Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review
Abstract
:1. Introduction
2. Mycotoxins Associated with Meat and Meat Products Contamination
2.1. Ochratoxin A
Applicable EO in Meat Products for the Prevention of OTA Development/Detoxification
2.2. Aflatoxins
Applicable EO in Meat Products for the Prevention of Aflatoxin Development/Detoxification
2.3. Zearalenone
Applicable EO in Meat Products for the Prevention of ZEA Development/Detoxification
2.4. Citrinin
Applicable EO in Meat Products for the Prevention of CIT Development/Detoxification
2.5. Patulin
Applicable EO in Meat Products for the Prevention of PAT Development/Detoxification
2.6. Sterigmatocystin
Applicable EO in Meat Products for the Prevention of STC Development/Detoxification
2.7. Fusarenon-X (4-acetylnivalenol)
Applicable EO in Meat Products for the Prevention of FX Development/Detoxification
2.8. T-2 Toxin
Applicable EO in Meat Products for the Prevention of T-2 Toxin Development/Detoxification
2.9. Deoxynivelanol
Appliable EO in Meat Products for the Prevention of DON Development/Detoxification
3. Current Overview and Possible Solutions in Using EO in Meat and Meat Products Industry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 2022, 77, 754–756. [Google Scholar]
- Dall’Asta, C.; Berthiller, F. Masked Mycotoxins in Food, 24th ed.; The Royal Society of Chemistry: Croydon, UK, 2016. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer; World Health Organization. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene, 82nd ed.; IARC Press: Lyon, France, 2002; pp. 1–556.
- Moretti, A.; Pascale, M.; Logrieco, A. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Aupanun, S.; Poapolathep, S.; Giorgi, M.; Imsilp, K.; Poapolathep, A. An overview of the toxicology and toxicokinetics of fusarenon-X, a type B trichothecene mycotoxin. J. Vet. Med. Sci. 2017, 79, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Schenzel, J.; Hungerbühler, K.; Bucheli, T. Mycotoxins in the Environment: II. Occurrence and Origin in Swiss River Waters. Environ. Sci. Technol. 2012, 46, 13076–13084. [Google Scholar] [CrossRef]
- IARC New. IARC Report Urges Action against Widespread Mycotoxin Contamination in Developing Countries; ARC: Lyon, France, 2016. [Google Scholar]
- Pleadin, J.; Lešić, T.; Milićević, D.; Markov, K.; Šarkanj, B.; Vahčić, N.; Kmetič, I.; Zadravec, M. Pathways of Mycotoxin Occurrence in Meat Products: A Review. Processes 2021, 9, 2122. [Google Scholar] [CrossRef]
- Bailly, J.-D.; Guerre, P. Mycotoxins in meat and processed meat products. Saf. Meat Process. Meat 2009, 83–124. [Google Scholar] [CrossRef]
- Gai, F.; Pattono, D. Ochratoxin A (OTA) Occurence in Meat and Dairy Products: Prevention and Remediation Strategies; Nova Sience Publisher: New York, NY, USA, 2020; pp. 1–31. [Google Scholar]
- Chu, F. MYCOTOXINS|Toxicology. Encycl. Food Sci. Nutr. 2003, 4096–4108. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, A.; Lall, R. Ochratoxins and Citrinin. Vet. Toxicol. 2018, 1019–1027. [Google Scholar] [CrossRef]
- Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Effect on public health of a possible increase of the maximum level for ‘aflatoxin total’ from 4 to 10 μg/kg in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA J. 2018, 16, e05175. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations on Food Control (Maximum Levels of Aflatoxins in Food) Regulations. Available online: http://faolex.fao.org/docs/pdf/BOT196888.pdf (accessed on 11 September 2022).
- European Comission Scientific Comitee on Food—Opinion of the Scientific Committee for Food on Aflatoxins, Ochratoxin A and Patulin, 1996. Available online: https://ec.europa.eu/food/system/files/2020-12/sci-com_scf_out14_en.pdf (accessed on 11 September 2022).
