A Study on the Influence of the Use of Sulphur Dioxide, the Distillation System and the Aging Conditions on the Final Sensory Characteristics of Brandy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
- WSDD%55: Wine spirit at 70% ABV obtained via double-pot-still distillation (DD) of the freshly fermented wine without the addition of any sulphur dioxide in the process (WS) (the first distillation produced a 30% ABV distillate and the second distillation of this spirit produced a 70% ABV distillate). It was then hydrated to 55% ABV by adding demineralized water before aging.
- WSD1%55: Wine spirit at 65% ABV obtained via simple distillation (D1) of the wine through a pot still after fermentation and without the addition of any sulphur dioxide (WS). It was then hydrated to 55% ABV using demineralized water before aging.
- WSD2%55: Wine spirit at 65% ABV obtained using two pot stills that had been set up in series to distill the wine after its fermentation (D2) and without the use of any sulphur dioxide in the process (WS). This system allows the vapors from the first pot still to come into contact with the wine in the second pot still. It was then hydrated to 55% ABV using demineralized water before aging.
- SCD%55/SCD%65: Wine spirit at 77% ABV obtained via continuous distillation in columns 6 months after the end of fermentation (CD) of selected wine with sulphur dioxide added during the winemaking process (S). It was then hydrated to 55% ABV using demineralized water before aging. Additionally, it was also hydrated to 65% ABV with demineralized water prior to the aging stage.
- SD2%55/SD2%65: Wine spirit at 65% ABV obtained using two-pot stills configured in series to distill a selected wine 6 months after the end of its fermentation (D2) with the addition of sulphur dioxide (S). It was hydrated to 55% ABV using demineralized water before aging. Additionally, it was also aged at the alcoholic grade of distillation (65% ABV).
2.2. Analytical Methodologies
2.3. Sensory Evaluation Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analytical Characterization of the Wines Used for the Production of the Brandies
3.2. Analytical Characterization of the Fresh Spirits Used for the Production of Brandies
3.3. Color and Phenolic Compounds in Fresh and Aged Spirits
3.4. Sensory Evaluation of the Samples
3.4.1. Determining the Alcoholic Strength to Be Used at the Tasting Sessions
3.4.2. Assessing the Effect of the Toasting Degree of the Casks on the Aged Brandies
3.4.3. Selecting the Descriptor
3.4.4. Tasting Panel Training and Validation
3.4.5. Sensory Evaluation of the Brandies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- European Commission Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the definition, description, presentation and labelling of spirit drinks, the use of the names of spirit drinks in the presentation and labelling of other foodstuff. Off. J. Eur. Union 2019, L130, 1–54.
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape brandy production, composition and sensory evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Trillo, L.M.; Álvarez, M.A.; Pinedo, J.M.; Casas, J.A.; Maiquez, E.G. Evolución de algunos compuestos volátiles durante el proceso de destilación para la obtención de aguardientes vínicos de bajo grado (holandas). In Jornadas Científicas ’97; Grupos de Investigación Enológica; Servicio de Publicaciones de la Universidad de Cádiz: El Puerto de Santa María, Spain, 1997; pp. 181–187. [Google Scholar]
- Spaho, N. Distillation Techniques in the Fruit Spirits Production. In Distillation-Innovative Applications and Modeling; InTech: Singapore, 2017; pp. 129–152. [Google Scholar]
- Blagoeva, N.; Bazhlekova, I.; Spasov, H.; Kostov, G. Influence of enzyme maceration and alcoholic fermentation temperature on the terpenes concentration in Muscat wine distillates. Bulg. J. Agric. Sci. 2020, 26, 1069–1075. [Google Scholar]
- Guittin, C.; Maçna, F.; Sanchez, I.; Barreau, A.; Poitou, X.; Sablayrolles, J.M.; Mouret, J.R.; Farines, V. The Impact of Must Nutrients and Yeast Strain on the Aromatic Quality of Wines for Cognac Distillation. Fermentation 2022, 8, 51. [Google Scholar] [CrossRef]
- Korenika, A.M.J.; Biloš, J.; Kozina, B.; Tomaz, I.; Preiner, D.; Jeromel, A. Effect of different reducing agents on aromatic compounds, antioxidant and chromatic properties of sauvignon blanc wine. Foods 2020, 9, 996. [Google Scholar] [CrossRef] [PubMed]
- Canas, S. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. a review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines. Foods 2020, 9, 1613. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Analytical characterisation of a Brandy de Jerez during its ageing. Eur. Food Res. Technol. 2011, 232, 813–819. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Butrón-Benítez, D.; Guerrero-Chanivet, M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Influence of alcoholic strength on the characteristics of Brandy de Jerez aged in Sherry Casks®. J. Food Compos. Anal. 2022, 111, 104618. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Comparative Evaluation of Brandy de Jerez Aged in American Oak Barrels with Different Times of Use. Foods 2021, 10, 288. [Google Scholar] [CrossRef]
- Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A.; Schwarz-Rodríguez, M.; García-Barroso, C. Phenolic compounds and furanic derivatives in the characterization and quality control of Brandy de Jerez. J. Agric. Food Chem. 2010, 58, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Guillén, D.A.; Barroso, C.G.; Zorro, L.; Carrascal, V.; Pérez-Bustamante, J.A. Organic acids analysis in “Brandy de Jerez” by ion-exclusion chromatography, “post-column” buffering and conductimetric detection. Analusis 1998, 26, 186–189. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.; Martínez, C.; Bosquet, V.; Guillén, D.; Barroso, C.G. Antioxidant activity of Brandy de Jerez and other aged distillates, and correlation with their polyphenolic content. Food Chem. 2009, 116, 29–33. [Google Scholar] [CrossRef]
- Durán Guerrero, E.; Cejudo Bastante, M.J.; Castro Mejías, R.; Natera Marín, R.; García Barroso, C. Characterization and differentiation of sherry brandies using their aromatic profile. J. Agric. Food Chem. 2011, 59, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
- Cameán, A.M.; Moreno, I.; López-Artíguez, M.; Repetto, M.; González, A.G. Differentiation of Spanish brandies according to their metal content. Talanta 2001, 54, 53–59. [Google Scholar] [CrossRef]
- Mihafu, F.D.; Issa, J.Y.; Kamiyango, M.W. Implication of sensory evaluation and quality assessment in food product development: A review. Curr. Res. Nutr. Food Sci. 2020, 8, 690–702. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Application of sensory descriptive analysis and consumer studies to investigate traditional and authentic foods: A review. Foods 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giménez, A.; Ares, F.; Ares, G. Sensory shelf-life estimation: A review of current methodological approaches. Food Res. Int. 2012, 49, 311–325. [Google Scholar] [CrossRef]
- Ruiz-Bejarano, M.J.; Durán-Guerrero, E.; Castro, R.; Barroso, C.G.; Rodríguez-Dodero, M.C. Use of sensory analysis to investigate the influence of climate chambers and other process variables in the production of sweet wines. Foods 2020, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Dazeley, P.; Houston-Price, C.; Hill, C. Should healthy eating programmes incorporate interaction with foods in different sensory modalities? A review of the evidence. Br. J. Nutr. 2012, 108, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, I.; Gary, S.R.; Marla, S. Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie 2007, 38, 67–76. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-Year Review: Sensory analysis of milk. J. Dairy Sci. 2017, 100, 9966–9986. [Google Scholar] [CrossRef]
- Barbe, J.C.; Garbay, J.; Tempère, S. The sensory space of wines: From concept to evaluation and description. a review. Foods 2021, 10, 1424. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Drake, M.A. Invited review: Sensory and mechanical properties of cheese texture. J. Dairy Sci. 2007, 90, 1611–1624. [Google Scholar] [CrossRef] [Green Version]
- OIV (International Organisation of Vine and Wine), Distribution of the World’s Grapevine Varieties; OIV: Paris, France, 2017; ISBN 9791091799898.
