Acid and Rennet Coagulation Properties of A2 Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Milk Composition
2.3. Evaluation of Acid Coagulation Properties
2.3.1. Preparation of Samples
2.3.2. Preparation of Starter Culture
2.3.3. Evaluation of Coagulation Parameters
2.3.4. Water-Holding Capacity of Gels
2.4. Evaluation of Rennet Coagulation Properties
2.4.1. Potential Yield and Total Solids of Curds
2.4.2. Rennet Curd Syneresis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Milk Samples
3.2. Milk Composition
3.3. Acid Coagulation Properties
Water Holding Capacity of Acid Gels
3.4. Rennet Coagulation Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.; Shah, T.; Sabara, P.; Bhatia, D.; Panchal, K.; Italiya, J.; Rank, D. Understanding functional implication of β-casein gene variants in four cattle breeds characterized using AmpliSeq approach. 3 Biotech. 2020, 10, 414. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Solah, V.A.; Johnson, S.K.; Nguyen, H.A.; Nguyen, T.L.D.; Tran, T.L.H.; Mai, T.K.; Busetti, F. Identification and quantification of beta-casomorphin peptides naturally yielded in raw milk by liquid chromatography-tandem mass spectrometry. LWT 2019, 111, 465–469. [Google Scholar] [CrossRef]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk–Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, N.A.; Bertelsen, H.P.; Jensen, H.B.; Gustavsson, F.; Glantz, M.; Lindmark Månsson, H.; Andrén, A.; Paulsson, M.; Bendixen, C.; Buitenhuis, A.J.; et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J. Dairy Sci. 2013, 96, 4830–4842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieslinska, A.; Kostyra, E.; Kostyra, H.; Olenski, K.; Fiedorowicz, E.; Kaminski, S. Milk from cows of different b-casein genotypes as a source of b-casomorphin-7. Int. J. Food Sci. Nutr. 2012, 63, 426–430. [Google Scholar] [CrossRef]
- Banerjee, S. A2 Milk: The Unknown Story About a Milk Protein. Acta Sci. Nutr. Health 2018, 2, 28–31. [Google Scholar]
- Asledottir, T.; Le, T.T.; Petrat-Melin, B.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Identification of bioactive peptides and quantification of β-casomorphin-7 from bovine βcasein A1, A2 and I after ex vivo gastrointestinal digestion. Int. Dairy J. 2017, 71, 98–106. [Google Scholar] [CrossRef]
- Asledottir, T.; Le, T.T.; Poulsen, N.A.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Release of β-casomorphin-7 from bovine milk of different β-casein variants after ex vivo gastrointestinal digestion. Int. Dairy J. 2018, 81, 8–11. [Google Scholar] [CrossRef]
- Kamiński, S.; Cieślińska, A.; Kostyra, E. Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Genet. 2007, 48, 189–198. [Google Scholar] [CrossRef]
- Sodhi, M.; Kataria, R.; Joshii, B.; Mukesh, M.; Mishra, B. Milk proteins and human health: A1/A2 milk hypothesis. Indian J. Endocrinol. Metab. 2012, 16, 856. [Google Scholar] [CrossRef]
- Tailford, K.A.; Berry, C.L.; Thomas, A.C.; Campbell, J.H. A casein variant in cow’s milk is atherogenic. Atherosclerosis 2003, 170, 13–19. [Google Scholar] [CrossRef]
- Woodford, K.B. A critique of truswell’s A2 milk review. Eur. J. Clin. Nutr. 2006, 60, 437–439. [Google Scholar] [CrossRef] [PubMed]
