Assessment of the Mineral Composition and the Selected Physicochemical Parameters of Dietary Supplements Containing Green Tea Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Average Weight
2.2. Shape and Size
2.3. Friability Test
2.4. Breaking Force Test
2.5. Disintegration Time
2.6. Preparation of Samples for Flame Atomic Absorption Spectroscopy (FAAS) Analysis
2.7. Elemental Analysis
2.8. Statistical Analysis
2.9. Evaluation of the Tested Food Supplements According to Polish Legislation
- According to Art. 48 of the Act [12], foodstuffs marketed on the territory of the Republic of Poland must be labelled in the Polish language.
- In accordance with Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers [42], products were assessed for the presence of the name of the food (Art. 17), the list of ingredients (Art. 18), substances or products causing allergies or intolerances (Art. 21); the quantification of ingredients (Art. 22), net quantity (Art. 23), the presence of a minimum durability date, a ‘use by’ date (Art. 24), storage conditions (Art. 25); country or places of origin (Art. 26), instructions for use (Art. 27), and nutritional information (Art. 29).
- In accordance with the Regulation of the Minister of Health of 9 October 2007 on the composition and labelling of dietary supplements [43], the following requirements were assessed: occurrence of the term “dietary supplement”; name of the category of nutrients or substances characterising the product or an indication of their properties; portion of the product recommended for consumption during the day; warning not to exceed the recommended portion for consumption during the day; occurrence of a statement that dietary supplements may not be used as a substitute (replacement) for a varied diet; statement that dietary supplements should be kept out of the reach of small children (Art. 5 p. 2); the content of vitamins and minerals and other substances with a nutritional or other physiological effect in numerical form per recommended daily portion of the product, as well as information on the content of vitamins and minerals as a percentage of the nutrient reference values for daily intake (or a statement that no NRVs has been established).
3. Results and Discussion
3.1. Qualitative Evaluation of Dietary Supplements Containing Green Tea Extracts According to the United States Pharmacopoeia (USP) Guidelines
3.1.1. Assessment of Weight Uniformity
3.1.2. Shape and Size
3.1.3. Breaking Force and Friability
3.1.4. Disintegration Time
3.2. Evaluation of the Selected Elements’ Contents in Green Tea—Based Dietary Supplements
3.2.1. Results of Elemental Analysis
3.2.2. Results of Chemometric Analysis
3.2.3. Assessment of the Intake of Selected Elements
3.2.4. Assessment of Exposure of Toxic Elements
3.2.5. Evaluation of the Manufacturer’s Declaration of Analysed Minerals
3.3. Evaluation of Compliance of the Information on the Supplement’s Packaging Based on Current Polish Legislation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Code | Composition | Pharmaceutical Form | Recommended Daily Dosage [Number of Capsules/Tablets] | Country of Origin |
---|---|---|---|---|
DS1 | green tea extract (55% EGCG); guarana extract (50% caffeine); chromium; synephrine | Capsule | 4 | Poland |
DS2 | green tea extract (55% EGCG); caffeine | Capsule | 2 | Poland |
DS3 | green tea extract (EGCG); chili pepper; apple fibre (80%) | Capsule | 1 | - |
DS4 | Camellia sinensis green tea extract (EGCG) | Capsule | 2 | - |
DS5 | conjugated linoleic acid (CLA); green tea extract (EGCG); L-carnitine | Capsule | 4 | Poland |
DS6 | green tea extract (EGCG); caffeine; bitter orange fruit extract (synephrine); guarana seed extract, black pepper fruit extract | Capsule | 2 | Poland |
DS7 | conjugated linoleic acid (CLA); green tea extract (EGCG) | Capsule | 4 | Denmark |
DS8 | green tea extract (EGCG); caffeine; chromium; extract of Indian nettle root, black pepper fruit and cayenne pepper | Capsule | 2 | - |
DS9 | green tea extract (EGCG); caffeine; green coffee extract; chromium; iodine | Capsule | 2 | USA |
DS10 | green tea leaf extract; L-tyrosine; L-carnitine; caffeine; ginger root extract; African mango seed extract; ginseng root; black peppercorn extract; chromium | Capsule | 3 | Poland |
DS11 | Camellia sinensis green tea extract | Capsule | 4 | - |
DS12 | green tea leaf extract | Capsule | 1 | Poland |
DS13 | green tea leaf extract (EGCG); L-carnitine | Capsule | 4 | Poland |
DS14 | green tea; cider vinegar extract | Capsule | 2 | Poland |
DS15 | green tea leaf extract (EGCG) | Capsule | 1 | USA |
DS16 | green tea leaf extract (EGCG) | Capsule | 3 | Germany |
DS17 | green tea leaf extract; CLA; L-carnitine | Capsule | 6 | UK |
DS18 | green tea (Camellia sinensis) leaf extract (EGCG) | Capsule | 1 | USA |
DS19 | green tea leaf extract; vitamin C | Capsule | 1 | USA |
DS20 | green tea leaf extract (EGCG) | Capsule | 1 | USA |
DS21 | leafy green tea | Capsule | 1 | USA |
DS22 | green tea leaf extract (EGCG) | Capsule | 3 | UK |
DS23 | green tea leaf extract (EGCG) | Capsule | 1 | USA |
DS24 | decaffeinated green tea extract (EGCG) | Capsule | 1 | USA |
DS25 | conjugated linoleic acid (CLA); L-carnitine; Camellia sinensis green tea extract | Capsule | 1 | Poland |
DS26 | green tea extract | Capsule | 2 | USA |
DS27 | nettle herb extract; green tea leaf extract; prickly pear extract; grape seeds; dandelion root; goldenrod herb | Tablet | 1 | Poland |
DS28 | green tea extract; chromium; L-carnitine | Tablet | 2 | Czech Republic |
DS29 | green tea leaf extract | Tablet | 1 | Poland |
DS30 | green tea extract; L-carnitine; chromium; chlorella; nettle leaf extract | Tablet | 2 | Poland |
DS31 | green tea extract (EGCG); caffeine; extract of nettle; cayenne pepper; green coffee | Tablet | 2 | Poland |
DS32 | green tea leaf extract; bitter orange extract (synephrine); Paraguayan ginkgo leaf extract; long fiddle leaf extract; chromium | Tablet | 2 | Poland |
DS33 | green tea extract (Camellia sinensis); African mango extract; caffeine | Tablet | 2 | UK |
DS34 | L-carnitine; green tea leaf extract; CLA; Garcinia cambogia fruit extract | Tablet | 4 | - |
DS35 | green tea extract (Camellia sinensis); acai extract | Tablet | 3 | UK |
Element | Accuracy [%] | Precision [%] | LOD [µg/g] | LOQ [µg/g] |
---|---|---|---|---|
Na | 98 | 10.21 | 0.06 | 0.19 |
K | 108 | 2.06 | 0.04 | 0.11 |
Ca | 92 | 4.17 | 0.14 | 0.43 |
Mg | 99 | 0.59 | 0.01 | 0.03 |
Mn | 112 | 1.67 | 0.01 | 0.04 |
Fe | 107 | 0.63 | 1.55 | 4.64 |
Zn | 107 | 4.31 | 0.26 | 0.78 |
Cr | 89 | 0.02 | 0.17 | 0.51 |
Cu | 99 | 1.42 | 0.04 | 0.11 |
Cd | 105 | 3.48 | 0.01 | 0.03 |
Pb | 95 | 5.61 | 0.08 | 0.25 |
References
- Statista. Dietary Supplement Consumption Frequency in Poland in 2019; Statista GmbH: Hamburg, Germany, 2022; Available online: https://www.statista.com/statistics/1072668/poland-dietary-supplement-intake-frequency/ (accessed on 4 August 2022).