- Dhanasekaran, D.; Shanmugapriya, S.; Thajuddin, N.; Panneerselvam, A. Aflatoxins and Aflatoxicosis in Human and Animals. In Aflatoxins—Biochemistry and Molecular Biology; InTechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Benkerroum, N. Aflatoxins: Producing-molds, structure, health issues and incidence in southeast asian and sub-saharan african countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations; IARC Press: Lyon, France, 2012; pp. 225–248. [Google Scholar]
- Gil-Serna, J.; Vázquez, C.; González-Jaén, M.; Patiño, B. MYCOTOXINS|Toxicology, 2nd ed.; Academic Press: New York, NY, USA, 2014; pp. 887–892. [Google Scholar]
- Evaluation of the increase of risk for public health related to a possible temporary derogation from the maximum level of deoxynivalenol, zearalenone and fumonisins for maize and maize products. EFSA J. 2014, 12, 3699. [CrossRef] [Green Version]
- Han, X.; Huangfu, B.; Xu, T.; Xu, W.; Asakiya, C.; Huang, K.; He, X. Research progress of safety of zearalenone: A review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Hsu, W. Monascus-Fermented products. Encycl. Food Microbiol. 2014, 815–825. [Google Scholar] [CrossRef]
- Silva, L.; Pereira, A.; Pena, A.; Lino, C. Citrinin in foods and supplements: A review of occurrence and analytical methodologies. Foods 2021, 10, 14. [Google Scholar] [CrossRef]
- Bhattarai, K.; Bhattarai, K.; Kabir, M.; Bastola, R.; Baral, B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. Adv. Genet. 2021, 193–284. [Google Scholar] [CrossRef]
- European Comission Assessment of Dietary Intake of Patulin by the Population of EU Member States; Berlin. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_patulin_3.2.8_en.pdf (accessed on 12 September 2022).
- European Comission Scientific Comitee on Food—Minute statement on Patulin. Available online: https://food.ec.europa.eu/system/files/2020-12/sci-com_scf_out55_en.pdf (accessed on 12 September 2022).
- Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254. [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; World Health Organization: Geneva, Switzerland, 1976; Volume 10, p. 248.
- Viegas, C.; Nurme, J.; Piecková, E.; Viegas, S. Sterigmatocystin in foodstuffs and feed: Aspects to consider. Mycology 2018, 11, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carrasco, Y.; Ruiz, M.; Font, G.; Berrada, H. Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere 2013, 93, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y. Mode of action of trichothecenes. Ann. Nutr. Aliment. 1977, 49, 1737–1745. [Google Scholar] [CrossRef]
- Zouagui, Z.; Asrar, M.; Lakhdissi, H.; Abdennebi, E. Prevention of mycotoxin effects in dairy cows by adding an anti-mycotoxin product in feed. J. Mater. Environ. Sci. 2017, 8, 3766–3770. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011, 9, 2481. [Google Scholar] [CrossRef]
- European Comission Scientific Comitee on Food—Opinion of the Scientific Committee on Food on Fusarium toxins. Part 6: Group Evaluation of T-2 Toxin, HT-2 Toxin, Nivalenol and Deoxynivalenol. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_fusarium_out123_en.pdf (accessed on 12 September 2022).
- Food and Agriculture Organization of the United Nations/WHO Joint FAO/WHO Expert Comitee on FOOD ADDITIVES—93 Meeting—Summary and Conclusions; 2022. Available online: https://www.fao.org/3/cb9478en/cb9478en.pdf (accessed on 13 September 2022).
