Toughness Variations among Natural Casings: An Exploration on Their Biochemical and Histological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Toughness Measurement
2.3. Biochemical Analysis
2.3.1. Collagen Measurement
2.3.2. Elastin Determination
2.3.3. Uronic Acid Content
2.4. Histological Analysis
2.5. Determination of Pyridinoline Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biochemical and Histological Characteristics of Hog and Sheep Casing Toughness Difference
3.1.1. Hog and Sheep Casing Toughness Properties
3.1.2. Biochemical Characteristics of Hog and Sheep Casings and Their Relationship with Toughness
3.1.3. Histological Characteristics of Hog and Sheep Casings and Their Relationship with the Mechanical Property
3.2. Toughness and Collagen Characteristics of Sheep and Lamb Casings
3.2.1. Toughness of Sheep and Lamb Casings
3.2.2. Collagen Heat Solubility and Pyridinoline Content in Sheep and Lamb Casings
3.2.3. Comparison of Collagen Fiber Structures in Sheep and Lamb Casings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harper, B.A. Understanding Interactions in Wet Alginate Film Formation Used for In-Line Food Processes. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2013. Available online: http://hdl.handle.net/10214/7698 (accessed on 9 May 2022).
- Savic, Z.; Savic, I. Sausage Casings, 1st ed.; VICTUS Lebensmittelindustriebedarf: Vienna, Austria, 2002; pp. 3–354. [Google Scholar]
- Wijnker, J.J. Aspects of Quality Assurance in Processing Natural Sausage Casings. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2009. Available online: https://dspace.library.uu.nl/handle/1874/31822 (accessed on 9 May 2022).
- Suurs, P.; Barbut, S. Collagen use for co-extruded sausage casings–a review. Trends Food Sci. Technol. 2020, 102, 91–101. [Google Scholar] [CrossRef]
- Sakata, R.; Segawa, S.; Morita, H.; Nagata, Y. Tenderization of hog casings: Application of organic acids and proteases. Fleischwirtschaft 1998, 78, 703–704. Available online: http://www.scopus.com/inward/record.url?scp=0002400413&partnerID=8YFLogxK (accessed on 17 April 2022).
- Bakker, W.A.M.; Houben, J.H.; Koolmees, P.A.; Bindrich, U.; Sprehe, L. Effect of initial mild curing, with additives, of hog and sheep sausage casings on their microbial quality and mechanical properties after storage at difference temperatures. Meat Sci. 1999, 51, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Simelane, S.; Ustunol, Z. Mechanical properties of heat-cured whey protein-based edible films compared with collagen casings under sausage manufacturing conditions. J. Food Sci. 2005, 70, 131–134. [Google Scholar] [CrossRef]
- Houben, J.H.; Bakker, W.A.M.; Keizer, G. Effect of trisodium phosphate on slip and textural properties of hog and sheep natural sausage casings. Meat Sci. 2005, 69, 209–214. [Google Scholar] [CrossRef]
- Feng, C.H.; Drummond, L.; Sun, D.W.; Zhang, Z.H. Evaluation of natural hog casings modified by surfactant solutions combined with lactic acid by response surface methodology. LWT-Food Sci. Technol. 2014, 58, 427–438. [Google Scholar] [CrossRef]
- Nishiumi, T.; Kunishima, R.; Nishimura, T.; Yoshida, S. Intramuscular connective tissue components contributing to raw meat toughness in various porcine muscles. J. Anim. Sci. Technol. 1995, 66, 341–348. [Google Scholar] [CrossRef]
- Hill, F. The solubility of intramuscular collagen in meat animals of various ages. J. Food Sci. 1996, 31, 161–166. [Google Scholar] [CrossRef]
