Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Jiangsu-Style Sausage
2.3. Evaluation of Physicochemical Properties
2.3.1. The Determination of pH Value and Water Content
2.3.2. Instrumental Color Measurement
2.4. Measurement of the Texture Profile
2.5. Sensory Evaluation
2.6. The Determination of Volatile Flavor Substances
2.7. The Determination of Total Volatile Base Nitrogen
2.8. Oxidation Stability
2.8.1. Protein Oxidation Measurement
2.8.2. The Determination of Lipid Oxidation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effects of Cherry Powder Addition on Physicochemical Properties
3.2. Effects of Cherry Powder Additive on Sensory Evaluation
3.3. Effects of Cherry Powder Addition on Volatile Flavor Substances
3.4. Effects of Cherry Powder Addition on Total Volatile Base Nitrogen (TVB-N)
3.5. Effects of Cherry Powder Addition on Protein Oxidation and Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, R.; Cheng, J.R.; Zhu, M.J.; Liu, X.M. Effect of mulberry (Morus alba) polyphenols as antioxidant on physiochemical properties, oxidation and bio-safety in Cantonese sausages. LWT Food Sci. Technol. 2019, 116, 108504. [Google Scholar] [CrossRef]
- Estevez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2015, 57, 923–932. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.C.; Brewer, M.S. Effect of natural antioxidants on oxidative stability of frozen, vacuum-packaged beef and pork. J. Food Qual. 2008, 31, 173–188. [Google Scholar] [CrossRef]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer Res. 2003, 23, 4693–4701. [Google Scholar] [CrossRef]
- Isik, B.S.; Altay, F.; Capanoglu, E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chem. 2018, 265, 260–273. [Google Scholar] [CrossRef]
- Damar, I.; Eksi, A. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 2012, 135, 2910–2914. [Google Scholar] [CrossRef]
- Blando, F.; Oomah, B.D. Sweet and sour cherries: Origin, distribution, nutritional composition, and health benefits. Trends Food Sci. Technol. 2019, 86, 517–529. [Google Scholar] [CrossRef]
- Blando, F.; Gerardi, C.; Nicoletti, I. Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol. 2004, 5, 253–258. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Noon, K.R.; Llanes, D.E.U.; Kaufman, P.B.; Warber, S.L.; Bolling, S.F. Interactions of antioxidants isolated from tart cherry (Prunus cerasus) fruits. Food Chem. 2010, 122, 78–83. [Google Scholar] [CrossRef]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Crala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Wang, B.G.; Li, W.S.; Feng, X.Y.; Ji, S.J.; Zhang, K.C. Comparative studies of juice processing and antioxidant properties of cherries. J. Fruit Sci. 2014, 31, 146–152. [Google Scholar]