- Chilaka, C.; Obidiegwu, J.; Chilaka, A.; Atanda, O.; Mally, A. Mycotoxin regulatory status in Africa: A decade of weak institutional efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef]
- Ji, J.; Shankar, S.; Royon, F.; Salmieri, S.; Lacroix, M. Essential oils as natural antimicrobials applied in meat and meat products—A review. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef]
- Silveira, S.; Cunha Júnior, A.; Scheuermann, G.; Secchi, F.; Vieira, C. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Cienc. Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Nisar, S.; Asi, M.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Dofkova, M.; Skarkova, J.; Pfohl-Leszkowicz, A.; Ruprich, J. Ochratoxin A dietary exposure of ten population groups in the czech republic: Comparison with data over the world. Toxins 2015, 7, 3608–3635. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Li, X.; Li, J.; Niu, Y.; Shi, L.; Fang, Z.; Zhang, T.; Ding, H. Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. J. Chromatogr. B 2018, 1073, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Pietri, A.; Bertuzzi, T.; Gualla, A.; Piva, G. Occurrence of ochratoxin A in raw ham muscles and in pork products from northern Italy. Ital. J. Food Sci. 2006, 18, 99–106. [Google Scholar]
- Zou, Z.; He, Z.; Li, H.; Han, P.; Tang, J.; Xi, C.; Li, Y.; Zhang, L.; Li, X. Development and application of a method for the analysis of two trichothecenes: Deoxynivalenol and T-2 toxin in meat in China by HPLC–MS/MS. Meat Sci. 2012, 90, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.; Pantazopoulos, P.; Scott, P.; Moisey, J.; Dabeka, R.; Richard, I. Application of isotope dilution mass spectrometry: Determination of ochratoxin A in the Canadian Total Diet Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2011, 28, 754–761. [Google Scholar] [CrossRef]
- Pleadin, J.; Mihaljević, Ž.; Barbir, T.; Vulić, A.; Kmetič, I.; Zadravec, M.; Brumen, V.; Mitak, M. Natural incidence of zearalenone in croatian pig feed, urine and meat in 2014. Food Addit. Contam. Part B Surveill. 2015, 8, 277–283. [Google Scholar] [CrossRef]
- Jørgensen, K. Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Addit. Contam. 1998, 15, 550–554. [Google Scholar] [CrossRef]
- Jonsyn, F.; Lahai, G. Mycotoxic flora and mycotoxins in smoke-dried fish from Sierra Leone. Food/Nahrung 1992, 36, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Han, Z.; Aerts, J.; Nie, D.; Jin, M.; Shi, W.; Zhao, Z.; De Saeger, S.; Zhao, Y.; Wu, A. A reliable liquid chromatography–tandem mass spectrometry method for simultaneous determination of multiple mycotoxins in fresh fish and dried seafoods. J. Chromatogr. A 2015, 1387, 42–48. [Google Scholar] [CrossRef]
- Kachapulula, P.; Akello, J.; Bandyopadhyay, R.; Cotty, P. Aflatoxin contamination of dried insects and fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Natural occurrence of emerging Fusarium mycotoxins in feed and fish from aquaculture. J. Agric. Food Chem. 2014, 62, 12462–12470. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Barba, F.; Font, G.; Ferrer, E. Mycotoxin incidence in some fish products: QUECHERS methodology and liquid chromatography linear ion trap tandem mass spectrometry approach. Molecules 2019, 24, 527. [Google Scholar] [CrossRef] [Green Version]
- Bulatao-Jaym, J.; Almero, E.; Castro, M.; Jardeleza, M.; Salamat, L. A case-control dietary study of primary liver cancer risk from aflatoxin exposure*. Int. J. Epidemiol. 1982, 11, 112–119. [Google Scholar] [CrossRef]