- Consejería de Agricultura Pesca y Desarrollo Rural. Orden de 28 de junio de 2018, por la que se aprueba el Expediente técnico de la Indicación Geográfica “Brandy de Jerez.”. Bol. Of. La Junta Andal. 2018, 127, 19–20.
- French Republic. Product Specification for the Cognac or Eau-de-vie de Cognac or Eau-de-vie des Charentes Controlled Appellatiion of Origin. (Decree No 2015-10 of 7 January 2015 amended by the Order of 8 november 2018). Off. J. French Repub. 2018, 1–20. Available online: https://www.cognac.fr/wp-content/uploads/2015_01_07_Cognac_product_specification_controlled_appellation_of_origin.pdf (accessed on 17 August 2022).
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, M.D.C.; García-Moreno, M.d.V.; Guillén-Sánchez, D.A. Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules 2022, 27, 365. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and must Analysis; O.I.V.: Paris, France, 2022; Volume 1, ISBN 9782850380532. [Google Scholar]
- ISO/CIE 11664-4:2018; International Organization for Standardization (ISO) Colorimetry. Part 4: CIE 1976 L* a* b* Colour Space. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Delgado-González, M.J.; García-Moreno, M.V.; Sánchez-Guillén, M.M.; García-Barroso, C.; Guillén-Sánchez, D.A. Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control 2021, 119, 107468. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis. General Guidance for the Design of Test Rooms. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- ISO 5495:2005; Sensory Analysis. Methodology. Paired Comparison Test. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 4120:2004; Sensory Analysis. Methodology. Triangle Test. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- ISO 13299:2016; Sensory Analysis. Methodology. General Guidance for Establishing a Sensory Profile. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- UNE 87027:2018; Análisis sensorial. Identificación y selección de descriptores para la elaboración de un perfil sensorial mediante diferentes enfoques. Asociación Española de Normalización (AENOR): Madrid, Spain, 2018.
- Ubeda, J.; Briones, A.I.; Izquierdo, P.; Palop, L.I. Predominant Saccharomycescerevisiae Strains in the Fermentation of Air6n Grape Musts with SO2. LWT 1995, 28, 584–588. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; González-Viñas, M.A.; Garća-Romero, E.; Díaz-Maroto, M.C.; Cabezudo, M.D. Influence of storage temperature on the volatile compounds of young white wines. Food Control 2003, 14, 301–306. [Google Scholar] [CrossRef]
- Flanzy, C. Enología: Fundamentos Científicos y Tecnológicos; Mundi-Prensa: Madrid, Spain, 2003; ISBN 84-8476-074-X. [Google Scholar]
- Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Comprehensive chemical and sensory assessment of wines made from white grapes of vitis vinifera cultivars albillo dorado and montonera del casar: A comparative study with airén. Foods 2020, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.E.; Peinado, R.A.; Medina, M.; Moreno, J. Effect of a short contact time with lees on volatile composition of Airén and Macabeo wines. Biotechnol. Lett. 2006, 28, 1007–1011. [Google Scholar] [CrossRef]
- Jurado-Córdoba, M.S. Potencial Agronómico y Enológico de diez Variedades Blancas de vid como Materia Prima en la Obtención de Aguardientes para Brandy de Jerez. Ph.D. Thesis, Cádiz University, Cádiz, Spain, 2016. Available online: https://rodin.uca.es/handle/10498/18314 (accessed on 17 August 2022).
- European Commission. Comission delegated Regulation (EU) 2019/934 of 12 March 2019 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards wine-growing areas where the alcoholic strength may be increased, authorised oenological prac. Off. J. Eur. Union L. 2019, 149, 1–52. [Google Scholar]
- Jimenez-povedano, M.V.; Cantos-villar, E.; Jimenez-hierro, M.J.; Casas, J.A.; Miguel, L.; Guimera, S. Influencia del tipo de suelo en la características de los mostos, vinos y destilados del cv. L Palomino fino Influence of soil on the characteristics of musts, wines and distillates from cv. L Palomino fino. In Proceedings of the XII Congreso Internacional Terroir. E3S Web of Conferences, Zaragoza, Spain, 18–22 June 2018; Volume 50, p. 02002. [Google Scholar]
- Gonzalez-Viñas, M.A.; Perez-Coello, M.S.; Salvador, M.D.; Cabezudo, M.D.; Martin-Alvarez, P.J. Changes in gas-chromatographic volatiles of young Airén wines during bottle storage. Food Chem. 1996, 56, 399–403. [Google Scholar] [CrossRef]
- García-Romero, E.; Pérez-Coello, M.; Cabezudo, M.D.; Sánchez-Muñoz, G.; Martín-Álvarez, P.J. Fruity flavor increase of Spanish Airén white wines made by brief fermentation skin contact. Food Sci. Technol. Int. 1999, 5, 149–157. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Pérez-Coello, M.S.; Cabezudo, M.D. Effects of enzyme treatment and skin extraction on varietal volatiles in Spanish wines made from Chardonnay, Muscat, Airén, and Macabeo grapes. Anal. Chim. Acta 2002, 458, 39–44. [Google Scholar] [CrossRef]