- Yi, H.C.; Cho, H.; Hong, J.J.; Ryu, R.K.; Hwang, K.T.; Regenstein, J.M. Physicochemical and organoleptic characteristics of seasoned beef patties with added glutinous rice flour. Meat Sci. 2012, 92, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.X.; Chong, Y.Q.; Ding, Y.T.; Gu, S.Q.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE–GC–MS, e-nose and sensory evaluation. Food Chem. 2016, 15, 205–213. [Google Scholar] [CrossRef]
- Dabadé, D.S.; Den Besten, H.M.W.; Azokpota, P.; Nout, M.J.R.; Hounhouigan, D.J.; Zwietering, M.H. Spoilage evaluation, shelf-life prediction, and potential spoilage organisms of tropical brackish water shrimp (Penaeus notialis) at different storage temperatures. Food Microbiol. 2015, 48, 8–16. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, M.J.; Liu, X.M.; Cheng, J.R. Inhibitory effect of mulberry (Morus alba) polyphenol on the lipid and protein oxidation of dried minced pork slices during heat processing and storage. LWT Food Sci. Technol. 2018, 91, 222–228. [Google Scholar] [CrossRef]
- Qing, Z.L.; Cheng, J.R.; Wang, X.P.; Tang, D.; Zhu, M.Y. The effects of four edible mushrooms (Volvariella volvacea, Hypsizygus marmoreus, Pleurotus ostreatus and Agaricus bisporus) on physicochemical properties of beef paste. LWT Food Sci. Techol. 2020, 135, 110063. [Google Scholar] [CrossRef]
- Fu, Q.Q.; Liu, R.; Zhou, L.; Zhang, J.W.; Zhang, W.W.; Wang, R.R. Effects of psyllium husk powder on the emulsifying stability, rheological properties, microstructure, and oxidative stability of oil-in-water emulsions. Food Control 2022, 134, 108716. [Google Scholar] [CrossRef]
- Jin, S.K.; Choi, J.S.; Jeong, J.Y.; Kim, G.D. The effect of clove bud powder at a spice level on antioxidant and quality properties of emulsified pork sausage during cold storage. J. Sci. Food Agric. 2016, 96, 4089–4097. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Xue, H.; Jiang, G.C.; Liu, X.J. Antioxidant activity of vine tea (Ampelopsis grossedentata) extract on lipid and protein oxidation in cooked mixed pork patties during refrigerated storage. Food Sci. Nutr. 2019, 7, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Alanon, M.E.; Alarcon, M.; Garcla-Rulz, A.; Dlaz-Maroto, M.C.; Perez-Coello, M.S. Oak wood extracts as natural antioxidants to increase shelf life of raw porkpatties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, V.; Mateus, N. Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem. 2001, 49, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Utrera, M.; Morcuende, D.; Ganhão, R.; Estévez, M. Role of phenolics extracting from rosa canina l. on meat protein oxidation during frozen storage and beef patties processing. Food Bioprocess Technol. 2015, 8, 854–864. [Google Scholar] [CrossRef]
- Luciano, G.; Vasta, V.; Monahan, F.J.; Lopez-Andres, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, color stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Prommachart, R.; Belem, T.S.; Uriyapongson, S.; Rayas-Duarte, P.; Ramanathan, R. The effect of black rice water extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage. Meat Sci. 2020, 164, 108091. [Google Scholar] [CrossRef]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.H.; Leng, X.J.; Huang, M.; Zhou, G.H. Effect of sage (Salvia officinalis) on the oxidative stability of Chinese-style sausage during refrigerated storage. Meat Sci. 2013, 95, 145–150. [Google Scholar] [CrossRef]