- De Noni, I.; FitzGerald, R.J.; Korhonen, H.J.T.; Le Roux, Y.; Livesey, C.T.; Thorsdottir, I.; Tomé, D.; Witkamp, R. European Food Safety Authority. Review of the Potential Health Impact of β-Casomorphins and Related Peptides. EFSA Sci. Rep. 2009, 231, 1–107. [Google Scholar]
- Ho, S.; Woodford, K.; Kukuljan, S.; Pal, S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study. Eur. J. Clin. Nutr. 2014, 68, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Kullenberg de Gaudry, D.; Lohner, S.; Schmucker, C.; Kapp, P.; Motschall, E.; Horrlein, S.; Roger, C.; Meerpohl, J.J. Milk A1 b-casein and health-related outcomes in humans: A systematic review. Nutr. Rev. 2019, 77, 278–306. [Google Scholar] [CrossRef]
- Summer, A.; Di Frangia, F.; Ajmone Marsan, P.; De Noni, I.; Malacarne, M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3705–3723. [Google Scholar] [CrossRef]
- Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2016, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Daniloski, D.; Cunha, N.M.D.; McCarthy, N.A.; O’Callaghan, T.F.; McParland, S.; Vasiljevic, T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci. Technol. 2021, 111, 233–248. [Google Scholar] [CrossRef]
- Kay, S.I.S.; Delgado, S.; Mittal, J.; Eshraghi, R.S.; Mittal, R.; Eshraghi, A.A. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J. Nutr. 2021, 151, 1061–1072. [Google Scholar] [CrossRef]
- Joudu, I.; Henno, M.; Varv, S.; Kaart, T.; Kart, O.; Kalamees, K. Milk protein genotypes and milk coagulation properties of Estonian native cattle. Agric. Food Sci. 2007, 16, 222–231. [Google Scholar] [CrossRef]
- Gustavsson, F.; Buitenhuis, A.J.; Johansson, M.; Bertelsen, H.P.; Glantz, M.; Poulsen, N.A.; Månsson, H.L.; Stålhammar, H.; Larsen, L.B.; Bendixen, C.; et al. Effects of breed and casein genetic variants on protein profi le in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. J. Dairy Sci. 2014, 97, 3866–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketto, I.A.; Knutsen, T.M.; Øyaas, J.; Heringstad, B.; Ådnøy, T.; Devold, T.G.; Skeie, S.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in Norwegian Red cattle. Int。 Dairy J. 2017, 70, 55–64. [Google Scholar] [CrossRef]
- Comin, A.; Cassandro, M.; Chessa, S.; Ojala, M.; Dal Zotto, R.; De Marchi, M.; Carnier, P.; Gallo, L.; Pagnacco, G.; Bittante, G. Effects of β- and κ-casein genotypes on milk coagulation, quality, and yield traits in Italian Holstein cows. J. Dairy Sci. 2008, 91, 4022–4027. [Google Scholar] [CrossRef] [PubMed]
- Ristanic, M.; Glavinic, U.; Vejnovic, B.; Maletic, M.; Kirovski, B.; Teodorovic, V.; Stanimirovic, Z. Beta-casein gene polymorphism in Serbian holstein-friesian cows and its relationship with milk production traits. Acta Vet. Beogr. 2020, 70, 497–510. [Google Scholar] [CrossRef]
- Ikonen, T.; Ojala, M.; Ruottinen, O. Associations between Milk Protein Polymorphism and First Lactation Milk Production Traits in Finnish Ayrshire Cows. J. Dairy Sci. 1999, 82, 1026–1033. [Google Scholar] [CrossRef]