- González-Viñas, M.A.; Pérez-Coello, M.S.; Cabezudo, M.D. Sensory analysis of aroma attribute of young Airén white wines during storage in the bottle. J. Food Qual. 1997, 21, 285–297. [Google Scholar] [CrossRef]
- Chursina, O.; Zagorouiko, V.; Legasheva, L.; Martynovskaya, A.; Prostak, M. Evaluation of technological characteristics of Crimean native grape variety “Shabash” for brandy production. In Proceedings of the INTERAGROMASH. E3S Web of Conferences, Rostovon-Don, Russia, 26–28 February 2020; Volume 175, p. 08807. [Google Scholar]
- Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E. Determination of key odorant compounds in freshly distilled Cognac using GC-O, GC-MS, and sensory evaluation. J. Agric. Food Chem. 2004, 52, 5670–5676. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Blanco Gomis, D.; Mangas Alonso, J.J. Influence of distillation system, oak wood type, and aging time on volatile compounds of cider brandy. J. Agric. Food Chem. 2003, 51, 5709–5714. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Muñoz-Redondo, J.M.; Guerrero-Hidalgo, R.F.; Cantos-Villar, E.; Peña-Parra, B.; Moreno-Rojas, J.M.; Puertas-García, B. Influencia de la estabilización final del Brandy de Jerez, sobre los parámetros físico-químicos, composición volátil, compuestos polifenólicos y análisis sensorial. Rev. Enól. 2020, 125, 48–65. [Google Scholar]
- Flamini, R.; Panighel, A.; De Marchi, F. Mass spectrometry in the study of wood compounds released in the barrel-aged wine and spirits. Mass Spectrom. Rev. 2021, e21754. [Google Scholar] [CrossRef] [PubMed]
- Cadahía, E.; Muñoz, L.; De Simón, B.F.; García-Vallejo, M.C. Changes in low molecular weight phenolic compounds in Spanish, French, and American oak woods during natural seasoning and toasting. J. Agric. Food Chem. 2001, 49, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Madrera, R.; Blanco Gomis, D.; Mangas Alonso, J.J. Influence of Distillation System, Oak Wood Type, and Aging Time on Composition of Cider Brandy in Phenolic and Furanic Compounds. J. Agric. Food Chem. 2003, 51, 7969–7973. [Google Scholar] [CrossRef]
- Vivas, N.; Vivas de Gaulejac, N.; Bourden-Nonier, M.F.; Mouche, C.; Rossy, C. Extraction of phenolics from new oak casks during spirit maturation: Impact on spirit colour. J. Inst. Brew. 2020, 126, 83–89. [Google Scholar] [CrossRef]
- Cruz, S.; Canas, S.; Belchior, A.P. Effect of ageing system and time on the quality of wine brandy aged at industrial-scale. Cienc. Tec. Vitivinic 2013, 27, 83–93. [Google Scholar]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz-de-Mier, M.; Delgado-González, M.J.; Carmen Rodríguez-Dodero, M.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of alternative wood for the ageing of brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef]
- Gadrat, M.; Emo, C.; Lavergne, J.; Teissèdre, P.L.; Chira, K. Impact of Barrel Toasting on Ellagitannin Composition of Aged Cognac Eaux-de-Vie. Molecules 2022, 27, 2531. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Belchior, A.P. Are the furanic aldehydes ratio and phenolic aldehydes ratios reliable to assess the addition of vanillin and caramel to the aged wine spirit? Food Control 2019, 95, 77–84. [Google Scholar] [CrossRef]
- Diaz-Maroto, I.J.; Tahir, S. Test of wood properties in oak species (Quercus robur L., Quercus petraea (Matts) Liebl. And Quercus pyrenaica Willd.) for wine aging. Part III: Porosity versus void ratio. Wood Res. 2019, 64, 833–846. [Google Scholar]
- Harwood, W.S.; Parker, M.N.; Drake, M.A. Influence of ethanol concentration on sensory perception of rums using temporal check-all-that-apply. J. Sens. Stud. 2020, 35, 2531. [Google Scholar] [CrossRef]
- Gadrat, M.; Lavergne, J.; Emo, C.; Teissedre, P.L.; Chira, K. Sensory characterisation of Cognac eaux-de-vie aged in barrels subjected to different toasting processes. Oeno One 2022, 56, 17–28. [Google Scholar] [CrossRef]
- ISO 4121:2003; Sensory Analysis. Guidelines for the Use of Quantitative Response Scales. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Bordeu, E.; Formas, G.; Agosin, E. Proposal for a Standardized Set of Sensory Terms for Pisco, a Young Muscat Wine Distillate. Am. J. Enol. Vitic. 2004, 55, 104–107. [Google Scholar]
- Louw, L. Sensory analysis of brandy: The application of rapid profiling methodologies. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Jack, F. Sensory analysis. In Whisky and Other Spirits: Technology, Production and Marketing; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 321–333. ISBN 9780128220764. [Google Scholar]