- Rui, G.; Morcuende, D.; Estévez, M. Protein oxidation in emulsifified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef]
- Tanimoto, S.; Kitabayashi, K.; Fukusima, C.; Sugiyama, Y.; Hashimoto, T. Effect of storage period before reheating on the volatile compound composition and lipid oxidation of steamed meat of yellowtail Seriola quinqueradiata. Fish. Sci. 2015, 81, 1145–1155. [Google Scholar] [CrossRef]
- Ruiz, J.; Ventanas, J.; Cava, R. New device for direct extraction of volatiles in solid samples using SPME. J. Agric. Food Chem. 2001, 49, 5115–5121. [Google Scholar] [CrossRef]
- Mateo, J.; Zumalacaregui, J. Volatile compounds in chorizo and their changes during ripening. Meat Sci. 1996, 44, 255–273. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tsau, R.T.; Lin, Y.C.; Jan, S.S.; Tan, F.J. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chem. 2009, 117, 106–113. [Google Scholar] [CrossRef]
- Berlett, B.S.; Stadtnan, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.R.; Liu, X.M.; Zhang, W.; Chen, Z.Y.; Wang, X.P. Stability of phenolic compounds and antioxidant capacity of concentrated mulberry juice-enriched dried-minced pork slices during preparation and storage. Food Control 2018, 89, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Kong, B.H.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Adamez, J.D.; Lopez, M.; Timon, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef]
- Thomas, J.A.; Mallis, R.J. Aging and oxidation of reactive protein sulfhydryls. Exp. Gerontol. 2001, 36, 1519–1526. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Naveena, B.M.; Muthukumar, M.; Girish, P.S.; Kondaiah, N. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage. Meat Sci. 2011, 88, 409–414. [Google Scholar] [CrossRef]
- Turgut, S.S.; Soyer, A.; Işıkçı, F. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage. Meat Sci. 2016, 116, 126–132. [Google Scholar] [CrossRef] [PubMed]
- İlyasoğlu, H. Antioxidant effect of rosehip seed powder in raw and cooked meatballs during refrigerated storage. Turk. J. Vet. Anim. Sci. 2014, 38, 73–76. [Google Scholar] [CrossRef]
- Vattem, D.A.; Randhir, R.; Shetty, K. Cranberry phenolics-mediated antioxidant enzyme response in oxidatively stressed porcine muscle. Process Biochem. 2005, 40, 2225–2238. [Google Scholar] [CrossRef]
Indicator | Amount of Cherry Powder (%, 0 d) | Amount of Cherry Powder (%, 30 d) | ||||||
---|---|---|---|---|---|---|---|---|
0 (Control) | 1% | 3% | 5% | 0 (Control) | 1% | 3% | 5% | |
pH | 5.95 ± 0.01 C | 5.93 ± 0.02 C | 5.88 ± 0.01 D | 5.87 ± 0.01 D | 6.22 ± 0.01 A | 6.13 ± 0.02 B | 6.10 ± 0.01 B | 6.08 ± 0.01 B |