- Statista. Value of the Dietary Supplements Market in Poland from 2017 to 2021*(in Billion Zloty); Statista GmbH: Hamburg, Germany, 2022; Available online: https://www.statista.com/statistics/1086713/poland-dietary-supplements-market-value/ (accessed on 4 August 2022).
- Statista. Revenue of the Vitamins & Minerals Market Worldwide by Country in 2021 (in Million U.S. Dollars); Statista GmbH: Hamburg, Germany, 2022; Available online: https://www.statista.com/forecasts/758626/revenue-of-the-vitamins-and-minerals-market-worldwide-by-country (accessed on 4 August 2022).
- Mukattash, T.; Alkhalidy, H.; Alzu’bi, B.; Abu-Farha, R.; Itani, R.; Karout, S.; Khojah, H.M.J.; Khdour, M.; El-Dahiyat, F.; Jarab, A. Dietary supplements intake during the second wave of COVID-19 pademic: A multinational Middle Eastern study. Eur. J. Integr. Med. 2022, 49, 102102. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Rando, H.M.; Greene, C.S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 2021, 6, e00122-21. [Google Scholar] [CrossRef] [PubMed]
- Infusino, F.; Marazzato, M.; Mancone, M.; Fedele, F.; Mastroianni, C.M.; Severino, P.; Ceccarelli, G.; Santinelli, L.; Cavarretta, E.; Marullo, A.G.M.; et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients 2020, 12, 1718. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health, Supplements. COVID-19 Treatment Guidelines. 2021. Available online: https://www.covid19treatmentguidelines.nih.gov/supplements/ (accessed on 27 July 2022).
- Zhao, A.; Li, Z.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Zhang, J.; Ren, Z. Dietary diversity among Chinese residents during the COVID-19 outbreak and its associated factors. Nutrients 2020, 12, 1699. [Google Scholar] [CrossRef] [PubMed]
- Grebow, J. Dietary Supplement Sales Skyrocket during Coronavirus Pandemic. Nutr. Outlook. 2020. Available online: https://www.nutritionaloutlook.com/view/dietary-supplement-sales-skyrocket-during-coronavirus-pandemic (accessed on 27 July 2022).
- Bojarowicz, H.; Dźwigulska, P. Suplementy diety. Część I. Suplementy diety, a leki–porównanie wymagań prawnych. Hygeia Public Health 2012, 47, 427–432. [Google Scholar]
- Brzezicha, J.; Błażejewicz, D.; Brzezińska, J.; Grembecka, M. Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity. Food Chem. Toxicol. 2021, 155, 112377. [Google Scholar] [CrossRef]
- Dziennik, U. Ustawa z dnia 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia (z późn. zm.). In 2006 Nr 171 poz. 1225; ISAP: Warsaw, Poland, 2006. [Google Scholar]
- Brzezińska, J.; Szewczyk, A.; Brzezicha, J.; Prokopowicz, M.; Grembecka, M. Evaluation of physicochemical properties of beetroot-based dietary supplements. Foods 2021, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary (USP 43-NF 38); United States Pharmacopeial Convention: Rockville, MD, USA, 2021. [Google Scholar]
- The United States Pharmacopeial Convention. Weight variation of dietary supplements. In United States Pharmacopeia and National Formulary (USP 43-NF 38); United States Pharmacopeial Convention: Rockville, MD, USA, 2021. [Google Scholar]
- United States Pharmacopeial Convention. Tablet friability. In United States Pharmacopeia and National Formulary (USP 43-NF 38); United States Pharmacopeial Convention: Rockville, MD, USA, 2021. [Google Scholar]
- United States Pharmacopeial Convention. Tablet breaking force. In States Pharmacopeia and National Formulary (USP 43-NF38); United States Pharmacopeial Convention: Rockville, MD, USA, 2021. [Google Scholar]
- United States Pharmacopeial Convention. Disintegration and dissolution of dietary supplements. In United States Pharmacopeia and National Formulary (USP 43-NF 38); United States Pharmacopeial Convention: Rockville, MD, USA, 2021. [Google Scholar]
- Koncic, M.Z. Getting more than you paid for: Unauthorized “natural” substances in herbal food supplements on EU Market. Planta Med. 2018, 84, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; D’Cruz, G.; Wright, D. Patients with dysphagia: Experiences of taking medication. J. Adv. Nurs. 2010, 66, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Murray, T.; Carrau, R.; Chan, K. Clinical Management of Swallowing Disorders, 5th ed.; Plural Publishing: San Diego, CA, USA, 2022; pp. 1–51. [Google Scholar]
- Fibigr, J.; Šatínský, D.; Solich, P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal. Chim. Acta 2018, 1036, 1–15. [Google Scholar] [CrossRef]
- Milani, R.F.; Morgano, M.A.; Cadore, S. Trace elements in Camelisa sinsnsis marketed in souther Brasil: Extraction from tea leaves to beverages and dietary exposure. LWT-Food Sci. Technol. 2016, 68, 491–498. [Google Scholar] [CrossRef]
- Šatínský, D.; Jägerová, K.; Havlíková, L.; Solich, P. A new and fast HPLC method for determination of rutin, troxerutin, diosmin and hesperidin in food supplements using fused-core column technology. Food Anal. Methods 2013, 6, 1353–1360. [Google Scholar] [CrossRef]