- Ickes, C.M.; Cadwallader, K.R. Characterization of Sensory Differences in Mixing and Premium Rums through the Use of Descriptive Sensory Analysis. J. Food Sci. 2017, 82, 2679–2689. [Google Scholar] [CrossRef]
- OIV (International Organization of Vine and Wine). Norma OIV de los Concursos Internacionales de Vinos y Bebidas Espirituosas de Origen Vitícola; O.I.V.: Paris, France, 2022. [Google Scholar]
- Schwarz, M.; Rodríguez-Dodero, M.C.; Jurado, M.S.; Puertas, B.; Barroso, C.G.; Guillén, D.A. Analytical Characterization and Sensory Analysis of Distillates of Different Varieties of Grapes Aged by an Accelerated Method. Foods 2020, 9, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef] [PubMed]
- ISO 11132:2012; Sensory Analysis. Methodology. Guidelines for Monitoring the Performance of a Quantitative Sensory Panel. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
Sample | Internal Work Code | SO2 | Distillation System | Distillation Alcoholic Grade | Aging Alcoholic Grade | Oak |
---|---|---|---|---|---|---|
WSDD%55QA | AG1_QA | Without (WS) | Double pot still distillation (DD) | 70% ABV | 55% ABV (%55) | Quercus alba (QA) |
WSDD%55QP | AG1_QP | Without (WS) | Double pot still distillation (DD) | 70% ABV | 55% ABV (%55) | Quercus petraea (QP) |
WSDD%55QR | AG1_QR | Without (WS) | Double pot still distillation (DD) | 70% ABV | 55% ABV (%55) | Quercus robur (QR) |
WSD1%55QA | AG2_QA | Without (WS) | Simple pot still distillation (D1) | 65% ABV | 55% ABV (%55) | Quercus alba (QA) |
WSD1%55QP | AG2_QP | Without (WS) | Simple pot still distillation (D1) | 65% ABV | 55% ABV (%55) | Quercus petraea (QP) |
WSD1%55QR | AG2_QR | Without (WS | Simple pot still distillation (D1) | 65% ABV | 55% ABV (%55) | Quercus robur (QR) |
WSD2%55QA | AG3_QA | Without (WS) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus alba (QA) |
WSD2%55QP | AG3_QP | Without (WS) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus petraea (QP) |
WSD2%55QR | AG3_QR | Without (WS) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus robur (QR) |
SCD%55QA | AG4_QA | With (S) | Continuous distillation in column (CD) | 77% ABV | 55% ABV (%55) | Quercus alba (QA) |
SCD%55QP | AG4_QP | With (S) | Continuous distillation in column (CD) | 77% ABV | 55% ABV (%55) | Quercus petraea (QP) |
SCD%55QR | AG4_QR | With (S) | Continuous distillation in column (CD) | 77% ABV | 55% ABV (%55) | Quercus robur (QR) |
SD2%55QA | AG5_QA | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus alba (QA) |
SD2%55QP | AG5_QP | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus petraea (QP) |
SD2%55QR | AG5_QR | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 55% ABV (%55) | Quercus robur (QR) |
SCD%65QA | AG6_QA | With (S) | Continuous distillation in column (CD) | 77% ABV | 65% ABV (%65) | Quercus alba (QA) |
SCD%65QP | AG6_QP | With (S) | Continuous distillation in column (CD) | 77% ABV | 65% ABV (%65) | Quercus petraea (QP) |
SCD%65QR | AG6_QR | With (S) | Continuous distillation in column (CD) | 77% ABV | 65% ABV (%65) | Quercus robur (QR) |
SD2%65QA | AG7_QA | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 65% ABV (%65) | Quercus alba (QA) |
SD2%65QP | AG7_QP | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 65% ABV (%65) | Quercus petraea (QP) |
SD2%65QR | AG7_QR | With (S) | Serial distillations with two pot stills (D2) | 65% ABV | 65% ABV (%65) | Quercus robur (QR) |
WSDD%55 Wine | WSD1%55/WSD2%55 Wine | SCD%55/SCD%65 Wine | SD2%55/SD2%65 Wine | p-Anova | ||
---|---|---|---|---|---|---|
Alcoholic content | (% ABV) | 10.50 ± 0.06 (a) | 10.60 ± 0.08 (a) | 11.56 ± 0.07 (b) | 11.50 ± 0.05 (b) | 0.023 * |
Total acidity | g/L Tartaric acid | 6.41 ± 0.07 | 5.33 ± 0.11 | 5.76 ± 0.12 | 5.19 ± 0.09 | 0.312 |
Volatile acidity | g/L Acetic acid | 0.31 ± 0.03 (a) | 0.51 ± 0.05 (b) | 0.33 ± 0.04 (a) | 0.28 ± 0.03 (a) | 0.047 * |
pH | 3.63 ± 0.02 (b,c) | 3.71 ± 0.01 (c) | 3.56 ± 0.02 (a,b) | 3.51 ± 0.02 (a) | 0.016 * | |
Total sulphur dioxide | mg/L | <10 | <10 | 73 | 36 | |
Total aldehydes | mg/L | 19.3 ± 2.4 | 23.3 ± 3.5 | 56.8 ± 2.1 | 33.9 ± 2.7 | 0.079 |
Methanol | mg/L | 70.2 ± 1.3 (a) | 74.3 ± 2.3 (a) | 104.9 ± 1.4 (b) | 74.6 ± 2.5 (a) | 0.042 * |
N-Propanol | mg/L | 23.9 ± 1.4 (a) | 24.6 ± 2.1 (a) | 48.3 ± 1.5 (c) | 38.3 ± 1.5 (b) | 0.002 * |
Isobutanol | mg/L | 18.1 ± 0.8 (a) | 20.5 ± 1.1 (a) | 51.2 ± 0.9 (c) | 43.1 ± 0.8 (b) | 0.011 * |
N-Butanol | mg/L | 1.1 ± 0.1 (a) | 1.7 ± 0.1 (a) | 2.4 ± 0.1 (b) | 2.6 ± 0.1 (b) | 0.039 * |
Isoamyl alcohols | mg/L | 107.3 ± 3.1 (a) | 122.2 ± 3.7 (b) | 262.4 ± 4.9 (c) | 251.3 ± 5.8 (c) | 0.005 * |
1-Hexanol | mg/L | 1.2 ± 0.1 (a) | 1.2 ± 0.2 (a) | 2.5 ± 0.5 (b) | 2.9 ± 0.5 (b) | 0.041 * |
2-Phenylethanol | mg/L | 8.8 ± 1.7 (b,c) | 5.1 ± 1.1 (a) | 7.8 ± 0.8 (a,b) | 11.3 ± 0.8 (c) | 0.046 * |