Moisture content/% | 20.83 ± 0.27 B | 20.28 ± 0.13 B | 17.70 ± 0.14 E | 18.51 ± 0.30 D | 22.66 ± 0.67 A | 21.98 ± 0.82 A | 18.30 ± 0.49 D | 19.86 ± 0.39 C |
L* | 49.59 ± 0.22 B | 47.14 ± 0.18 C | 46.99 ± 0.45 D | 45.12 ± 0.62 E | 50.66 ± 0.12 A | 50.48 ± 0.45 A | 50.02 ± 0.56 A | 49.92 ± 0.45 A |
a* | 15.85 ± 0.63 C | 16.23 ± 0.30 D | 17.38 ± 0.28 A | 17.61 ± 0.27 A | 16.88 ± 0.29 AB | 17.55 ± 0.35 A | 16.76 ± 0.25 B | 17.26 ± 0.53 A |
b* | 13.39 ± 0.49 D | 14.26 ± 0.21 C | 14.83 ± 0.26 C | 14.77 ± 0.48 C | 16.21 ± 0.43 B | 16.90 ± 0.51 AB | 17.12 ± 0.71 A | 17.54 ± 0.30 A |
Hardness/N | 7199 ± 142 C | 7312 ± 78 C | 6641 ± 88 D | 6089 ± 30 E | 8011 ± 104 A | 8013 ± 24 A | 8149 ± 121 A | 7749 ± 130 B |
Springiness/cm | 0.83 ± 0.02 A | 0.82 ± 0.02 AB | 0.81 ± 0.01 B | 0.79 ± 0.02 C | 0.83 ± 0.02 A | 0.84 ± 0.05 A | 0.80 ± 0.02 B | 0.78 ± 0.02 C |
Cohesiveness | 0.74 ± 0.02 A | 0.76 ± 0.01 A | 0.75 ± 0.01 A | 0.74 ± 0.01 A | 0.74 ± 0.02 A | 0.73 ± 0.01 A | 0.73 ± 0.01 A | 0.71 ± 0.01 B |
Gumminess/N | 5426 ± 11 B | 5418 ± 0.57 B | 4968 ± 69 C | 4503 ± 45 D | 5939 ± 96 A | 5868 ± 46 A | 5963 ± 136 A | 5485 ± 102 B |
Chewiness/N × cm | 4436 ± 41 B | 4350 ± 62 B | 4035 ± 17 C | 3541 ± 18 D | 5017 ± 32 A | 4949 ± 48 A | 4850 ± 98 B | 4296 ± 79 C |
Indicator | Amount of Cherry Powder (%, 0 d) | Amount of Cherry Powder (%, 30 d) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1% | 3% | 5% | 0 | 1% | 3% | 5% | |
Color | 8.22 ± 0.18 A | 8.15 ± 0.45 A | 7.82 ± 0.62 B | 7.32 ± 0.55 D | 7.49 ± 0.31 C | 7.52 ± 0.18 C | 7.36 ± 0.52 D | 7.13 ± 0.33 E |
Flavor | 8.17 ± 0.39 A | 8.20 ± 0.61 A | 8.25 ± 0.57 A | 7.92 ± 0.38 B | 7.99 ± 0.49 B | 8.02 ± 0.53 B | 7.96 ± 0.66 B | 7.83 ± 0.46 C |
Texture | 8.04 ± 0.48 B | 8.30 ± 0.52 A | 8.02 ± 0.39 B | 7.82 ± 0.49 C | 7.89 ± 0.65 C | 8.02 ± 0.37 B | 7.86 ± 0.71 D | 7.68 ± 0.42 D |
Overall acceptability | 7.72 ± 0.32 C | 8.26 ± 0.24 A | 7.61 ± 0.59 C | 6.67 ± 0.27 DE | 7.22 ± 0.21 C | 7.94 ± 0.14 B | 6.99 ± 0.13 D | 6.35 ± 0.39 E |
Compound Name | Cas# | Retention Time (min) | Amount of Cherry Powder (%, 0 d) | Amount of Cherry Powder (%, 30 d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1% | 3% | 5% | 0 | 1% | 3% | 5% | |||
1-butanol | 71-36-3 | 8.77 | 0.83 ± 0.05 A | 0.81 ± 0.10 A | 0.75 ± 0.12 B | 0.72 ± 0.07 B | 0.81 ± 0.04 A | 0.72 ± 0.16 B | 0.69 ± 0.03 C | 0.65 ± 0.17 C |
1-pantanol | 71-41-0 | 13.01 | 2.41 ± 0.38 D | 2.54 ± 0.21 C | 2.56 ± 0.14 C | 2.60 ± 0.31 C | 2.34 ± 0.13 D | 2.37 ± 0.13 D | 2.79 ± 0.24 B | 2.98 ± 0.36 A |
Hexanol | 111-27-3 | 17.31 | 2.01 ± 0.53 DE | 2.47 ± 0.22 CD | 2.93 ± 0.37 B | 3.53 ± 0.56 A | 1.83 ± 0.15 E | 2.33 ± 0.52 D | 2.64 ± 0.86 C | 2.93 ± 0.98 B |
Ethanol | 64-17-5 | 3.19 | 7.56 ± 1.01 C | 7.81 ± 1.12 C | 8.07 ± 1.20 B | 8.16 ± 2.52 B | 8.10 ± 0.28 B | 8.17 ± 0.31 B | 8.29 ± 0.83 A | 8.49 ± 0.31 A |
1,2-propanediol | 21994-81-0 | 5.82 | 0.14 ± 0.06 A | 0.13 ± 0.02 A | 0.11 ± 0.03 B | 0.10 ± 0.02 B | 0.11 ± 0.03 B | 0.09 ± 0.01 B | 0.07 ± 0.02 C | 0.05 ± 0.02 C |