- Markov, K.; Pleadin, J.; Bevardi, M.; Vahčić, N.; Sokolić-Mihalak, D.; Frece, J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control 2013, 34, 312–317. [Google Scholar] [CrossRef]
- Aziz, N.; Youssef, Y. Occurrence of aflatoxins and aflatoxin-producing moulds in fresh and processed meat in Egypt. Food Addit. Contam. 1991, 8, 321–331. [Google Scholar] [CrossRef]
- Pleadin, J.; Staver, M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of aflatoxin B1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Control 2015, 52, 71–77. [Google Scholar] [CrossRef]
- El-Hoshy, S. Occurrence of zearalenone in milk, meat and their products with emphasis on influence of heat treatments on its level. Arch. Lebensmittelhyg. 1999, 50, 140–143. [Google Scholar]
- Abd Alla, E. Natural occurrence of ochratoxin A and citrinin in food stuffs in Egypt. Mycotoxin Res. 1996, 12, 41–44. [Google Scholar] [CrossRef]
- Qian, G.; Ross, R.; Yu, M.; Yuan, J.; Gao, Y.; Henderson, B.; Wogan, G.; Groopman, J. A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol. Biomark. Prev. 1994, 3, 3–10. [Google Scholar]
- Honstead, J.; Dreesen, D.; Stubblefield, R.; Shotwell, O. Aflatoxins in swine tissues during drought conditions: An epidemiologic study. J. Food Prot. 1992, 55, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Curtui, V.; Gareis, M.; Usleber, E.; MÄrtlbauer, E. Survey of Romanian slaughtered pigs for the occurrence of mycotoxins ochratoxins A and B, and zearalenone. Food Addit. Contam. 2001, 18, 730–738. [Google Scholar] [CrossRef]
- Sineque, A.; Macuamule, C.; Dos Anjos, F. Aflatoxin B1 Contamination in Chicken Livers and Gizzards from Industrial and Small Abattoirs, Measured by ELISA Technique in Maputo, Mozambique. Int. J. Environ. Res. Public Health 2017, 14, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Hameed, M.; Hussain, T.; Khan, A.; Javed, I.; Ahmad, I.; Hussain, A.; Saleemi, M.; Islam, N. Aflatoxin residues in tissues of healthy and sick broiler birds at market age in Pakistan: A one year study. Pak. Vet. J. 2013, 33, 423–427. [Google Scholar]
- Milićević, D.; Stefanović, S.; Janković, S.; Radičević, T. Risk analysis and exposure assessment of Ochratoxin A in Serbia. Vet. World 2012, 5, 412–416. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Yan, Z.; Tan, Y.; Zhu, R.; Yu, D.; Yang, H.; Wu, A. Occurrence and quantitative risk assessment of twelve mycotoxins in eggs and chicken tissues in China. Toxins 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Bui-Klimke, T.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Crit. Rev. Food Sci. Nutr. 2014, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolosa, J.; Ruiz, M.J.; Ferrer, E.; Vila-Donat, P. Ochratoxin A: Occurrence and carry-over in meat and meat by-products. A Review. Toxicology 2020, 37, 106–110. [Google Scholar]
- Magan, N.; Olsen, M. (Eds.) Mycotoxins in Food: Detection and Control; Woodhead Publishing: Abington, MA, USA, 2004. [Google Scholar]
- Bhat, R.; Rai, R.; Karim, A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Grollman, A.; Shibutani, S.; Moriya, M.; Miller, F.; Wu, L.; Moll, U.; Suzuki, N.; Fernandes, A.; Rosenquist, T.; Medverec, Z.; et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc. Natl. Acad. Sci. USA 2007, 104, 12129–12134. [Google Scholar] [CrossRef] [Green Version]
- Perši, N.; Pleadin, J.; Kovačević, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Massoud, R.; Cruz, A.; Darani, K. Ochratoxin A: From Safety Aspects to Prevention and Remediation Strategies. Curr. Nutr. Food Sci. 2018, 14, 11–16. [Google Scholar] [CrossRef]
- Núñez, F.; Lara, M.; Peromingo, B.; Delgado, J.; Sánchez-Montero, L.; Andrade, M. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 2015, 46, 114–120. [Google Scholar] [CrossRef]