- Omar, J.M.; Yang, H.; Li, S.; Marquardt, R.R.; Jones, P.J.H. Development of an improved reverse-phase high-performance liquid chromatography method for the simultaneous analyses of trans-/cis-resveratrol, quercetin, and emodin in commercial resveratrol supplements. J. Agric. Food Chem. 2014, 62, 5812–5817. [Google Scholar] [CrossRef] [PubMed]
- Fibigr, J.; Šatínský, D.; Solich, P. A UHPLC method for the rapid separation and quantification of phytosterols using tandem UV/Charged aerosol detection—A comparison of both detection techniques. J. Pharm. Biomed. Anal. 2017, 140, 274–280. [Google Scholar] [CrossRef]
- Šatínský, D.; Pospíšilová, M.; Sladkovský, R. A new gas chromatography method for quality control of methylsulfonylmethane content in multicomponent dietary supplements. Food Anal. Methods. 2014, 7, 1118–1122. [Google Scholar] [CrossRef]
- Hayward, D.G.; Wong, J.W.; Shi, F.; Zhang, K.; Lee, N.S.; DiBenedetto, A.L.; Hengel, M.J. Multiresidue pesticide analysis of botanical dietary supplements using salt-out acetonitrile extraction, solid-phase extraction cleanup column, and gas Chromatography−Triple quadrupole mass spectrometry. Anal. Chem. 2013, 85, 4686–4693. [Google Scholar] [CrossRef]
- Filipiak-Szok, A.; Kurzawa, M.; Szłyk, E. Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. Trace Elem. Med. Biol. 2015, 30, 54–58. [Google Scholar] [CrossRef]
- Benutić, A.; Marciuš, B.; Nemet, I.; Rončević, S. Chemometric classification and discrimination of herbal dietary supplements based on ICP-MS elemental profiling. J. Food Compos. Anal. 2022, 114, 1–11. [Google Scholar] [CrossRef]
- Tumir, H.; Bošnir, J.; Vedrina–Dragojevic, I.; Dragun, Z.; Tomic, S.; Puntaric, D.; Jurak, G. Monitoring of metal and metalloid content in dietary supplements on the Croatian market. Food Control 2010, 21, 885–889. [Google Scholar] [CrossRef]
- Leal, G.C.; Rovasi, F.; Maziero, M.; do Nascimento, P.C.; de Carvalho, L.M.; Viana, C. Emulsion breaking-induced extraction of Cd and Pb from oily dietary supplements followed by graphite furnace atomic absorption spectrometry detection. J. Food Compos. Anal. 2022, 112, 104651. [Google Scholar] [CrossRef]
- Brzezińska-Rojek, J.; Rutkowska, M.; Brzezicha, J.; Konieczka, P.; Prokopowicz, M.; Grembecka, M. Mineral Composition of Dietary Supplements-Analytical and Chemometric Approach. Nutrients 2022, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.; Jurado, J.; Pablos, F. Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks. Food Chem. 2010, 123, 859–864. [Google Scholar] [CrossRef]
- Heredia, J.Z.; Moldes, C.A.; Gil, R.A.; Camiña, J.M. Effect of Topography on Maize Grains Elemental Profile: A Chemometric Approach. Curr. Anal. Chem. 2020, 16, 1079–1087. [Google Scholar] [CrossRef]
- Grembecka, M.; Szefer, P. Elemental Profiles of Legumes and Seeds in View of Chemometric Approach. Appl. Sci. 2022, 12, 1577. [Google Scholar] [CrossRef]
- Overgaard, A.; Møller-Sonnergaard, J.; Christrup, L.; Højsted, J.; Hansen, R. Patients’ evaluation of shape, size and colour of solid dosage forms. Pharm. World Sci. 2001, 23, 185–188. [Google Scholar] [CrossRef] [PubMed]
- FDA. Dietary Supplement Health and Education Act of 1994; FDA: Montgomery, MD, USA, 1994. [Google Scholar]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Grembecka, M.; Malinowska, E.; Szefer, P. Differentation of market coffee and its infusions in view on their mineral composition. Sci. Total Environ. 2007, 383, 59–69. [Google Scholar] [CrossRef]
- Konieczka, P.; Namieśnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 157–243. [Google Scholar]
- European Parliament. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 304, 18–46. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R1169 (accessed on 27 July 2022).
- Rozporządzenie Ministra Zdrowia z dnia 9 października 2007 r. w sprawie składu oraz oznakowania suplementów diety. In 2007 Nr 196 poz. 1425; ISAP: Warsaw, Poland, 2007.
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy żywienia dla populacji Polski i ich zastosowanie; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warszawa, Poland, 2020; pp. 316–345. [Google Scholar]
- Anselmo, C.; Mendes, T.; Cabral, L.; Sousa, V. Physicochemical quality profiles of commercial oral tablets and capsule containing lutein—Impact of insufficient specific sanitary regulations. An. Acad. Bras. Cienc. 2018, 90, 3063–3073. [Google Scholar] [CrossRef] [Green Version]
- Geller, A.I.; Shehab, N.; Weidle, N.J.; Lovegrove, M.C.; Wolpert, B.J.; Timbo, B.B.; Mozersky, R.P.; Budnitz, D.S. Emergency Department Visits for Adverse Events Related to Dietary Supplements. N. Engl. J. Med. 2015, 373, 1531–1540. [Google Scholar] [CrossRef]
- FDA. Size, Shape and Other Physical Attributes of Generic Tablets and Capsules; U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER): Montgomery, MD, USA, 2015; Volume 6, pp. 1–7. Available online: https://www.regulations.gov/document/FDA-2013-N-1434-0030 (accessed on 27 July 2022).