- Hallén, E.; Allmere, T.; Lundén, A.; Andrén, A. Effect of genetic polymorphism of milk proteins on rheology of acid-induced milk gels. Int. Dairy J. 2009, 19, 399–404. [Google Scholar] [CrossRef]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.B.; Holland, J.W.; Poulsen, N.A.; Larsen, L.B. Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties. J. Dairy Sci. 2012, 95, 2891–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallén, E.; Allmere, T.; Näslund, J.; Andrén, A.; Lundén, A. Effect of genetic polymorphism of milk proteins on rheology of chymosin-induced milk gels. Int. Dairy J. 2007, 17, 791–799. [Google Scholar] [CrossRef]
- Ikonen, T.; Ojala, M.; Syväoja, E.L. Effects of composite casein and β-lactoglobulin genotypes on renneting properties and composition of bovine milk by assuming an animal model. Agric. Food Sci. Finl. 1997, 6, 283–294. [Google Scholar] [CrossRef]
- Bonfatti, V.; Di Martino, G.; Cecchinato, A.; Degano, L.; Carnier, P. Effects of β-κ-casein (CSN2-CSN3) haplotypes, β-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental cows. J. Dairy Sci. 2010, 93, 3809–3817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glantz, M.; Månsson, H.L.; Stålhammar, H.; Paulsson, M. Effect of Polymorphisms in the Leptin, Leptin Receptor, and AcylCoenzyme A: Diacylglycerol Acyltransferase 1 (DGAT1) Genes and Genetic Polymorphism of Milk Proteins on Cheese Characteristics. J. Dairy Sci. 2011, 94, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Schwendel, H.; Harland, D.; Day, L. Differences in the yoghurt gel microstructure and physicochemical properties of bovine milk containing A 1 A 1 and A 2 A 2 β-casein phenotypes. Food Res. Int. 2018, 112, 217–224. [Google Scholar] [CrossRef] [PubMed]
- IDF. ISO 5534/IDF 238; 2004-Cheese and Processed Cheese-Determination of the Total Solids Content (Reference Method). International Dairy Federation: Brussels, Belgium, 2004. [Google Scholar]
- FIL-IDF. Standard 20B; Milk. Determination of Nitrogen Content. Kjeldahl Method. International Dairy Federation: Brussels, Belgium, 1993. [Google Scholar]
- Haque, Z.; Kinsella, J.E. Interaction between heated κ-casein and β-lactoglobulin: Predominance of hydrophobic interactions in the initial stages of complex formation. J. Dairy Res. 1988, 55, 67–80. [Google Scholar] [CrossRef]
- Serra, M.; Trujillo, A.J.; Quevedo, J.M.; Guamis, B.; Ferragut, V. Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. Int. Dairy J. 2007, 17, 782–790. [Google Scholar] [CrossRef]
- IDF. ISO 8968-1/IDF 020-1; 2014-Milk and Milk Products-Determination of Nitrogen Content-Part 1: Kjeldahl Principle and Crude Protein Calculation. International Dairy Federation: Brussels, Belgium, 2014. [Google Scholar]
- Marshall, R. An improved methot for measurement of the synesesis of curd formed by renent action on milk. J. Dairy Res. 1982, 49, 329–336. [Google Scholar] [CrossRef]
- Fox, J. The R Commander: A Basic-Statistics Graphical User Interface to R. J. Stat. Softw. 2005, 14, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Vallas, M.; Kaart, T.; Värv, S.; Pärna, K.; Jõudu, I.; Viinalass, H.; Pärna, E. Composite β-κ-Casein Genotypes and Their Effect on Composition and Coagulation of Milk from Estonian Holstein Cows. J. Dairy Sci. 2012, 95, 6760–6769. [Google Scholar] [CrossRef]