- Koteswara, V.; Girisham, S.; Reddy, S. Inhibitory effect of essential oils on growth and ochratoxin a production by Penicillium species. Res. J. Microbiol. 2015, 10, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.; Delgado, J.; Núñez, F.; Roncero, E.; Andrade, M. Proteomic approach to unveil the ochratoxin A repression by Debaryomyces hansenii and rosemary on Penicillium nordicum during dry-cured fermented sausages ripening. Food Control 2022, 137, 108695. [Google Scholar] [CrossRef]
- Aroyeun, S.; Adegoke, G. Reduction of ochratoxin A (OTA) in spiked cocoa powder and beverage using aqueous extracts and essential oils of Aframomum danielli. Afr. J. Biotechnol. 2007, 6, 612–616. [Google Scholar] [CrossRef]
- Abd-El Fattah, S.; Hassan, A.; Bayoum, H.; Eissa, H. The use of lemongrass extracts as antimicrobial and food additive potential in yoghurt. J. Am. Sci. 2010, 6, 582–594. [Google Scholar] [CrossRef]
- Pleadin, J.; Frece, J.; Markov, K. Mycotoxins in food and feed. Adv. Food Nutr. Res. 2019, 89, 297–345. [Google Scholar] [CrossRef]
- Elzupir, A.; Abdulkhair, B. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Toxicon 2020, 181, 1–5. [Google Scholar] [CrossRef]
- Shaltout, F.; Nassif, M.; Abdelwahab, S. Detection of aflatoxins in some meat products. Benha Vet. Med. J. 2014, 27, 368–374. [Google Scholar]
- Alpsoy, L. Inhibitory effect of essential oil on aflatoxin activities. Afr. J. Biotechnol. 2010, 9, 2474–2481. [Google Scholar]
- Masouri, L.; Bagherzadeh-Kasmani, F.; Mehri, M.; Rokouei, M.; Masouri, B. Mentha piperita as a promising feed additive used to protect liver, bone, and meat of Japanese quail against aflatoxin B1. Trop. Anim. Health Prod. 2022, 54, 254. [Google Scholar] [CrossRef] [PubMed]
- Esper, R.; Gonçalez, E.; Marques, M.; Felicio, R.; Felicio, J. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus. Front. Microbiol. 2014, 5, 269. [Google Scholar] [CrossRef]
- Razzaghi-Abyaneh, M.; Shams-Ghahfarokhi, M.; Rezaee, M.; Jaimand, K.; Alinezhad, S.; Saberi, R.; Yoshinari, T. Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Control 2009, 20, 1018–1024. [Google Scholar] [CrossRef]
- Abyaneh, M.; Allameh, A.; Al-Tiraihi, T.; Shams, M. Studies on the mode of action of neem (Azadirachta indica) leaf and seed extracts on morphology and aflatoxin production ability of Aspergillus parasiticus. Proc. WOCMAP III Acta Hortic. 675 ISHS Bioprospecting Ethnopharmacol. 2005, 1, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Zohri, A.; Abdel-Gawad, K.; Saber, S. Antibacterial, antidermatophytic and antitoxigenic activities of onion (Allium cepa L.) oil. Microbiol. Res. 1995, 150, 167–172. [Google Scholar] [CrossRef]
- Tzanidi, C.; Proestos, C.; Markaki, P. Saffron (Crocus sativus L.) inhibits aflatoxin B1 production by Aspergillus parasiticus. J. Adv. Microbiol. 2012, 2, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Fakour, M.; Alameh, A.; Rasouli, I.; Mazaheri, M. Antifungal effects of Zataria multiflora Boiss. and Thymus eriocalyx (ronniger) Jalas essential oils on aflatoxin producing Aspergillus parasiticus. Iran. J. Med. Aromat. Plants 2007, 23, 269–277. [Google Scholar]
- Alinezhad, S.; Kamalzadeh, A.; Rezaee, M.; Jaimand, K.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Inhibitory effects of some native medicinal plants on Aspergillus parasiticus growth and aflatoxin production. Acta Hortic. 2012, 963, 207–210. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Dubey, N. Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm.) Sweet essential oil and its major component 1,8-cineole against fungal isolates from chickpea seeds. Food Control 2012, 25, 27–33. [Google Scholar] [CrossRef]