- Channer, K.; Virjee, J. The effect of size and shape of tablets on their esophageal transit. J. Clin. Pharmacol. 1986, 26, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Brotherman, D.; Bayraktaroglu, T.; Garofalo, R. Comparison of ease of swallowing of dietary supplement products for age-related eye disease. J. Am. Pharm. Assoc. 2004, 44, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Hey, H.; Jørgensen, F.; Sørensen, K.; Hasselbalch, H.; Wamberg, T. Oesophageal transit of six commonly used tablets and capsules. BMJ 1982, 285, 1717–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubhajit, P.; Sun, C.C. Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures. Pharm. Res. 2017, 34, 2901–2909. [Google Scholar] [CrossRef]
- Jacques, E.R.; Alexandridis, P. Tablet Scoring: Current Practice, Fundamentals, and Knowledge Gaps. Appl. Sci. 2019, 9, 3066. [Google Scholar] [CrossRef] [Green Version]
- Donauer, N.; Löbenberg, R. A mini review of scientific and pharmacopeial requirements for the disintegration test. Int. J. Pharm. 2007, 345, 2–8. [Google Scholar] [CrossRef]
- Cole, E.T.; Scott, R.A.; Cade, D.; Connor, A.L.; Wilding, I.R. In vitro and in vivo pharmacoscintigraphic evaluation of ibuprofen hypromellose and gelatin capsules. Pharm Res. 2004, 21, 793–798. [Google Scholar] [CrossRef]
- Al-Gousous, J.; Langguth, P. Oral solid dosage form disintegration testing—The forgotten test. J. Pharm. Sci. 2014, 104, 2664–2675. [Google Scholar] [CrossRef] [Green Version]
- Fields, J.; Go, J.T.; Schulze, K.S. Pill Properties that Cause Dysphagia and Treatment Failure. Curr. Ther. Res. Clin. Exp. 2015, 77, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.; Szakova, J.; Drabek, O.; Balik, J.; Kokoska, L. Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chem. 2008, 111, 520–525. [Google Scholar] [CrossRef]
- Wolska, E.; Boniecka, M.; Sznitowska, M. Superdezintegranty—Substancje pomocnicze w suplementach diety w postaci tabletek. Food. Science Technology. Quality. 2016, 3, 21–34. [Google Scholar] [CrossRef]
- Dambiec, M.; Polechońska, L.; Klink, A. Levels of essential and non-essential elements in black teas commercialized in Poland and their transfer to tea infusion. J. Food Compos. Anal. 2013, 31, 62–66. [Google Scholar] [CrossRef]
- Deka, H.; Barman, T.; Sarmah, P.P.; Devi, A.; Tamuly, P.; Karak, T. Impact of processing method on selected trace elements content of green tea: Does CTC green tea infusion possess risk towards human health? Food Chem. 2021, 12, 100173. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhang, J.; Zhang, L.; Huang, C.; Chen, L.; Wang, G.; Liu, X.; Lu, C. Elements characterization of Chinese tea with different fermentation degrees and its use for geographical origins by liner discriminant analysis. J. Food Compos. Anal. 2019, 82, 103246. [Google Scholar] [CrossRef]
- Hamza, A.; Bahaffi, S.O.; Abduljabbar, T.N.; El-Shahawi, M.S. Trace determination and speciation of elements in green tea. Results Chem. 2021, 3, 100081. [Google Scholar] [CrossRef]
- Augustsson, A.; Qvarforth, A.; Engström, E.; Paulukat, C.; Rodushkin, I. Trace and major elements in food supplements of different origin: Implications for daily intake levels and health risks. Toxicol. Rep. 2021, 8, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Health and Consumers Directorate Genera. Guidance Document for Competent Authorities for the Control of Compliance with EU Legislation on: Regulation (EU) no 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. 2012. Section 4. p. 8. Available online: https://www.fsai.ie/uploadedfiles/guidance_tolerances_december_2012.pdf (accessed on 27 July 2022).
- WHO. Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2011; Volume 14, pp. 966–968. [Google Scholar]
- EFSA. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar]
- Najwyższa Izba Kontroli. NIK o Dopuszczaniu do Obrotu Suplementów Diety; NIK: Warszawa, Poland, 2016. [Google Scholar]