2-methyl-hexadecanol | 2490-48-4 | 9.37 | 0.41 ± 0.06 A | 0.36 ± 0.08 A | 0.22 ± 0.05 C | 0.21 ± 0.04 C | 0.31 ± 0.06 B | 0.28 ± 0.12 B | 0.21 ± 0.24 C | 0.23 ± 0.35 C |
Acetaldehyde | 75-07-0 | 1.49 | 2.08 ± 0.15 A | 1.89 ± 0.32 A | 1.22 ± 0.58 C | 0.99 ± 0.05 D | 1.70 ± 0.12 B | 1.57 ± 0.56 B | 1.08 ± 0.57 C | 0.95 ± 0.10 D |
Heptanal | 111-7-17 | 10.01 | 2.63 ± 0.14 A | 2.43 ± 0.26 B | 2.25 ± 0.57 C | 2.21 ± 0.63 C | 2.40 ± 0.10 B | 2.38 ± 0.18 B | 2.03 ± 0.21 D | 1.78 ± 0.14 E |
2-undecenal | 2463-77-6 | 35.08 | 1.87 ± 0.19 A | 1.74 ± 0.18 B | 1.66 ± 0.21 C | 1.62 ± 0.32 C | 1.80 ± 0.23 A | 1.69 ± 0.23 B | 1.61 ± 0.14 C | 1.49 ± 0.32 D |
Nonanal | 124-19-6 | 18.57 | 2.60 ± 0.43 A | 2.36 ± 1.11 AB | 2.45 ± 0.68 B | 2.26 ± 0.87 C | 2.46 ± 1.20 B | 2.41 ± 0.85 B | 2.16 ± 0.58 C | 2.09 ± 0.35 C |
2-octenal | 2548-87-0 | 19.85 | 2.15 ± 1.02 A | 1.91 ± 0.06 B | 1.84 ± 0.25 C | 1.85 ± 0.47 C | 2.00 ± 0.14 AB | 1.93 ± 0.21 B | 1.94 ± 0.28 B | 1.95 ± 0.14 B |
3-methyl-butanal | 590-86-3 | 2.81 | 0.30 ± 0.19 B | 0.26 ± 0.08 BC | 0.23 ± 0.20 D | 0.20 ± 0.09 D | 0.39 ± 0.04 A | 0.34 ± 0.06 B | 0.32 ± 0.07 B | 0.29 ± 0.36 B |
Benzaldehyde | 100-52-7 | 23.45 | 1.42 ± 0.09 D | 1.47 ± 0.18 D | 1.62 ± 0.21 C | 1.73 ± 0.30 B | 1.56 ± 0.09 C | 1.80 ± 0.86 B | 2.09 ± 0.65 A | 2.15 ± 0.32 A |
2-decenal | 3193-81-3 | 29.57 | 1.22 ± 0.24 C | 1.13 ± 0.53 C | 1.02 ± 0.68 D | 1.00 ± 0.12 D | 1.53 ± 0.24 A | 1.50 ± 0.31 A | 1.49 ± 0.27 A | 1.35 ± 0.20 B |
Hexanal | 66-25-1 | 6.41 | 35.55 ± 1.62 A | 36.2 ± 2.28 A | 34.51 ± 1.09 AB | 33.02 ± 2.36 B | 29.33 ± 0.81 C | 29.61 ± 0.35 C | 28.05 ± 0.64 D | 28.73 ± 0.82 D |
Pentanal | 110-62-3 | 3.82 | 3.27 ± 1.20 A | 3.23 ± 1.13 A | 3.12 ± 0.69 B | 2.98 ± 1.02 C | 3.15 ± 0.86 AB | 2.86 ± 0.54 CD | 2.71 ± 0.32 D | 2.56 ± 0.46 E |
Acetic acid | 585-05-7 | 1.83 | 2.08 ± 0.56 A | 2.02 ± 0.47 A | 1.95 ± 0.68 B | 1.88 ± 0.32 B | 1.70 ± 0.08 C | 1.67 ± 0.12 C | 1.46 ± 0.25 D | 1.42 ± 0.36 D |
Oleic acid | 22393-88-0 | 36.96 | 0.16 ± 0.02 A | 0.15 ± 0.09 A | 0.13 ± 0.06 B | 0.12 ± 0.03 B | 0.18 ± 0.05 A | 0.17 ± 0.06 A | 0.16 ± 0.03 A | 0.15 ± 0.08 A |
Erucic acid | 112-86-7 | 46.74 | 0.05 ± 0.02 A | 0.04 ± 0.02 A | 0.03 ± 0.01 A | 0.03 ± 0.02 A | 0.04 ± 0.01 A | 0.03 ± 0.01 A | 0.03 ± 0.01 A | 0.05 ± 0.02 A |
Pentanoic acid | 63169-61-9 | 30.33 | 0.94 ± 0.16 E | 1.32 ± 0.28 C | 1.52 ± 0.67 B | 1.57 ± 0.63 B | 1.18 ± 0.12 D | 1.34 ± 0.06 C | 2.25 ± 0.36 A | 2.18 ± 0.23 A |
Hexanoic acid | 123-66-0 | 12.10 | 2.15 ± 0.12 C | 2.22 ± 0.33 C | 3.17 ± 1.69 B | 5.01 ± 1.58 A | 2.15 ± 0.10 C | 2.25 ± 0.74 C | 3.67 ± 1.41 B | 5.81 ± 0.58 A |
Hexadecenoic acid | 2091-29-4 | 16.92 | 0.25 ± 0.09 A | 0.19 ± 0.10 B | 0.16 ± 0.05 C | 0.13 ± 0.08 C | 0.23 ± 0.07 A | 0.16 ± 0.02 B | 0.10 ± 0.03 D | 0.07 ± 0.04 D |
Palmitic acid | 506-33-2 | 31.00 | 0.20 ± 0.06 C | 0.24 ± 0.09 AB | 0.28 ± 0.12 A | 0.26 ± 0.15 A | 0.23 ± 0.08 AB | 0.28 ± 0.06 A | 0.31 ± 0.16 A | 0.30 ± 0.13 A |