- Bergman, I.; Loxley, R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 1963, 35, 1961–1965. [Google Scholar] [CrossRef]
- Goll, D.E.; Bray, R.W.; Hoekstra, W.G. Age-associated changes in muscle composition. The isolation and properties of a collagenous residue from bovine muscle. J. Food Sci. 1963, 28, 503–509. [Google Scholar] [CrossRef]
- Cross, H.R.; Carpenter, Z.L.; Smith, G.C. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973, 38, 998–1003. [Google Scholar] [CrossRef]
- Cross, H.R.; Smith, G.C.; Carpenter, Z.L. Quantitative isolation and partial characterization of elastin in bovine muscle tissue. J. Agric. Food Chem. 1973, 21, 716–721. [Google Scholar] [CrossRef]
- Alexander, K.T.W.; Haines, B.M.; Walker, M.P. Influence of proteoglycan removal on opening-up in the beamhouse. J. Am. Leather Chem. Assoc. 1986, 81, 85–102. [Google Scholar]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, O.; Ushiki, T.; Taguchi, T.; Kikuta, A. Collagen fibrillar networks as skeletal frameworks: A demonstration by cell-maceration/scanning electron microscope method. Arch. Histol. Cytol. 1988, 51, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T. A revised tannin-osmium method for non-coated scanning electron microscope specimens. Arch. Histol. JPN. 1974, 36, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Osatake, H. A new drying method of biological specimens for scanning electron microscopy: The t-butyl alcohol freeze-drying method. Arch. Histol. Cytol. 1988, 51, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, N.; Kim, M.; Otsuka, M. An improved high-performance liquid chromatographic assay for the determination of pyridinoline in connective tissues. J. Nutr. Sci. Vitaminol. 1992, 38, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Gzik-Zroska, B.; Joszko, K.; Kawlewska, E.; Balin, A.; Karczewski, J.; Wyciślok, P. Determination of mechanical properties of biological material of animal origin. In Proceedings of the Engineering Mechanics 26th International Conference, Brno, Czech Republic, 24–25 November 2020. [Google Scholar]
- Feng, C.H.; Otani, C.; Ogawa, Y.; García-Martín, J.F. Evaluation of properties in different casings modified by surfactants and lactic acid using terahertz spectroscopy–A feasibility study. Food Control 2021, 127, 108152. [Google Scholar] [CrossRef]
- Gunn, S.; Sizeland, K.H.; Wells, H.C.; Haverkamp, R.G. Collagen arrangement and strength in sausage casings produced from natural intestines. Food Hydrocoll. 2022, 129, 107612. [Google Scholar] [CrossRef]
- Baidoo, N.; Crawley, E.; Knowles, C.H.; Sanger, G.J.; Belai, A. Total collagen content and distribution is increased in human colon during advancing age. PLoS ONE 2022, 17, 0269689. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Stoffel, M.H.; Belyaev, Y.; Stiefel, N.G.; Vidondo, B.; Küker, S.; Mogel, H.; Schäfer, B.; Balmer, J. Structural characterization of four different naturally occurring porcine collagen membranes suitable for medical applications. PLoS ONE 2018, 13, 0205027. [Google Scholar] [CrossRef]
- Nishiumi, T.; Fukuda, T.; Nishimura, T. Isolation and characterization of a small proteoglycan associated with porcine intramuscular connective tissue. J. Agric. Food Chem. 1997, 45, 2978–2983. [Google Scholar] [CrossRef]
- Bailey, A.J.; Light, N.D. Connective Tissue in Meat and Meat Products; Elsevier Applied Science: London, UK; New York, NY, USA, 1989; pp. 149–194. [Google Scholar]