- Fischer, A.; Rogowiec, M.; Loska, K. Analiza zawartości cynku i miedzi w witaminowo-mineralnych suplementach diety w aspekcie bezpieczeństwa ich stosowania. Med. Środow. 2018, 21, 22–29. [Google Scholar] [CrossRef]
Code | Shape | Length ± SD [mm] | Width ± SD [mm] | Depth ± SD [mm] | W + L + D [mm] 1 | FDA Recommendation 2 |
---|---|---|---|---|---|---|
DS1 | cylindrical capsule | 23.10 ± 0.04 | 8.30 ± 0.05 | 8.30 ± 0.05 | 40 | acceptable |
DS2 | cylindrical capsule | 21.51 ± 0.06 | 7.42 ± 0.04 | 7.42 ± 0.04 | 36 | acceptable |
DS3 | cylindrical capsule | 21.21 ± 0.07 | 7.46 ± 0.04 | 7.46 ± 0.04 | 36 | acceptable |
DS4 | cylindrical capsule | 23.34 ± 0.08 | 8.34 ± 0.05 | 8.34 ± 0.05 | 34 | acceptable |
DS5 | cylindrical capsule | 25.42 ± 0.15 | 9.01 ± 0.05 | 9.01 ± 0.05 | 43 | unacceptable |
DS6 | cylindrical capsule | 25.51 ± 0.09 | 9.72 ± 0.06 | 9.72 ± 0.06 | 45 | unacceptable |
DS7 | cylindrical capsule | 15.11 ± 0.23 | 9.15 ± 0.11 | 9.15 ± 0.11 | 33 | unacceptable |
DS8 | cylindrical capsule | 23.33 ± 0.08 | 8.40 ± 0.04 | 8.40 ± 0.04 | 40 | acceptable |
DS9 | cylindrical capsule | 23.12 ± 0.05 | 8.34 ± 0.07 | 8.34 ± 0.07 | 40 | acceptable |
DS10 | cylindrical capsule | 22.61 ± 0.16 | 8.33 ± 0.07 | 8.33 ± 0.07 | 39 | acceptable |
DS11 | cylindrical capsule | 21.40 ± 0.09 | 7.44 ± 0.04 | 7.44 ± 0.04 | 36 | acceptable |
DS12 | cylindrical capsule | 23.23 ± 0.08 | 8.34 ± 0.05 | 8.34 ± 0.05 | 40 | acceptable |
DS13 | cylindrical capsule | 23.04 ± 0.15 | 8.27 ± 0.06 | 8.27 ± 0.06 | 39 | acceptable |
DS14 | cylindrical capsule | 21.35 ± 0.10 | 7.48 ± 0.04 | 7.48 ± 0.04 | 36 | acceptable |
DS15 | cylindrical capsule | 21.91 ± 0.42 | 7.53 ± 0.04 | 7.53 ± 0.04 | 37 | acceptable |
DS16 | cylindrical capsule | 21.32 ± 0.10 | 7.48 ± 0.02 | 7.48 ± 0.02 | 36 | acceptable |
DS17 | cylindrical capsule | 23.60 ± 0.25 | 9.54 ± 0.17 | 9.54 ± 0.17 | 43 | unacceptable |
DS18 | cylindrical capsule | 19.10 ± 0.15 | 6.79 ± 0.04 | 6.79 ± 0.04 | 33 | acceptable |
DS19 | cylindrical capsule | 21.01 ± 0.20 | 7.44 ± 0.08 | 7.44 ± 0.08 | 36 | acceptable |
DS20 | cylindrical capsule | 21.72 ± 0.06 | 7.60 ± 0.04 | 7.60 ± 0.04 | 37 | acceptable |
DS21 | cylindrical capsule | 23.33 ± 0.17 | 8.31 ± 0.04 | 8.31 ± 0.04 | 40 | acceptable |
DS22 | cylindrical capsule | 18.71 ± 0.14 | 6.67 ± 0.07 | 6.67 ± 0.07 | 32 | acceptable |
DS23 | cylindrical capsule | 23.32 ± 0.34 | 8.39 ± 0.02 | 8.39 ± 0.02 | 40 | acceptable |
DS24 | cylindrical capsule | 23.31 ± 0.09 | 8.37 ± 0.03 | 8.37 ± 0.03 | 40 | acceptable |
DS25 | cylindrical capsule | 25.84 ± 0.12 | 9.78 ± 0.07 | 9.78 ± 0.07 | 45 | unacceptable |
DS26 | cylindrical capsule | 21.81 ± 0.22 | 7.49 ± 0.06 | 7.49 ± 0.06 | 37 | acceptable |
DS27 | round tablet | 13.82 ± 0.04 | 13.81 ± 0.04 | 7.57 ± 0.16 | 35 | acceptable |
DS28 | oval tablet | 19.70 ± 0.03 | 10.20 ± 0.02 | 10.2 ± 0.02 | 40 | acceptable |
DS29 | oblong tablet | 20.22 ± 0.05 | 9.14 ± 0.01 | 7.78 ± 0.03 | 37 | acceptable |
DS30 | oblong tablet | 18.71 ± 0.02 | 8.72 ± 0.02 | 5.52 ± 0.03 | 33 | acceptable |
DS31 | oval tablet | 18.12 ± 0.04 | 8.10 ± 0.02 | 5.61 ± 0.08 | 32 | acceptable |
DS32 | oblong tablet | 18.80 ± 0.03 | 8.78 ± 0.03 | 6.40 ± 0.03 | 34 | acceptable |
DS33 | oblong tablet | 16.21 ± 0.03 | 8.13 ± 0.02 | 6.17 ± 0.08 | 30 | acceptable |
DS34 | oval tablet | 20.42 ± 0.03 | 10.31 ± 0.02 | 6.45 ± 0.02 | 37 | acceptable |
DS35 | round tablet | 9.13 ± 0.02 | 9.13 ± 0.02 | 4.66 ± 0.18 | 23 | acceptable |
Code | Weight Uniformity | Disintegration Time | ||||||
---|---|---|---|---|---|---|---|---|
Declared Weight [mg] | Average Weight ± SD [mg] | Percentage of Declaration [%] | Min [%] 1 | Max [%] 2 | Pharmacopeia Criteria | Disintegration Time [min] | Pharmacopeia Criteria | |
DS1 | 524 | 545 ± 6 | 104 | 99 | 102 | passed | 23:20 | passed |
DS2 | 380 | 388 ± 10 | 102 | 94 | 104 | passed | 29:30 | passed |
DS3 | 270 | 370 ± 18 | 137 | 90 | 108 | passed | 9:30 | passed |