Ethyl acetate | mg/L | 38.1 ± 2.5 (a) | 36.9 ± 3.0 (a) | 38.4 ± 2.0 (a) | 49.1 ± 1.7 (b) | 0.044 * |
Ethyl lactate | mg/L | 18.6 ± 2.9 (a) | 40.6 ± 3.9 (c) | 30.1 ± 2.6 (b) | 63.4 ± 1.3 (d) | 0.003 * |
Diethyl succinate | mg/L | 0.1 ± 0.1 (a) | 0.1 ± 0.1 (a) | 1.3 ± 0.2 (b) | 1.2 ± 0.3 (b) | 0.025 * |
Ethyl hexanoate | mg/L | 0.4 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.2 | 0.3 ± 0.1 | 0.723 |
Ethyl octanoate | mg/L | 1.4 ± 0.2 | 1.6 ± 0.2 | 1.6 ± 0.2 | 1.5 ± 0.2 | 0.881 |
Ethyl decanoate | mg/L | 2.8 ± 0.3 (b) | 2.4 ± 0.3 (b) | 1.2 ± 0.1 (a) | 0.9 ± 0.1 (a) | 0.037 * |
Ethyl dodecanoate | mg/L | 2.1 ± 0.3 (b) | 2.3 ± 0.4 (b) | 0.4 ± 0.1 (a) | 0.6 ± 0.1 (a) | 0.031 * |
Ethyl tetradecanoate | mg/L | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.933 |
Ethyl hexadecanoate | mg/L | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.805 |
WSDD | WSD1 | WSD2 | SCD | SD2 | p-Anova | ||
---|---|---|---|---|---|---|---|
Alcoholic content | (% ABV) | 70.0 ± 0.2 | 65.0 ± 0.1 | 65.0 ± 0.0 | 77.0 ± 0.2 | 65.0 ± 0.1 | |
Total aldehydes | mg/L | 70.8 ± 2.8 (a) | 91.4 ± 3.9 (b) | 66.7 ± 2.8 (a) | 275.0 ± 11.3 (c) | 121.7 ± 5.9 (b) | 0.027 * |
Ehyl acetate | mg/L | 153.1 ± 3.6 (a) | 212.5 ± 5.1 (c) | 174.6 ± 4.7 (b) | 171.8 ± 4.0 (b) | 247.9 ± 5.8 (d) | 0.011 * |
Methanol | mg/L | 415.4 ± 8.0 (a) | 414.1 ± 7.9 (a) | 415.6 ± 8.0 (a) | 636.0 ± 12.3 (b) | 430.8 ± 8.3 (a) | 0.022 * |
N-Propanol | mg/L | 150.5 ± 3.2 (b) | 149.5 ± 3.7 (b) | 135.7 ± 2.9 (a) | 317.1 ± 6.8 (d) | 211.5 ± 4.5 (c) | 0.014 * |
Isobutanol | mg/L | 116.6 ± 2.2 (a,b) | 124.8 ± 3.9 (b) | 106.5 ± 3.1 (a) | 334.7 ± 9.1 (d) | 236.9 ± 6.4 (c) | 0.007 * |
N-Butanol | mg/L | ND | ND | ND | 14.9 ± 0.5 | 14.0 ± 0.5 | 0.477 |
Isoamyl alcohols | mg/L | 696.4 ± 9.9 (b) | 740.8 ± 10.5 (c ) | 645.5 ± 9.1 (a) | 1738.3 ± 24.8 (e) | 1372.0 ± 19.5 (d) | 0.002 * |
1-Hexanol | mg/L | 7.0 ± 0.2 (a) | 6.9 ± 0.2 (a) | 6.7 ± 0.2 (a) | 22.3 ± 0.6 (c) | 15.5 ± 0.4 (b) | 0.013 * |
2-Phenylethanol | mg/L | 4.8 ± 0.2 (a,b) | 5.9 ± 0.2 (b) | 6.3 ± 0.3 (b) | 4.2 ± 0.2 (a) | 13.7 ± 0.5 (c) | 0.029 * |
Ethyl lactate | mg/L | 63.1 ± 2.0 (a) | 88.4 ± 2.9 (b) | 99.1 ± 3.1 (b,c) | 111.5 ± 3.7 (c) | 175.0 ± 5.5 (d) | 0.033 * |
Diethyl succinate | mg/L | 0.4 ± 0.1 (a) | 0.2 ± 0.1 (a) | 0.2 ± 0.1 (a) | 10.3 ± 0.3 (c) | 7.6 ± 0.3 (b) | 0.002 * |
Ethyl hexanoate | mg/L | 5.4 ± 0.2 (c) | 5.8 ± 0.5 (c) | 4.5 ± 0.3 (b) | 3.6 ± 0.2 (a) | 3.5 ± 0.2 (a) | 0.040 * |
Ethyl octanoate | mg/L | 14.6 ± 0.3 (c) | 13.7 ± 0.3 (c) | 13.2 ± 0.3 (c) | 11.7 ± 0.3 (b) | 7.8 ± 0.2 (a) | 0.042 * |
Ethyl decanoate | mg/L | 25.8 ± 0.6 (d) | 25.4 ± 0.8 (d) | 17.9 ± 0.5 (c) | 8.4 ± 0.3 (b) | 5.9 ± 0.2 (a) | 0.021 * |
Ethyl dodecanoate | mg/L | 18.3 ± 0.5 (c,d) | 21.0 ± 0.8 (d) | 15.8 ± 0.5 (c) | 1.8 ± 0.3 (a) | 2.9 ± 0.2 (b) | 0.036 * |
Ethyl tetradecanoate | mg/L | 1.7 ± 0.1 (b) | 2.7 ± 0.1 (c) | 2.8 ± 0.1 (c) | 0.5 ± 0.2 (a) | 0.7 ± 0.2 (a) | 0.005 * |
Ethyl hexadecanoate | mg/L | 4.8 ± 0.2 (b) | 6.1 ± 0.2 (c) | 7.3 ± 0.2 (d) | 2.4 ± 0.2 (a) | 3.7 ± 0.2 (a) | 0.049 * |
L* | a* | b* | TPI (mg/L G.A.E.) | |
---|---|---|---|---|
WSDD%55 | 99.0 ± 0.5 | −0.3 ± 0.1 | 4.5 ± 1.6 | 95.6 ± 12.5 |
WSDD%55QA | 92.4 ± 0.1 | −1.8 ± 0.1 | 34.1 ± 1.0 | 478.1 ± 16.9 |
WSDD%55QR | 84.1 ± 2.3 | 4.7 ± 2.5 | 63.6 ± 4.8 | 967.8 ± 110.2 |
WSDD%55QP | 76.5 ± 3.3 | 13.3 ± 3.6 | 79.7 ± 4.6 | 1352.1 ± 182 |
WSD1%55 | 99.7 ± 0.1 | −0.2 ± 0.0 | 1.9 ± 0.0 | 77.1 ± 1.1 |
WSD1%55QA | 94.0 ± 0.0 | −2.9 ± 0.0 | 29.3 ± 0.0 | 442.2 ± 1.3 |
WSD1%55QR | 86.3 ± 0.0 | 2.2 ± 0.0 | 57.5 ± 0.0 | 954.7 ± 5.4 |
WSD1%55QP | 73.1 ± 0.0 | 17.4 ± 0.0 | 82.0 ± 0.0 | 1743.2 ± 2.8 |
WSD2%55 | 100.2 ± 0.0 | −0.0 ± 0.0 | 0.3 ± 0.0 | 81.9 ± 0.5 |
WSD2%55QA | 94.1 ± 0.0 | −2.7 ± 0.1 | 30.0 ± 0.0 | 475.0 ± 0.8 |
WSD2%55QR | 87.6 ± 0.1 | 1.3 ± 0.1 | 54.9 ± 0.1 | 990.0 ± 0.5 |
WSD2%55QP | 83.2 ± 0.1 | 5.7 ± 0.0 | 66.2 ± 0.2 | 1293.6 ± 1.02 |
SCD%55/SCD%65 | 100.2 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 17.1 ± 0.0 |
SCD%55QA | 93.1 ± 0.0 | −2.8 ± 0.0 | 34.8 ± 0.0 | 465.0 ± 0.0 |
SCD%55QR | 87.1 ± 0.0 | 1.6 ± 0.0 | 57.7 ± 0.0 | 1024.0 ± 1.6 |
SCD%55QP | 80.5 ± 0.0 | 8.8 ± 0.0 | 71.9 ± 0.0 | 1374.1 ± 0.84 |
SCD%65QA | 95.1 ± 0.0 | −3.1 ± 0.0 | 26.8 ± 0.0 | 456.3 ± 5.0 |
SCD%65QR | 89.2 ± 0.0 | −0.3 ± 0.0 | 51.3 ± 0.0 | 836.7 ± 3.6 |
SCD%65QP | 85.0 ± 0.0 | 4.0 ± 0.0 | 63.9 ± 0.0 | 1058.9 ± 0.4 |
SD2%55/SD2%65 | 100.1 ± 0.1 | −0.0 ± 0.0 | 0.1 ± 0.0 | 103.4 ± 2.7 |
SD2%55QA | 94.0 ± 0.0 | −2.8 ± 0.0 | 30.0 ± 0.0 | 523.9 ± 2.9 |
SD2%55QR | 86.2 ± 0.0 | 2.2 ± 0.0 | 58.0 ± 0.0 | 1032.4 ± 3.6 |
SD2%55QP | 77.0 ± 0.0 | 11.7 ± 0.0 | 75.7 ± 0.1 | 1564.0 ± 2.69 |
SD2%65QA | 92.7 ± 0.0 | −2.3 ± 0.0 | 34.3 ± 0.0 | 514.0 ± 1.7 |
SD2%65QR | 86.1 ± 2.3 | 2.6 ± 2.2 | 57.7 ± 6.3 | 1011.0 ± 149.5 |
SD2%65QP | 87.0 ± 0.0 | 1.7 ± 0.0 | 58.3 ± 0.0 | 939.3 ± 197.5 |
