoQ | <LoQ | <LoQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavarić, A.; Pastor, K.; Nastić, N.; Vidović, S.; Živanović, N.; Simin, N.; Duarte, A.R.C.; Vladić, J. Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously. Foods 2023, 12, 3655. https://doi.org/10.3390/foods12193655
Gavarić A, Pastor K, Nastić N, Vidović S, Živanović N, Simin N, Duarte ARC, Vladić J. Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously. Foods. 2023; 12(19):3655. https://doi.org/10.3390/foods12193655
Chicago/Turabian StyleGavarić, Aleksandra, Kristian Pastor, Nataša Nastić, Senka Vidović, Nemanja Živanović, Nataša Simin, Ana Rita C. Duarte, and Jelena Vladić. 2023. "Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously" Foods 12, no. 19: 3655. https://doi.org/10.3390/foods12193655
APA StyleGavarić, A., Pastor, K., Nastić, N., Vidović, S., Živanović, N., Simin, N., Duarte, A. R. C., & Vladić, J. (2023). Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously. Foods, 12(19), 3655. https://doi.org/10.3390/foods12193655