DS4 | NA | 809 ± 65 | ND | 95 | 103 | passed | 25:00 | passed |
DS5 | 1350 | 1505 ± 7 | 111 | 99 | 101 | passed | 15:40 | passed |
DS6 | 1220 | 1251 ± 15 | 102 | 96 | 102 | passed | 21:20 | passed |
DS7 | 700 | 714 ± 78 | 102 | 97 | 102 | passed | 25:10 | passed |
DS8 | NA | 786 ± 14 | ND | 96 | 103 | passed | 30:003 | passed |
DS9 | 700 | 637 ± 26 | 91 | 91 | 104 | passed | 12:50 | passed |
DS10 | 722 | 743 ± 8 | 103 | 96 | 105 | passed | 12:20 | passed |
DS11 | NA | 632 ± 10 | ND | 97 | 103 | passed | 10:20 | passed |
DS12 | 589 | 624 ± 26 | 106 | 92 | 108 | passed | 5:10 | passed |
DS13 | 650 | 661 ± 35 | 102 | 99 | 101 | passed | 9:30 | passed |
DS14 | 433 | 393 ± 21 | 91 | 90 | 112 | passed | 14:30 | passed |
DS15 | NA | 604 ± 6 | ND | 94 | 103 | passed | 28:00 | passed |
DS16 | NA | 624 ± 13 | ND | 96 | 106 | passed | 30:00 3 | passed |
DS17 | NA | 1390 ± 19 | ND | 98 | 105 | passed | 30:00 3 | passed |
DS18 | NA | 493 ± 17 | ND | 94 | 106 | passed | 30:00 3 | passed |
DS19 | NA | 619 ± 12 | ND | 94 | 103 | passed | 30:00 3 | passed |
DS20 | NA | 608 ± 8 | ND | 98 | 103 | passed | >30:00 4 | failed |
DS21 | NA | 657 ± 18 | ND | 94 | 104 | passed | 7:15 | passed |
DS22 | NA | 474 ± 6 | ND | 98 | 102 | passed | 30:00 3 | passed |
DS23 | NA | 896 ± 21 | ND | 96 | 106 | passed | >30:00 4 | failed |
DS24 | NA | 954 ± 7 | ND | 99 | 102 | passed | >30:00 4 | failed |
DS25 | NA | 984 ± 19 | ND | 98 | 105 | passed | 14:00 | passed |
DS26 | 617 | 760 ± 9 | 123 | 97 | 103 | passed | 8:30 | passed |
Code | Weight Uniformity | Disintegration Time | Friability | Breaking Force | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Declared Weight [mg] | Average Weight ± SD [mg] | Percentage of Declaration [%] | Min [%] 1 | Max [%] 2 | Pharmacopeia Criteria | Disintegration Time [min] | Pharmacopeia Criteria | Value [%] | Pharmacopeia Criteria | Average Value ± SD [N] | Min (N) | Max (N) | |
DS27 | 980 | 1013 ± 13 | 103 | 98 | 103 | passed | >30:00 | failed | 0.0 | passed | 198 ± 39 | 144 | 259 |
DS28 | 1100 | 1114 ± 4 | 101 | 99 | 101 | passed | >30:00 | failed | 8.7 | failed | 86 ± 5 | 76 | 94 |
DS29 | 1422 | 1497 ± 17 | 105 | 98 | 103 | passed | >30:00 | failed | 0.1 | passed | 385 ± 15 | 356 | 402 |
DS30 | NA | 785 ± 8 | ND | 99 | 103 | passed | >30:00 | failed | 0.0 | passed | 474 ± 19 | 447 | 497 |
DS31 | 675 | 717 ± 5 | 106 | 98 | 102 | passed | >30:00 | failed | 0.0 | passed | 291 ± 39 | 227 | 331 |
DS32 | NA | 950 ± 10 | ND | 99 | 103 | passed | >30:00 | failed | 0.0 | passed | 396 ± 38 | 339 | 463 |
DS33 | NA | 846 ± 23 | ND | 93 | 104 | passed | >30:00 | failed | 0.2 | passed | 200 ± 23 | 148 | 224 |
DS34 | NA | 1050 ± 8 | ND | 99 | 102 | passed | 10:30 | passed | 0.0 | passed | 103 ± 2 | 101 | 108 |
DS35 | NA | 336 ± 13 | ND | 92 | 108 | passed | >30:00 | failed | 0.0 | passed | 80 ± 8 | 68 | 93 |
K [mg/g] | Mg [mg/g] | Na [mg/g] | Ca [mg/g] | Cr [µg/g] | Cu [µg/g] | Fe [µg/g] | Mn [µg/g] | Zn [µg/g] | Pb [µg/g] | Cd [µg/g] | |
---|---|---|---|---|---|---|---|---|---|---|---|
DS1 | 1.11 ± 0.01 | 0.391 ± 0.009 | 0.450 ± 0.003 | 0.13 ± 0.04 | 25.61 ± 1.98 | 0.36 ± 0.03 | 5.43 ± 0.42 | 2.25 ± 0.04 | 0.76 ± 0.46 | <LOD | <LOD |
DS2 | 0.08 ± 0.01 | 0.74 ± 0.03 | 0.52 ± 0.001 | 0.16 ± 0.06 | 0.201 ± 0.009 | 0.12 ± 0.03 | 7.45 ± 0.71 | 0.53 ± 0.02 | 1.59 ± 0.23 | <LOD | <LOD |
DS3 | 16.48 ± 0.13 | 1.44 ± 0.15 | 0.99 ± 0.07 | 2.59 ± 0.29 | 2.83 ± 0.06 | 6.61 ± 0.03 | 445 ± 35 | 245 ± 5 | 31.5 ± 19.9 | 0.440 ± 0.001 | <LOD |
DS4 | 1.43 ± 0.13 | 1.43 ± 0.12 | 0.57 ± 0.05 | 0.06 ± 0.04 | 0.30 ± 0.04 | 0.110 ± 0.007 | 10.11 ± 0.64 | 28.82 ± 2.88 | 0.99 ± 0.15 | <LOD | <LOD |
DS5 | 0.201 ± 0.001 | 0.062 ± 0.002 | 0.27 ± 0.07 | 0.15 ± 0.03 | 1.82 ± 0.05 | 0.11 ± 0.03 | 4658 ± 20 | 7.43 ± 0.17 | <LOD | <LOD | <LOD |
DS6 | 0.25 ± 0.02 | 0.461 ± 0.002 | 0.37 ± 0.02 | 0.13 ± 0.15 | <LOD | 0.15 ± 0.01 | 14.72 ± 4.79 | 0.63 ± 0.02 | 0.73 ± 0.01 | 0.111 ± 0.003 | <LOD |