L* | a* | b* | TPI (mg/L GAE) | ||
---|---|---|---|---|---|
Factor: Oak | p-Oak | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Quercus alba | 93.5 ± 0.7 (c) | −2.6 ± 0.4 (a) | 31.6 ± 2.5 (a) | 476.8 ± 28.7 (a) | |
Quercus robur | 86.3 ± 1.5 (b) | 2.4 ± 1.5 (b) | 58.3 ± 3.4 (b) | 993.8 ± 48.8 (b) | |
Quercus petraea | 77.1 ± 3.9 (a) | 12.5 ± 4.5 (c ) | 76.7 ± 6.2 (c) | 1464.8 ± 185.1 (c) | |
Factor: Distillation system | p-Distillation | 0.000 * | 0.000 * | 0.000 * | 0.002 * |
p-Distillation x Oak | 0.000 * | 0.000 * | 0.003 * | 0.000 * | |
Double pot still distillation (WSDD%55) | 84.3 ± 7.3 (a) | 5.4 ± 7.1 (b) | 59.1 ± 20.9 (d) | 932.7 ± 403.3 (a) | |
Simple pot still distillation (WSD1%55) | 84.5 ± 9.5 (a) | 5.6 ± 9.4 (b) | 56.3 ± 23.6 (c) | 1046.7 ± 586.2 (b) | |
Serial distillations with two pot stills. Without SO2 (WSD2%55) | 89.3 ± 4.7 (c) | 0.6 ± 3.5 (a) | 47.2 ± 16.4 (a) | 919.3 ± 369.8 (a) | |
Continuous distillation in column (SCD%55) | 88.2 ± 5.2 (b,c) | 1.3 ± 4.7 (a) | 51.4 ± 16.2 (b) | 954.2 ± 409.9 (a) | |
Serial distillations with two pot stills. SO2 added (SD2%55) | 87.5 ± 7.0 (b) | 2.1 ± 5.9 (a) | 50.3 ± 20.0 (b) | 1039.5 ± 464.3 (b) | |
Factor: Aging alcoholic grade | p-Alc. grade | 0.000 * | 0.000 * | 0.001 * | 0.000 * |
p-Alc. grade x Oak | 0.001 * | 0.000 * | 0.033 * | 0.000 * | |
55% ABV (SCD%55, SD2%55) | 87.8 ± 5.8 (a) | 1.7 ± 5.1 (b) | 50.8 ± 17.2 (b) | 996.8 ± 419.9 (b) | |
65% ABV (SCD%65, SD2%65) | 89.2 ± 3.9 (b) | 0.4 ± 2.8 (a) | 48.7 ± 14.3 (a) | 802.7 ± 256.9 (a) | |
Factor: SO2 added in musts | p-SO2 | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
p-SO2 x Oak | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Without (WSD2%55) | 89.3 ± 4.7 (b) | 0.6 ± 3.5 (a) | 47.2 ± 16.4 (a) | 919.3 ± 369.8 (a) | |
With (SD2%55) | 87.5 ± 7.0 (a) | 2.1 ± 5.9 (b) | 50.3 ± 20.0 (b) | 1039.5 ± 464.3 (b) |
Olfactory Notes | Tastes | Tactile Sensations | Aromas | Overall Sensations |
---|---|---|---|---|
Alcoholic | Sweetness | Padded | Caramel | Complexity |
Aniseed | Acidity | Alcohol | Oxidative sweetness | Balanced |
Aromatic intensity | Bitterness | Burning | Spiced | No edges |
Caramel | Astringency | Nuts | Full | |
Clove | Velvety | Herbaceous | Persistence | |
Coconut | Hot | Noble wood | ||
Coffee | Fleshy | Oak | ||
Floral | Consistency, body | Vinous | ||
Fruity | Estructured | |||
Glue | Fluid | |||
Herbaceous | Alcohol integration | |||
New Wood | Good throat pass | |||
Noble wood | Pungent | |||
Nuts | Rough | |||
Oak | Drying | |||
Raisins, dried fruits | Smooth | |||
Spiced | Tannic | |||
Sweet | Unctuous | |||
Toasted | ||||
Toffee | ||||
Tropical fruits (pinepple, banana,...) | ||||
Vanilla | ||||
Varnish, solvent | ||||
Vinous | ||||
White fruits (apple, pear,...) | ||||
Wine lees |
Descriptor | Definition | High Intensity Pattern | Low Intensity Pattern |
---|---|---|---|
Olfactory evaluation | |||
Aromatic intensity | Intensity of the positive aromatic notes that characterize an aged grape spirit. | P8: VSOP Brandy (4 years), 100% holanda from pot still, hydrated at 30% ABV | P3: 50/50 mixture of P8 and hydroalcoholic mix at 30% ABV |
Fruity | Aromas reminiscent of fruits | P9: Pot still holanda hydrated at 30% ABV at a concentration of fatty acid ethyl esters and acetates of higher alcohols above 35 mg/L | P3: 25/75 mixture of P9 and hydroalcoholic mix at 30% ABV |
Vanilla | Sweet and delicate note similar to the aroma of vanilla pods, which is caused by the compound vanillin, transferred to the spirit by contact with oak wood. | P9: VSOP Brandy (4 years), 100% pot still holanda, hydrated at 30% ABV and with 10 mg/L vanilla added | P4: Mixture of SCD%65 aged in the three oak species with 5 mg/L of vanilla added, at 30% ABV |
Toasted | Characteristic note of toasted wood, reminiscent of baking liquid caramel. | P9: VSOP Brandy (4 years), 100% pot still holanda, hydrated at 30% ABV and with 0.4 g/L caramelized rectified grape must added | P3: A 50/50 mixture of P9 and base brandy from the high pattern without addition, at 30% ABV |
Spiced | Olfactory sensation that includes exotic and appreciated oak notes, such as coconut, clove, nutmeg, pepper or cinnamon. | P9: VSOP Brandy (4 years), 100% pot still holanda, hydrated at 30% ABV with the addition of 2 mL/L of hydroalcoholic spiced extract | P3: VSOP Brandy (4 years) hydrated at 30% ABV, with only 1 mL/L spiced extract added |
Olfactogustatory evaluation | |||
Sweetness | Primary taste most intensely perceived at the tip of the tongue | P8: VSOP Brandy (4 years), 100% pot still holanda, hydrated at 30% ABV and with 3 g/L concentrated rectified grape must added | P3: A mixture of SCD%55 aged in the three oak species, at 30% ABV |