- Atanda, O.; Akpan, I.; Oluwafemi, F. The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control 2007, 18, 601–607. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.; Aly, S. Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. J. Appl. Toxicol. 2005, 25, 218–223. [Google Scholar] [CrossRef]
- Abou El-Soud, N.; Deabes, M.; Abou El-Kassem, L.; Khalil, M. Antifungal activity of family Apiaceae essential oils. J. Appl. Sci. Res. 2012, 8, 4964–4973. [Google Scholar]
- Prakash, B.; Singh, P.; Kedia, A.; Dwivedy, A.; Singh, A.; Dubey, N. Mycoflora and aflatoxin analysis of Arachis hypogaeal and assessment of Anethum graveolensl seed and leaf essential oils against isolated fungi, aflatoxin production and their antioxidant activity. J. Food Saf. 2012, 32, 481–491. [Google Scholar] [CrossRef]
- El-Nagerabi, S.; Elshafie, A.; AlKhanjari, S.; Al-Bahry, S.; Elamin, M. Biological activities of Boswellia sacra extracts on the growth and aflatoxins secretion of two aflatoxigenic species of Aspergillus species. Food Control 2013, 34, 763–769. [Google Scholar] [CrossRef]
- Kaynarca, H.; Hecer, C.; Ulusoy, B. Mycotoxin hazard in meat and meat products. Atatürk Üniversitesi Vet. Bilim. Derg. 2019, 14, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Mauro, T.; Hao, L.; Pop, L.; Buckley, B.; Schneider, S.; Bandera, E.; Shapses, S. Circulating zearalenone and its metabolites differ in women due to body mass index and food intake. Food Chem. Toxicol. 2018, 116, 227–232. [Google Scholar] [CrossRef]
- Mirocha, C.; Robison, T.; Pawlosky, R.; Allen, N. Distribution and residue determination of [3H]zearalenone in broilers. Toxicol. Appl. Pharmacol. 1982, 66, 77–87. [Google Scholar] [CrossRef]
- Jonker, M.; van Egmond, H.; Stephany, R. Mycotoxins in Food of Animal Origin: A Review. Available online: https://www.rivm.nl/bibliotheek/digitaaldepot/389002_095.pdf (accessed on 14 September 2022).
- Perczak, A.; Juś, K.; Marchwińska, K.; Gwiazdowska, D.; Waśkiewicz, A.; Goliński, P. Degradation of zearalenone by essential oils under in vitro conditions. Front. Microbiol. 2016, 7, 1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velluti, A.; Sanchis, V.; Ramos, A.; Turon, C.; Marin, S. Impact of essential oils on growth rate, zearalenone and deoxynivalenol production by Fusarium graminearum under different temperature and water activity conditions in maize grain. J. Appl. Microbiol. 2004, 96, 716–724. [Google Scholar] [CrossRef]
- Macholz, R. Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Int. Agency Res. Cancer 1986, 32, 150. [Google Scholar] [CrossRef]
- Meerpoel, C.; Vidal, A.; Tangni, E.; Huybrechts, B.; Couck, L.; De Rycke, R.; De Bels, L.; De Saeger, S.; Van den Broeck, W.; Devreese, M.; et al. A study of carry-over and histopathological effects after chronic dietary intake of citrinin in pigs, broiler chickens and laying hens. Toxins 2020, 12, 719. [Google Scholar] [CrossRef]
- Ciegler, A.; Vesonder, R.; Jackson, L. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977, 33, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Sarı, F.; Öztaş, E.; Özden, S.; Özhan, G. Liquid chromatographic determination of citrinin residues in various meat products: A pioneer survey in Turkey. J. Fac. Pharm. Istanb. Univ. 2020, 50, 195–202. [Google Scholar] [CrossRef]