DS7 | 6.95 ± 0.20 | 0.182 ± 0.007 | 0.64 ± 0.03 | <LOD | <LOD | 1.83 ± 0.02 | <LOD | 35.90 ± 2.41 | 2.46 ± 0.09 | <LOD | <LOD |
DS8 | 3.071 ± 0.007 | 0.443 ± 0.002 | 1.82 ± 0.02 | 0.49 ± 0.08 | 76.71 ± 4.48 | 0.34 ± 0.02 | 11.01 ± 0.30 | 7.26 ± 0.37 | 1.31 ± 0.87 | <LOD | 0.03 ± 0.02 |
DS9 | 14.42 ± 0.88 | 4.05 ± 0.04 | 1.31 ± 0.11 | 0.34 ± 0.06 | 7.73 ± 0.42 | 7.28 ± 0.33 | 12.18 ± 0.23 | 8.50 ± 0.16 | 4.47 ± 0.16 | <LOD | 0.010 ± 0.004 |
DS10 | 2.00 ± 0.34 | 0.173 ± 0.001 | 3.03 ± 0.42 | 0.15 ± 0.01 | 26.42 ± 2.66 | 0.28 ± 0.04 | 496 ± 41 | 11.30 ± 1.92 | 0.48 ± 0.53 | <LOD | <LOD |
DS11 | 0.481 ± 0.001 | 0.442 ± 0.001 | 1.28 ± 0.14 | 30.13 ± 1.75 | 1.54 ± 0.02 | 0.38 ± 0.03 | 38.81 ± 0.06 | 9.08 ± 0.13 | 1.16 ± 0.05 | <LOD | 0.01 ± 0.02 |
DS12 | 0.631 ± 0.007 | 0.29 ± 0.01 | 0.541 ± 0.004 | 0.53 ± 0.03 | 0.55 ± 0.11 | 0.552 ± 0.005 | 14.78 ± 0.19 | 138.0 ± 4.27 | 3.59 ± 0.10 | <LOD | <LOD |
DS13 | 0.07 ± 0.03 | 1.32 ± 0.04 | 0.38 ± 0.03 | 0.24 ± 0.11 | <LOD | 0.19 ± 0.06 | 8.41 ± 1.38 | 3.83 ± 0.15 | 1.09 ± 0.25 | <LOD | <LOD |
DS14 | 4.18 ± 0.08 | 0.57 ± 0.06 | 0.79 ± 0.05 | 1.66 ± 0.07 | 0.53 ± 0.12 | 30.71 ± 0.64 | 120 ± 1 | 344 ± 11 | 10.01 ± 0.53 | 0.76 ± 0.02 | 0.09 ± 0.14 |
DS15 | 1.12 ± 0.04 | 0.15 ± 0.01 | 0.320 ± 0.001 | 0.48 ± 0.09 | 0.32 ± 0.02 | 0.77 ± 0.01 | 19.78 ± 0.25 | 88.22 ± 4.41 | 2.50 ± 0.28 | 0.08 ± 0.01 | <LOD |
DS16 | 0.96 ± 0.17 | 0.0510 ± 0.0001 | 0.36 ± 0.03 | 0.13 ± 0.05 | 0.35 ± 0.11 | 1.38 ± 0.04 | 9.29 ± 0.74 | 10.21 ± 1.59 | 2.01 ± 0.05 | <LOD | <LOD |
DS17 | 0.87 ± 0.02 | 0.030 ± 0.001 | 0.20 ± 0.01 | 0.02 ± 0.01 | <LOD | 8.98 ± 0.52 | 1.94 ± 0.30 | 0.13 ± 0.05 | <LOD | <LOD | <LOD |
DS18 | 1.09 ± 0.01 | 1.20 ± 0.02 | 0.34 ± 0.04 | 0.25 ± 0.04 | <LOD | 1.051 ± 0.004 | <LOD | 3.41 ± 0.03 | 4.47 ± 0.15 | <LOD | <LOD |
DS19 | 9.39 ± 0.68 | 0.30 ± 0.06 | 2.33 ± 0.72 | 2.43 ± 1.60 | <LOD | 0.17 ± 0.02 | 9.16 ± 2.32 | 120 ± 0.38 | 3.03 ± 0.25 | 0.09 ± 0.03 | <LOD |
DS20 | 1.76 ± 0.03 | 0.310 ± 0.001 | 0.81 ± 0.04 | 0.24 ± 0.01 | 0.70 ± 0.07 | 2.11 ± 0.04 | 16.51 ± 0.48 | 27.41 ± 0.46 | 2.09 ± 0.07 | <LOD | <LOD |
DS21 | 11.51 ± 1.14 | 2.42 ± 0.03 | 0.44 ± 0.05 | 4.74 ± 0.11 | 1.07 ± 0.15 | 13.01 ± 0.14 | 2.91 ± 0.13 | 807 ± 17 | 28.71 ± 9.38 | 1.01 ± 0.03 | 0.07 ± 0.01 |
DS22 | 0.45 ± 0.01 | 0.78 ± 0.05 | 2.28 ± 0.07 | 0.27 ± 0.01 | 0.42 ± 0.04 | 0.23 ± 0.05 | 8.99 ± 0.68 | 14.10 ± 0.09 | 2.67 ± 0.73 | <LOD | 0.02 ± 0.06 |
DS23 | 1.01 ± 0.02 | 0.010 ± 0.002 | 0.41 ± 0.04 | <LOD | <LOD | <LOD | 1.92 ± 0.57 | 1.97 ± 0.24 | <LOD | <LOD | <LOD |
DS24 | 0.191 ± 0.001 | 0.10 ± 0.05 | 0.28 ± 0.01 | 0.11 ± 0.05 | 0.32 ± 0.09 | 0.07 ± 0.02 | 6.25 ± 1.89 | 9.24 ± 0.07 | 1.93 ± 0.17 | <LOD | <LOD |
DS25 | 0.23 ± 0.04 | 1.02 ± 0.01 | 6.12 ± 0.83 | 24.31 ± 0.76 | <LOD | 0.11 ± 0.01 | 10.92 ± 0.57 | 7.50 ± 0.65 | 1.07 ± 0.17 | <LOD | <LOD |
DS26 | 15.61 ± 0.63 | 0.98 ± 0.02 | 1.30 ± 0.01 | 0.47 ± 0.02 | <LOD | 0.99 ± 0.02 | 41.4 ± 16.2 | 242 ± 3 | 5.40 ± 0.02 | 0.10 ± 0.01 | <LOD |
DS27 | 4.67 ± 0.01 | 2.88 ± 0.24 | 0.82 ± 0.11 | 69.80 ± 4.76 | 1.46 ± 0.18 | 1.64 ± 0.14 | 7.64 ± 0.26 | 35.01 ± 0.69 | 4.02 ± 0.27 | 0.15 ± 0.01 | <LOD |
DS28 | 0.01 ± 0.01 | 2.83 ± 0.02 | 0.05 ± 0.01 | 0.07 ± 0.07 | <LOD | 0.05 ± 0.02 | 3.520 ± 0.004 | 0.90 ± 0.06 | <LOD | <LOD | <LOD |
DS29 | 0.23 ± 0.02 | 0.84 ± 0.02 | 0.280 ± 0.002 | 23.61 ± 0.29 | 0.54 ± 0.01 | 0.33 ± 0.02 | 15.01 ± 1.01 | 130 ± 8 | 3.41 ± 0.34 | <LOD | <LOD |
DS30 | 6.69 ± 0.45 | 0.91 ± 0.06 | 0.22 ± 0.02 | 0.79 ± 0.04 | 35.7 ± 2.19 | 0.45 ± 0.06 | 13.42 ± 1.45 | 3.45 ± 0.28 | 4.53 ± 0.32 | <LOD | 0.02 ± 0.08 |
DS31 | 6.36 ± 1.31 | 0.95 ± 0.13 | 0.72 ± 0.09 | 2.90 ± 0.59 | 0.20 ± 0.03 | 0.37 ± 0.01 | 11.63 ± 0.74 | 3.92 ± 0.34 | 5.14 ± 0.21 | <LOD | 0.05 ± 0.14 |
DS32 | 5.52 ± 0.04 | 0.632 ± 0.005 | 8.95 ± 0.65 | 0.23 ± 0.05 | 16.66 ± 0.30 | 0.49 ± 0.02 | 7.31 ± 0.52 | 63.13 ± 0.21 | 1.96 ± 0.05 | <LOD | <LOD |
DS33 | 2.78 ± 0.44 | 0.42 ± 0.05 | 0.34 ± 0.01 | 89.01 ± 9.80 | 0.78 ± 0.15 | 0.46 ± 0.06 | <LOD | 3.32 ± 0.13 | 1.67 ± 0.31 | <LOD | 0.09 ± 0.01 |