Alcohol | Burning sensation in the oral cavity | P9: A mixture of SCD%55 aged in the three oak species at 36% ABV | P4: A mixture of WSD1%55 aged in the three oak species, hydrated at 30% ABV |
Smoothness | Warm and velvety sensation in the oral cavity, ending with an easy swallow. | P8: VSOP Brandy (4 years), 100% pot still holanda, hydrated at 30% ABV and with 3 g/L concentrated rectified grape must added | P3: A mixture of SCD%55 aged in the three oak species, at 30% ABV |
Oak | Olfactogustatory sensation conferred by oak wood to the brandy and that is characterized by light drying and bitter notes together with a characteristic aroma (retronasal). | P9: SD2%55 aged in Quercus petraea, hydrated at 30% ABV | P3: A 50/50 mixture of WSD1%55 aged in Quercus alba and Quercus robur, at 30% ABV |
Balance | Overall assessment of mouthfeel, which defines a structured brandy (full-bodied, with presence), rounded (no outstanding notes, no sharp edges), complex (diversity of notes), with well-integrated alcohol, not remarkable astringency or bitterness, and a long aftertaste. | P9: VSOP Brandy (8 years), 100% pot still holanda, hydrated at 30% ABV | P3: SCD%55 aged in Quercus alba, hydrated at 30% ABV |
Sample | Aromatic Intensity | Fruity | Vanilla | Toasted | Spiced | Sweetness | Alcohol | Smoothness | Oak | Balance |
---|---|---|---|---|---|---|---|---|---|---|
WSDD%55 | 8.0 ± 0.0 | 8.2 ± 1.2 | 2.0 ± 1.4 | 1.3 ± 0.6 | 1.3 ± 0.5 | 4.5 ± 0.7 | 4.0 ± 0.8 | 7.3 ± 0.6 | 1.0 ± 0.0 | 4.3 ± 1.5 |
WSDD%55QA | 7.3 ± 1.2 | 6.6 ± 1.1 | 3.5 ± 0.8 | 3.7 ± 1.2 | 3.6 ± 1.7 | 3.5 ± 1.3 | 4.9 ± 1.2 | 6.7 ± 1.2 | 5.3 ± 1.0 | 5.8 ± 1.3 |
WSDD%55QP | 7.1 ± 1.1 | 5.6 ± 1.7 | 3.6 ± 1.0 | 5.3 ± 0.8 | 3.6 ± 0.7 | 2.5 ± 0.6 | 5.1 ± 0.6 | 4.5 ± 1.0 | 7.0 ± 1.1 | 5.3 ± 1.5 |
WSDD%55QR | 6.1 ± 1.2 | 5.1 ± 1.4 | 4.5 ± 1.4 | 4.0 ± 0.9 | 3.1 ± 1.0 | 2.8 ± 1.0 | 4.3 ± 1.0 | 6.3 ± 1.2 | 4.7 ± 1.4 | 5.3 ± 0.8 |
WSD1%55 | 5.0 ± 0.8 | 6.5 ± 1.9 | 1.8 ± 0.5 | 1.3 ± 0.6 | 1.5 ± 1.0 | 2.0 ± 0.0 | 6.0 ± 0.8 | 4.7 ± 1.5 | 1.3 ± 0.6 | 3.3 ± 0.6 |
WSD1%55QA | 6.4 ± 1.2 | 6.1 ± 1.7 | 3.9 ± 1.4 | 3.8 ± 0.8 | 2.9 ± 1.1 | 2.8 ± 1.0 | 5.6 ± 0.5 | 4.3 ± 0.8 | 6.5 ± 0.5 | 4.2 ± 1.0 |
WSD1%55QP | 6.0 ± 0.8 | 5.1 ± 0.9 | 4.1 ± 1.6 | 5.0 ± 1.3 | 3.4 ± 1.2 | 2.5 ± 0.6 | 4.8 ± 1.2 | 4.2 ± 0.8 | 6.0 ± 1.3 | 4.3 ± 1.0 |
WSD1%55QR | 6.0 ± 1.1 | 4.8 ± 1.0 | 5.0 ± 0.8 | 5.0 ± 1.3 | 2.8 ± 0.5 | 2.5 ± 0.6 | 4.3 ± 1.3 | 5.5 ± 0.8 | 6.3 ± 1.2 | 5.2 ± 0.4 |
WSD2%55 | 6.0 ± 1.2 | 6.0 ± 1.4 | 2.3 ± 1.0 | 1.7 ± 1.2 | 1.0 ± 0.0 | 3.5 ± 0.7 | 5.0 ± 0.8 | 5.0 ± 1.0 | 1.7 ± 1.2 | 3.0 ± 1.0 |
WSD2%55QA | 5.5 ± 1.3 | 4.3 ± 1.5 | 3.9 ± 1.2 | 4.7 ± 0.5 | 3.6 ± 1.2 | 3.5 ± 0.6 | 4.8 ± 0.7 | 4.7 ± 1.0 | 6.0 ± 1.7 | 4.3 ± 1.0 |
WSD2%55QP | 5.9 ± 1.2 | 4.8 ± 1.4 | 4.9 ± 1.7 | 5.2 ± 1.0 | 3.6 ± 1.4 | 2.5 ± 0.6 | 5.6 ± 1.0 | 4.7 ± 0.5 | 5.8 ± 1.0 | 4.7 ± 0.8 |
WSD2%55QR | 6.8 ± 0.7 | 4.3 ± 1.4 | 5.4 ± 1.2 | 4.5 ± 0.8 | 3.5 ± 1.3 | 2.8 ± 1.0 | 5.4 ± 0.7 | 4.3 ± 1.2 | 7.0 ± 0.6 | 4.2 ± 1.2 |
SCD%55/SCD%65 | 5.5 ± 1.1 | 4.8 ± 1.8 | 1.8 ± 1.0 | 1.3 ± 0.6 | 1.5 ± 0.6 | 2.5 ± 0.7 | 7.3 ± 1.0 | 2.3 ± 0.6 | 2.0 ± 1.7 | 2.3 ± 1.2 |
SCD%55QA | 5.8 ± 0.7 | 4.0 ± 1.6 | 5.5 ± 1.7 | 5.0 ± 1.7 | 3.5 ± 0.8 | 2.3 ± 0.5 | 5.5 ± 0.8 | 3.8 ± 1.2 | 6.8 ± 1.0 | 3.8 ± 1.2 |
SCD%55QP | 6.1 ± 1.5 | 3.4 ± 1.0 | 4.6 ± 1.9 | 4.7 ± 0.8 | 2.7 ± 1.0 | 2.5 ± 0.6 | 5.4 ± 1.1 | 3.8 ± 0.8 | 6.7 ± 1.2 | 4.5 ± 1.0 |
SCD%55QR | 6.0 ± 1.9 | 3.3 ± 1.4 | 5.0 ± 1.1 | 4.3 ± 1.2 | 2.3 ± 1.0 | 2.3 ± 0.5 | 5.8 ± 1.3 | 3.8 ± 1.7 | 7.0 ± 1.3 | 3.7 ± 1.4 |
SCD%65QA | 4.3 ± 1.4 | 4.1 ± 1.1 | 4.1 ± 1.9 | 3.8 ± 1.2 | 3.0 ± 0.8 | 2.5 ± 0.6 | 5.5 ± 1.3 | 3.7 ± 1.0 | 5.0 ± 1.4 | 3.8 ± 1.3 |
SCD%65QP | 5.9 ± 1.0 | 3.4 ± 1.4 | 4.3 ± 1.8 | 4.2 ± 1.0 | 2.6 ± 0.7 | 2.3 ± 0.5 | 5.8 ± 0.9 | 4.2 ± 1.0 | 7.2 ± 0.8 | 4.0 ± 1.1 |
SCD%65QR | 4.4 ± 1.2 | 3.3 ± 1.0 | 4.0 ± 1.5 | 3.2 ± 0.8 | 2.4 ± 0.5 | 2.0 ± 0.0 | 5.0 ± 0.8 | 3.5 ± 1.0 | 5.7 ± 1.4 | 3.3 ± 1.0 |
SD2%55/SD2%65 | 6.8 ± 0.5 | 6.7 ± 1.5 | 1.8 ± 1.0 | 1.0 ± 0.0 | 1.3 ± 0.5 | 3.0 ± 0.0 | 5.5 ± 1.3 | 4.7 ± 1.2 | 2.0 ± 1.7 | 3.3 ± 0.6 |
SD2%55QA | 5.5 ± 1.3 | 4.0 ± 1.7 | 4.5 ± 1.9 | 4.2 ± 1.2 | 3.4 ± 1.4 | 2.5 ± 1.0 | 5.9 ± 1.2 | 4.2 ± 1.2 | 6.8 ± 1.0 | 4.2 ± 1.2 |
SD2%55QP | 5.8 ± 1.7 | 3.9 ± 1.0 | 4.4 ± 1.3 | 4.7 ± 1.5 | 3.4 ± 1.3 | 2.3 ± 0.5 | 5.6 ± 1.1 | 3.3 ± 0.8 | 7.2 ± 0.8 | 3.7 ± 0.8 |
SD2%55QR | 5.9 ± 1.1 | 3.8 ± 0.7 | 5.1 ± 1.8 | 4.2 ± 1.7 | 3.4 ± 1.2 | 2.5 ± 0.6 | 5.9 ± 0.6 | 3.8 ± 0.8 | 7.0 ± 1.3 | 4.0 ± 0.9 |
SD2%65QA | 5.5 ± 1.3 | 3.9 ± 1.4 | 4.8 ± 1.0 | 4.2 ± 1.0 | 3.4 ± 1.5 | 3.0 ± 0.0 | 5.6 ± 1.2 | 5.0 ± 1.5 | 6.5 ± 0.5 | 4.0 ± 0.6 |
SD2%65_QP | 5.3 ± 1.0 | 3.5 ± 1.1 | 4.6 ± 1.3 | 4.5 ± 1.5 | 3.9 ± 1.1 | 2.3 ± 0.5 | 5.6 ± 1.1 | 4.5 ± 1.2 | 5.8 ± 1.5 | 4.5 ± 1.2 |
SD2%65_QR | 5.4 ± 1.1 | 4.1 ± 1.5 | 5.0 ± 1.5 | 4.8 ± 0.8 | 3.3 ± 0.7 | 2.3 ± 1.3 | 5.9 ± 1.5 | 3.0 ± 0.9 | 7.0 ± 0.6 | 3.7 ± 1.8 |