- Cassandro, M.; Dalvit, C.; Zanetti, E.; De Marchi, M.; Dal Zotto, R. Genetic aspects of milk coagulation properties in dairy cattle. Poljoprivreda 2007, 13, 1–7. [Google Scholar]
- Frederiksen, P.D.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Sørensen, J.; Bakman, M.; Qvist, K.B.; Larsen, L.B. Composition and Effect of Blending of Noncoagulating, Poorly Coagulating, and Well-Coagulating Bovine Milk from Individual Danish Holstein Cows. J. Dairy Sci. 2011, 94, 4787–4799. [Google Scholar] [CrossRef] [Green Version]
- Kneifel, W.; Seiler, A. Water-holding properties of milk protein products-A review. Food Struct. 1993, 12, 297–308. [Google Scholar]
- Athar, I.H.; Shah, M.A.; Khan, U.N. Effect of various stabilizers on whey separation (syneresis) and quality of yogurt. Pak. J. Biol. Sci. 2000, 3, 1336–1338. [Google Scholar]
- Lee, W.J.; Lucey, J.A. Rheological properties, whey separation, and microstructure in set-style yogurt: Effects of heating temperature and incubation temperature. J. Text. Stud. 2003, 34, 515–536. [Google Scholar] [CrossRef]
- Ketto, I.A.; Øyaas, J.; Ådnøy, T.; Johansen, A.G.; Schüller, R.B.; Narvhus, J.; Skeie, S.B. The influence of milk protein genetic polymorphism on the physical properties of cultured milk. Int. Dairy J. 2018, 78, 130–137. [Google Scholar] [CrossRef]
- Lodes, A.; Krause, I.; Buchberger, J.; Aumann, J.; Klostermeyer, H. Document details-The influence of genetic variants of milk proteins on the compositional and technological properties of milk. 1. Casein micelle size and the content of non-glycosylated κ-casein. Milchwissenschaft 1996, 51, 368–373. [Google Scholar]
- Kübarsepp, I.; Henno, M.; Kaart, T.; Pärna, E.; Viinalass, H.; Sabre, D. Frequencies of κ-Cn and β-Lg genetic variants among Estonian cattle breeds and their effect on the milk renneting properties. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brasil, 13–18 August 2006. [Google Scholar]
- Abeykoon, C.D.; Rathnayake, R.M.C.; Johansson, M.; Silva, G.L.L.P.; Ranadheera, C.S.; Lundh, Å.; Vidanarachchi, J.K. Milk Coagulation Properties and Milk Protein Genetic Variants of Three Cattle Breeds/Types in Sri Lanka. Procedia Food Sci. 2016, 6, 348–351. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Gambacorta, E.; Simonetti, A. The influence of casein haplotype on quality, coagulation, and yield traits of milk from Italian Holstein cows. J. Dairy Sci. 2016, 99, 3288–3294. [Google Scholar] [CrossRef] [Green Version]
- Mariani, P.; Losi, G.; Russo, V.; Castagnetti, G.B.; Grazia, L.; Morini, D.; Fossa, E. Prove di caseificazione con latte caratterizzato dalle varianti A e B della k-caseina nella produzione del formaggio Parmigiano-Reggiano. Sci. Tecn. Latt. Cas. 1976, 27, 208–216. [Google Scholar]
- Aleandri, R.; Buttazzoni, L.G.; Schneider, J.C.; Caroli, A.; Davoli, R. The effects of milk protein polymorphisms on milk components and cheese-production ability. J. Dairy Sci. 1990, 73, 241–255. [Google Scholar] [CrossRef]
- Walsh, C.D.; Guinee, T.P.; Reville, W.D.; Harrington, D.; Murphy, J.J.; O’Kennedy, B.T.; FitzGerald, R.J. Influence of κ-casein genetic variant on rennet gel microstructure, cheddar cheesemaking properties and casein micelle size. Int. Dairy J. 1998, 8, 707–714. [Google Scholar] [CrossRef]