DS34 | 1.58 ± 0.02 | 0.83 ± 0.09 | 0.25 ± 0.01 | 4.73 ± 0.07 | 0.77 ± 0.39 | 0.53 ± 0.04 | 26.81 ± 0.64 | 21.94 ± 0.46 | 4465 ± 246 | <LOD | 0.02 ± 0.03 |
DS35 | 3.35 ± 0.09 | 0.55 ± 0.04 | 0.111 ± 0.005 | 47.44 ± 0.88 | 1.54 ± 0.07 | 7.301 ± 0.004 | 7.55 ± 0.15 | 4.15 ± 0.07 | 4.53 ± 0.29 | <LOD | 0.31 ± 0.39 |
GTE with Cr | GTE | GTE with Fruits Extracts | GTE with Cr and Fruit Extracts | Original Green Tea 1 | |
---|---|---|---|---|---|
GTE with Cr | Cr a | K a, Na a, Cu b, Fe b, Mn c, Zn b | |||
GTE | Cr a | Cr a | K c, Mg c, Na c, Cr a, Cu c, Fe c, Mn c, Zn c | ||
GTE with fruits extracts | K a, Fe b, Mn b | ||||
GTE with Cr and fruit extracts | Cr a | Na b, Zn a | |||
Original green tea | K a, Na a, Cu b, Fe b, Mn c, Zn b | K c, Mg c, Na c, Cr a, Cu c, Fe c, Mn c, Zn c | K a, Fe b, Mn b | Nab, Zn a |
Element | RDA a/AI b Standard in the 19–51 Age Group [mg] 1 | [%] RDA/AI Min-Max (According to Manufacturer’s Dosage Recommendations) 2 | ||
---|---|---|---|---|
Capsule | ||||
Female | Man | Female | Man | |
Ca | 1000 a | 1000 a | <LOD-7 | <LOD-7 |
K | 3500 b | 3500 b | 0.002–0.681 | 0.002–0.681 |
Mg | 320 a | 420 a | 0.003–1.612 | 0.002–1.231 |
Na | 1500 b | 1500 b | 0.007–0.450 | 0.007–0.450 |
Mn | 1.8 b | 2.3 b | 0.02–20.41 | 0.02–16.01 |
Fe | 18 a | 10 a | <LOD-156 | <LOD-280 |
Cu | 0.9 a | 0.9 a | <LOD-8 | <LOD-8 |
Zn | 8 a | 11 a | <LOD-235 | <LOD-171 |
Tablet | ||||
Female | Man | Female | Man | |
Ca | 1000 a | 1000 a | 0.02–15.10 | 0.02–15.10 |
K | 3500 b | 3500 b | 0.001–0.301 | 0.001–0.301 |
Mg | 320 a | 420 a | 0.17–1.97 | 0.13–1.50 |
Na | 1500 b | 1500 b | 0.01–1.13 | 0.01–1.13 |
Mn | 1.8 b | 2.3 b | 0.11–29.50 | 0.09–23.10 |
Fe | 18 a | 10 a | <LOD-0.12 | <LOD-0.22 |
Cu | 0.9 a | 0.9 a | 0.01–0.95 | 0.01–0.95 |
Zn | 8 a | 11 a | <LOD-0.24 | <LOD-0.17 |
Code | Average Content of Cd [µg/Capsule/Tablet] | Average Intake of Cd [µg/Capsule/Tablet/30 Days] | Average Intake of Cd [µg/Monthly Dose] 1 | %PTMI |
---|---|---|---|---|
DS8 | 0.020 | 0.60 | 1.20 | 0.03 |
DS9 | 0.008 | 0.24 | 0.48 | 0.01 |
DS11 | 0.008 | 0.24 | 0.96 | 0.01 |
DS14 | 0.037 | 1.11 | 2.22 | 0.06 |
DS21 | 0.046 | 1.38 | 1.38 | 0.08 |
DS22 | 0.010 | 0.30 | 0.90 | 0.02 |
DS30 | 0.015 | 0.45 | 0.90 | 0.03 |
DS31 | 0.032 | 0.96 | 1.92 | 0.05 |
DS33 | 0.078 | 2.34 | 4.68 | 0.13 |
DS34 | 0.025 | 0.75 | 3.00 | 0.04 |
DS35 | 0.105 | 3.15 | 9.45 | 0.18 |
Code | Declared Content of Cr [mg] | Average of Cr [µg/Capsule/Tablet] | Percentage of Declaration [%] |
---|---|---|---|
DS1 | 37.5 | 13.9 | 37.1 |
DS8 | 40.0 | 60.3 | 151 |
DS9 | 3.0 | 4.9 | 164 |
DS10 | 33.3 | 19.6 | 58.9 |
DS28 | 5.0 | <LOD | ND |
DS30 | 45.0 | 28.0 | 62.3 |
DS32 | 20.0 | 15.8 | 79.1 |
DS34 | 5.0 | 0.81 | 16.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ośko, J.; Szewczyk, A.; Berk, P.; Prokopowicz, M.; Grembecka, M. Assessment of the Mineral Composition and the Selected Physicochemical Parameters of Dietary Supplements Containing Green Tea Extracts. Foods 2022, 11, 3580. https://doi.org/10.3390/foods11223580
Ośko J, Szewczyk A, Berk P, Prokopowicz M, Grembecka M. Assessment of the Mineral Composition and the Selected Physicochemical Parameters of Dietary Supplements Containing Green Tea Extracts. Foods. 2022; 11(22):3580. https://doi.org/10.3390/foods11223580
Chicago/Turabian StyleOśko, Justyna, Adrian Szewczyk, Paulina Berk, Magdalena Prokopowicz, and Małgorzata Grembecka. 2022. "Assessment of the Mineral Composition and the Selected Physicochemical Parameters of Dietary Supplements Containing Green Tea Extracts" Foods 11, no. 22: 3580. https://doi.org/10.3390/foods11223580
APA StyleOśko, J., Szewczyk, A., Berk, P., Prokopowicz, M., & Grembecka, M. (2022). Assessment of the Mineral Composition and the Selected Physicochemical Parameters of Dietary Supplements Containing Green Tea Extracts. Foods, 11(22), 3580. https://doi.org/10.3390/foods11223580