Aromatic Intensity | Fruity | Vanilla | Toasted | Spiced | Sweetness | Alcohol | Smoothness | Oak | Balance | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Factor: Distillation system | p-Distillation | 0.050 * | 0.000 * | 0.086 | 0.763 | 0.115 | 0.194 | 0.002 * | 0.000 * | 0.005 * | 0.000 * |
p-Distillation x Oak | 0.500 | 0.500 | 0.729 | 0.596 | 0.802 | 0.793 | 0.149 | 0.047 * | 0.031 * | 0.515 | |
Double pot still distillation (WSDD%55) | 6.8 ± 1.6 (b) | 5.8 ± 1.8 (c) | 3.9 ± 1.5 | 4.3 ± 1.2 | 3.5 ± 1.2 | 2.9 ± 1.0 | 4.8 ± 1.0 (a) | 5.8 ± 1.5 (c) | 5.7 ± 1.5 (a) | 5.5 ± 1.2 (b) | |
Simple pot still distillation (WSD1%55) | 6.1 ± 1.0 (b) | 5.3 ± 1.3 (c) | 4.3 ± 1.3 | 4.6 ± 1.2 | 3.0 ± 1.0 | 2.6 ± 0.7 | 4.8 ± 1.2 (a) | 4.7 ± 1.0 (b) | 6.3 ± 1.0 (a,b) | 4.6 ± 0.9 (a) | |
Serial distillations with two pot stills. SO2 not added (WSD2%55) | 6.0 ± 1.5 (a,b) | 4.5 ± 1.4 (b) | 4.7 ± 1.5 | 4.8 ± 0.8 | 3.6 ± 1.3 | 2.9 ± 0.8 | 5.2 ± 0.9 (a,b) | 4.6 ± 0.9 (b) | 6.3 ± 1.2 (a,b) | 4.4 ± 1.0 (a) | |
Continuous distillation in column (SCD%55) | 6.0 ± 1.4 (a) | 3.5 ± 1.3 (a) | 5.0 ± 1.6 | 4.7 ± 1.2 | 2.8 ± 1.0 | 2.3 ± 0.5 | 5.6 ± 1.0 (b) | 3.8 ± 1.2 (a) | 6.8 ± 1.1 (b) | 4.0 ± 1.2 (a) | |
Serial distillations with two pot stills. SO2 added (SD2%55) | 5.7 ± 1.3 (a) | 3.9 ± 1.2 (a.b) | 4.7 ± 1.6 | 4.3 ± 1.7 | 3.4 ± 1.2 | 2.4 ± 0.7 | 5.8 ± 1.0 (b) | 3.8 ± 0.9 (a) | 7.0 ± 1.0 (b) | 3.9 ± 0.9 (a) | |
Factor: Oak | p-Oak | 0.946 | 0.023 * | 0.050 * | 0.080 | 0.273 | 0.151 | 0.567 | 0.024 * | 0.722 | 0.990 |
Quercus robur | 6.2 ± 1.4 | 4.3 ± 1.4 (a) | 5.0 ± 1.3 (b) | 4.4 ± 1.2 | 3.0 ± 1.1 | 2.6 ± 0.7 | 5.1 ± 1.2 | 4.8 ± 1.5 (b) | 6.4 ± 1.4 | 4.5 ± 1.1 | |
Quercus alba | 6.1 ± 1.3 | 5.0 ± 2.0 (b) | 4.3 ± 1.5 (a) | 4.3 ± 1.4 | 3.4 ± 1.2 | 2.9 ± 1.0 | 5.3 ± 1.0 | 4.7 ± 1.4 (b) | 6.3 ± 1.2 | 4.5 ± 1.3 | |
Quercus petraea | 6.2 ± 1.5 | 4.5 ± 1.4 (a,b) | 4.3 ± 1.7 (a) | 5.0 ± 1.1 | 3.3 ± 1.2 | 2.5 ± 0.5 | 5.3 ± 1.0 | 4.1 ± 0.9 (a) | 6.5 ± 1.1 | 4.5 ± 1.1 | |
Factor: Aging alcoholic grade | p-Alc. grade | 0.007 * | 0.947 | 0.224 | 0.226 | 0.982 | 1.000 | 0.568 | 0.534 | 0.007 * | 0.762 |
p-Oak x Distillation | 0.228 | 0.406 | 0.629 | 0.440 | 0.160 | 0.517 | 0.647 | 0.211 | 0.130 | 0.728 | |
p-Oak x Alc. grade | 0.569 | 0.789 | 0.767 | 0.906 | 0.640 | 0.348 | 0.662 | 0.121 | 0.571 | 0.758 | |
p-Distillation x Alc. grade | 0.137 | 0.730 | 0.110 | 0.086 | 0.525 | 0.652 | 0.925 | 0.407 | 0.522 | 0.480 | |
65% ABV (SCD%65, SD2%65) | 5.1 ± 1.3 (a) | 3.7 ± 1.4 | 4.5 ± 1.5 | 4.1 ± 1.1 | 3.1 ± 0.8 | 2.4 ± 0.6 | 5.6 ± 1.1 | 4.0 ± 1.3 | 6.2 ± 1.3 (a) | 3.9 ± 1.2 | |
55% ABV (SCD%55, SD2%55) | 5.8 ± 1.3 (b) | 3.7 ± 1.3 | 4.9 ± 1.6 | 4.5 ± 1.5 | 3.1 ± 0.9 | 2.4 ± 0.6 | 5.7 ± 1.0 | 3.8 ± 1.1 | 6.9 ± 1.0 (b) | 4.0 ± 1.1 | |
Factor: SO2 added in musts | p-SO2 | 0.431 | 0.050 * | 0.926 | 0.356 | 0.623 | 0.059 | 0.040 * | 0.020 * | 0.050 * | 0.060 |
p-SO2 x Oak | 0.657 | 0.727 | 0.562 | 0.986 | 0.991 | 0.504 | 0.274 | 0.471 | 0.340 | 0.503 | |
With (SD2%55) | 5.7 ± 1.3 | 3.9 ± 1.2 (a) | 4.7 ± 1.6 | 4.3 ± 1.7 | 3.4 ± 1.2 | 2.4 ± 0.7 (a) | 5.8 ± 1.0 (b) | 3.8 ± 0.9 (a) | 7.0 ± 1.0 (b) | 3.9 ± 0.9 | |
Without (WSD2%55) | 6.0 ± 1.5 | 4.5 ± 1.4 (b) | 4.7 ± 1.5 | 4.8 ± 0.8 | 3.6 ± 1.3 | 2.9 ± 0.8 (b) | 5.2 ± 0.9 (a) | 4.6 ± 0.9 (b) | 6.3 ± 1.2 (a) | 4.4 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; Guillén-Sánchez, D.A.; Castro-Mejías, R.; Durán-Guerrero, E.; Rodríguez-Dodero, C.; García-Moreno, M.d.V. A Study on the Influence of the Use of Sulphur Dioxide, the Distillation System and the Aging Conditions on the Final Sensory Characteristics of Brandy. Foods 2022, 11, 3540. https://doi.org/10.3390/foods11213540
Guerrero-Chanivet M, Valcárcel-Muñoz MJ, Guillén-Sánchez DA, Castro-Mejías R, Durán-Guerrero E, Rodríguez-Dodero C, García-Moreno MdV. A Study on the Influence of the Use of Sulphur Dioxide, the Distillation System and the Aging Conditions on the Final Sensory Characteristics of Brandy. Foods. 2022; 11(21):3540. https://doi.org/10.3390/foods11213540
Chicago/Turabian StyleGuerrero-Chanivet, María, Manuel J. Valcárcel-Muñoz, Dominico Antonio Guillén-Sánchez, Remedios Castro-Mejías, Enrique Durán-Guerrero, Carmen Rodríguez-Dodero, and María de Valme García-Moreno. 2022. "A Study on the Influence of the Use of Sulphur Dioxide, the Distillation System and the Aging Conditions on the Final Sensory Characteristics of Brandy" Foods 11, no. 21: 3540. https://doi.org/10.3390/foods11213540
APA StyleGuerrero-Chanivet, M., Valcárcel-Muñoz, M. J., Guillén-Sánchez, D. A., Castro-Mejías, R., Durán-Guerrero, E., Rodríguez-Dodero, C., & García-Moreno, M. d. V. (2022). A Study on the Influence of the Use of Sulphur Dioxide, the Distillation System and the Aging Conditions on the Final Sensory Characteristics of Brandy. Foods, 11(21), 3540. https://doi.org/10.3390/foods11213540