- Luo, J.C.; Chen, W.; Chen, X.H.; Qin, T.W.; Huang, Y.C.; Xie, H.Q.; Li, X.Q.; Qian, Z.Y.; Yang, Z.M. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials 2011, 32, 706–713. [Google Scholar] [CrossRef]
- Parry, D.A. The molecular fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem. 1988, 29, 195–209. [Google Scholar] [CrossRef]
- Smith, S.H.; Judge, M.D. Relationship between pyridinoline concentration and thermal stability of bovine intramuscular collagen. J. Anim. Sci. 1991, 69, 1989–1993. [Google Scholar] [CrossRef]
- Gabella, G. The cross-ply arrangement of collagen fibers in the submucosa of the mammalian small intestine. Cell Tissue Res. 1987, 248, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Komuro, T. The lattice arrangement of the collagen fibers in the submucosa of the rat small intestine: Scanning electron microscopy. Cell Tissue Res. 1988, 251, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Orberg, J.W.; Klein, L.; Hiltner, A. Scanning electron microscopy of collagen fibers in intestine. Connect. Tissue Res. 1982, 9, 187–193. [Google Scholar] [CrossRef]
Origin | Breaking Strength (N) |
---|---|
Hog casing | |
China | 7.91 ± 1.99 A |
USA | 6.51 ± 1.06 B |
Japan | 6.11 ± 1.15 B |
Sheep casing | |
China | 4.89 ± 1.41 C |
Egypt | 3.23 ± 1.01 D |
Australia | 3.11 ± 0.74 D |
Origin | Total Collagen Content (mg/g DDM) | Heat-Labile Collagen Content (mg/g DDM) | Heat Solubility of Collagen (%, w/w) | Elastin Content (mg/g DDM) | Uronic Acid Content (mg/g DDM) |
---|---|---|---|---|---|
Hog casing | |||||
China | 921 ± 42 A | 14.4 ± 5.0 A | 1.56 ± 0.26 A | 22.0 ± 1.6 A | 1.72 ± 0.34 A |
USA | 830 ± 101 A,B | 19.1 ± 6.3 A | 2.30 ± 0.45 B | N.D. | 1.82 ± 0.24 A |
Japan | 837 ± 82 A,B | 18.5 ± 4.4 A | 2.12 ± 0.36 B | 16.3 ± 0.7 B | 1.99 ± 0.27 A |
Sheep casing | |||||
China | 868 ± 92 A,B | 19.7 ± 8.1 A | 2.27 ± 0.61 B | 23.9 ± 1.2 A | 1.86 ± 0.15 A |
Egypt | 844 ± 86 A,B | 30.1 ± 6.5 B | 3.57 ± 0.58 C | N.D. | 1.72 ± 0.17 A |
Australia | 803 ± 64 B | 29.0 ± 6.2 B | 3.61 ± 0.37 C | 22.8 ± 2.1 A | 1.79 ± 0.37 A |
New Zealand Casing | Breaking Strength (N) | Total Collagen Content (mg/g DDM) | Heat-Labile Collagen Content (mg/g DDM) | Heat Solubility of Collagen (%, w/w) | Pyridinoline Concentration (Mole/Mole of Collagen) |
---|---|---|---|---|---|
Lamb | 2.93 ± 0.83 A | 865 ± 27 A | 94.4 ± 7.8 A | 10.91 ± 0.42 A | 0.046 ± 0.003 A |
Sheep | 3.99 ± 1.18 B | 884 ± 51 A | 28.4 ± 4.0 B | 3.32 ± 0.22 B | 0.128 ± 0.009 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Chen, X.; Tsutsuura, S.; Nishiumi, T. Toughness Variations among Natural Casings: An Exploration on Their Biochemical and Histological Characteristics. Foods 2022, 11, 3815. https://doi.org/10.3390/foods11233815
Liu W, Chen X, Tsutsuura S, Nishiumi T. Toughness Variations among Natural Casings: An Exploration on Their Biochemical and Histological Characteristics. Foods. 2022; 11(23):3815. https://doi.org/10.3390/foods11233815
Chicago/Turabian StyleLiu, Wenjun, Xing Chen, Satomi Tsutsuura, and Tadayuki Nishiumi. 2022. "Toughness Variations among Natural Casings: An Exploration on Their Biochemical and Histological Characteristics" Foods 11, no. 23: 3815. https://doi.org/10.3390/foods11233815
APA StyleLiu, W., Chen, X., Tsutsuura, S., & Nishiumi, T. (2022). Toughness Variations among Natural Casings: An Exploration on Their Biochemical and Histological Characteristics. Foods, 11(23), 3815. https://doi.org/10.3390/foods11233815