Octane | 111-6-59 | 1.83 | 0.83 ± 0.16 C | 0.97 ± 0.07 A | 0.94 ± 0.12 A | 0.89 ± 0.24 AB | 0.87 ± 0.05 B | 0.91 ± 0.04 AB | 0.87 ± 0.08 B | 0.80 ± 0.09 C |
Hexadecane | 7735-39-9 | 12.51 | 0.17 ± 0.08 D | 0.38 ± 0.14 BC | 0.44 ± 0.09 B | 0.52 ± 0.32 A | 0.22 ± 0.08 | 0.28 ± 0.07 C | 0.31 ± 0.03 BC | 0.35 ± 0.05 B |
Hexacosene | 18835-33-1 | 20.99 | 0.14 ± 0.06 A | 0.08 ± 0.03 AB | 0.06 ± 0.02 B | 0.05 ± 0.02 B | 0.10 ± 0.04 A | 0.05 ± 0.01 B | 0.03 ± 0.01 C | 0.03 ± 0.01 C |
1, 3-hexadiene | 74752-97-9 | 19.15 | 0.67 ± 0.18 D | 0.77 ± 0.02 C | 0.85 ± 0.12 B | 0.86 ± 0.20 B | 0.79 ± 0.09 C | 0.89 ± 0.26 AB | 0.94 ± 0.18 A | 0.92 ± 0.10 A |
Octene | 6971-40-0 | 10.77 | 4.98 ± 0.85 B | 5.09 ± 0.86 AB | 5.24 ± 0.69 A | 5.17 ± 1.84 A | 4.93 ± 1.06 B | 4.90 ± 1.22 B | 5.13 ± 0.85 A | 5.31 ± 1.36 A |
Heptane | 18835-33-1 | 20.99 | 0.60 ± 0.13 B | 0.57 ± 0.08 B | 0.51 ± 0.12 C | 0.53 ± 0.08 C | 0.70 ± 0.05 A | 0.67 ± 0.18 A | 0.57 ± 0.10 B | 0.59 ± 0.13 B |
Octodecane | 55282-12-7 | 5.82 | 0.10 ± 0.03 AB | 0.12 ± 0.04 A | 0.05 ± 0.01 C | 0.09 ± 0.02 B | 0.11 ± 0.02 A | 0.14 ± 0.05 A | 0.04 ± 0.01 C | 0.06 ± 0.02 C |
Hexanoic acid ethyl ester | 123-66-0 | 12.08 | 3.61 ± 0.82 D | 3.88 ± 1.25 D | 4.71 ± 0.52 C | 5.21 ± 0.98 B | 4.66 ± 1.02 C | 4.72 ± 0.65 C | 5.43 ± 0.41 B | 6.10 ± 0.13 A |
Caproic acid vinyl ester | 3050-69-9 | 30.34 | 1.32 ± 0.19 C | 1.32 ± 0.10 C | 1.52 ± 0.16 B | 1.57 ± 0.21 B | 1.34 ± 0.08 C | 1.38 ± 0.22 C | 2.25 ± 0.84 A | 2.58 ± 0.51 A |
Octanoic acid, ethyl ester | 106-32-1 | 20.45 | 0.32 ± 0.05 D | 0.33 ± 0.05 D | 0.32 ± 0.10 D | 0.38 ± 0.08 C | 0.46 ± 0.07 B | 0.47 ± 0.21 B | 0.45 ± 0.08 B | 0.57 ± 0.12 A |
Octadecadiynoic acid, methyl ester | 18202-24-9 | 32.38 | 0.33 ± 0.07 D | 0.61 ± 0.07 B | 0.64 ± 0.19 B | 0.70 ± 0.12 A | 0.23 ± 0.04 E | 0.53 ± 0.06 C | 0.53 ± 0.11 C | 0.60 ± 0.08 B |
2-naphthol | 91253-94-0 | 21.45 | 0.10 ± 0.02 C | 0.12 ± 0.05 C | 0.14 ± 0.05 B | 0.16 ± 0.05 B | 0.12 ± 0.03 C | 0.15 ± 0.02 B | 0.18 ± 0.06 A | 0.20 ± 0.03 A |
Heptaethylene glycol monododecyl ether | 3055-97-8 | 59.89 | 0.14 ± 0.02 A | 0.14 ± 0.06 A | 0.11 ± 0.05 A | 0.09 ± 0.02 B | 0.12 ± 0.02 AB | 0.10 ± 0.03 B | 0.09 ± 0.02 B | 0.08 ± 0.03 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Song, S.; Xia, T.; Wang, R. Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods 2022, 11, 3590. https://doi.org/10.3390/foods11223590
Fu Q, Song S, Xia T, Wang R. Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods. 2022; 11(22):3590. https://doi.org/10.3390/foods11223590
Chicago/Turabian StyleFu, Qingquan, Shangxin Song, Tianlan Xia, and Rongrong Wang. 2022. "Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage" Foods 11, no. 22: 3590. https://doi.org/10.3390/foods11223590
APA StyleFu, Q., Song, S., Xia, T., & Wang, R. (2022). Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods, 11(22), 3590. https://doi.org/10.3390/foods11223590