- Walsh, C.D.; Guinee, T.P.; Harrington, D.; Mehra, R.; Murphy, J.; Fitzgerald, R.J. Cheesemaking, compositional and functional characteristics of low-moisture part-skim Mozzarella cheese from bovine milks containing κ-casein AA, AB or BB genetic variants. J. Dairy Res. 1998, 65, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, G. Genetic polymorphism of κ-casein and β-lactoglobulin in relation to milk composition and processing properties. Neth. Milk Dairy J. 1992, 46, 145–168. [Google Scholar]
- Marziali, A.S.; Ng-Kwai-Hang, K.F. Relationships between milk protein polymorphism and cheese yielding capacity. J. Dairy Sci. 1986, 69, 1193–1201. [Google Scholar] [CrossRef]
Milk 1 | N 2 | DIL | Lac | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Minimum | Maximum | Mean | SD | Minimum | Maximum | ||
A2 | 243 | 167.3 | 55.3 | 116.4 | 272.5 | 1.52 | 0.43 | 1 | 2.1 |
C | 228 | 175 | 48.1 | 119 | 265 | 1.67 | 0.55 | 1.1 | 2.6 |
β-CN | κ-CN | β-LG | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk 1 | N 2 | A2A2 | A1A2 | A1A1 | AA | AB | BB | BE | AE | EE | AA | AB | BB |
A2 | 243 | 243 | 0 | 0 | 75 | 117 | 50 | 98 | 108 | 37 | |||
C | 228 | 9 | 190 | 29 | 43 | 63 | 28 | 49 | 36 | 5 | 82 | 112 | 36 |
Milk 1 | pH | TS (%) | Protein (%) |
---|---|---|---|
A2 | 6.67 ± 0.06 | 9.12 ± 0.25 | 3.17 ± 0.15 |
C | 6.73 ± 0.05 | 9.16 ± 0.17 | 3.09 ± 0.17 |
SE2 | |||
Farm | * | ||
Milk type | |||
Farm × Milk type |
Milk 1 | CT (min) | AR (mA/min) | GD (mA) |
---|---|---|---|
A2 | 108.83 ± 29.38 | 0.49 ± 0.04 | 26.66 ± 2.48 a |
C | 99.66 ± 22.88 | 0.48 ± 0.03 | 24.75 ± 3.37 b |
SE2 | |||
Farm | * | ||
Milk type | * | * | |
Farm × Milk type | * | * |
Milk 1 | (pHU/min) | (pHU/min) | (min) | (min) | (min) |
---|---|---|---|---|---|
A2 | 0.0192 ± 0.0024 | 0.0186 ± 0.0016 | 191.11 ± 15.80 | 112.67 ± 8.55 | 23.78 ± 5.61 a |
C | 0.0200 ± 0.0027 | 0.0188 ± 0.0028 | 184.88 ± 21.89 | 105.63 ± 12.51 | 12.35 ± 5.83 b |
SE2 | |||||
Farm | ** | ||||
Milk type | *** | ||||
Farm × Milk type | * |
Milk 1 | RCT (min) | RCF (mA/min) | CF30 (mA) |
---|---|---|---|
A2 | 4.31 ± 2.33 | 2.48 ± 0.80 a | 12.70 ± 1.29 a |
C | 4.08 ± 2.33 | 1.89 ± 0.70 b | 10.95 ± 0.75 b |
SE2 | |||
Farm | ** | ||
Milk type | ** | *** | |
Farm × Milk type | ** | *** |
Milk 1 | Potential Yield (%) | TS (%) | Syneresis (g) |
---|---|---|---|
A2 | 17.02 ± 4.77 a | 27.53 ± 1.94 | 9.66 ± 2.21 a |
CN | 12.89 ± 1.06 b | 26.93 ± 0.89 | 7.26 ± 1.52 b |
SE2 | |||
Farm | |||
Milk type | *** | *** | |
Farm × Milk type | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan, B.; Trujillo, A.-J. Acid and Rennet Coagulation Properties of A2 Milk. Foods 2022, 11, 3648. https://doi.org/10.3390/foods11223648
Juan B, Trujillo A-J. Acid and Rennet Coagulation Properties of A2 Milk. Foods. 2022; 11(22):3648. https://doi.org/10.3390/foods11223648
Chicago/Turabian StyleJuan, Bibiana, and Antonio-José Trujillo. 2022. "Acid and Rennet Coagulation Properties of A2 Milk" Foods 11, no. 22: 3648. https://doi.org/10.3390/foods11223648
APA StyleJuan, B., & Trujillo, A. -J. (2022). Acid and Rennet Coagulation Properties of A2 Milk. Foods, 11(22), 3648. https://doi.org/10.3390/foods11223648