- Wu, M.; Ayres, J.; Koehler, P. Production of citrinin by Penicillium viridicatum on country-cured ham. J. Appl. Microbiol. 1974, 27, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Kamle, M.; Mahato, D.; Gupta, A.; Pandhi, S.; Sharma, N.; Sharma, B.; Mishra, S.; Arora, S.; Selvakumar, R.; Saurabh, V.; et al. Citrinin mycotoxin contamination in food and feed: Impact on agriculture, human health, and detection and management strategies. Toxins 2022, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Aruna, B.; Madhusudhan, R.; Ramchander, M.; Girisham, S. Inhibitory effect of essential oils on growth and citrinin production by three strains of Aspergillus terreus. Int. J. Bot. 2020, 5, 336–340. [Google Scholar]
- Mandappa, I.; Basavaraj, K.; Manonmani, H. Analysis of mycotoxins in fruit juices. Fruit Juices 2018, 763–777. [Google Scholar] [CrossRef]
- Kharayat, B.; Singh, Y. Mycotoxins in foods: Mycotoxicoses, detection, and management. Microb. Contam. Food Degrad. 2018, 395–421. [Google Scholar] [CrossRef]
- Pal, S.; Singh, N.; Ansari, K. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. 2017, 6, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Groopman, J.; Kensler, T. FOOD SAFETY|Mycotoxins. Encycl. Hum. Nutr. 2005, 317–323. [Google Scholar] [CrossRef]
- Bullerman, L. MYCOTOXINS|Classifications. Encycl. Food Sci. Nutr. 2003, 4080–4089. [Google Scholar] [CrossRef]
- Notardonato, I.; Gianfagna, S.; Castoria, R.; Ianiri, G.; De Curtis, F.; Russo, M.; Avino, P. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev. Anal. Chem. 2021, 40, 144–160. [Google Scholar] [CrossRef]
- Bailly, J.; Tabuc, C.; Quérin, A.; Guerre, P. Production and stability of patulin, ochratoxin a, citrinin, and cyclopiazonic acid on dry cured ham. Rev. Anal. Chem. 2005, 68, 1516–1520. [Google Scholar] [CrossRef]
- Nguefack, J.; Tamgue, O.; Dongmo, J.; Dakole, C.; Leth, V.; Vismer, H.; Amvam Zollo, P.; Nkengfack, A. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Zheng, X.; Wei, W.; Zhou, W.; Li, H.; Rao, S.; Gao, L.; Yang, Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res. Int. 2021, 140, 110034. [Google Scholar] [CrossRef] [PubMed]
- Ioi, J.; Zhou, T.; Tsao, R.; Marcone, M.F. Mitigation of patulin in fresh and processed foods and beverages. Toxins 2017, 9, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz Nieto, C.; Granero, A.; Zon, M.; Fernández, H. Sterigmatocystin: A mycotoxin to be seriously considered. Food Chem. Toxicol. 2018, 118, 460–470. [Google Scholar] [CrossRef]
- El-Kady, I.; El-Maraghy, S.; Zohri, A. Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products. Microbiol. Res. 1994, 149, 297–307. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Dimić, G.; Lević, J.; Tanackov, I.; Tepić, A.; Vujičić, B.; Gvozdanović-Varga, J. Effects of onion (Allium cepa L.) And garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production. J. Food Sci. 2012, 77, M278–M284. [Google Scholar] [CrossRef] [PubMed]
- Kocić-Tanackov, S.; Dimić, G.; Tanackov, I.; Pejin, D.; Mojović, L.; Pejin, J. The inhibitory effect of oregano extract on the growth of Aspergillus spp. and on sterigmatocystin biosynthesis. LWT 2012, 49, 14–20. [Google Scholar] [CrossRef]
- Saito, M.; Horiuchi, T.; Ohtsubo, K.; Hatakana, Y.; Ueno, Y. Low tumor-incidence in rats with long-term feeding of fusarenon X, a cytotoxic trichothecene produced by Fusarium nivale. Jpn. J. Exp. Med. 1980, 50, 293–302. [Google Scholar]
- Bony, S.; Olivier-Loiseau, L.; Carcelen, M.; Devaux, A. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol. Vitr. 2007, 21, 457–465. [Google Scholar] [CrossRef]
- Perczak, A.; Gwiazdowska, D.; Marchwińska, K.; Juś, K.; Gwiazdowski, R.; Waśkiewicz, A. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch. Microbiol. 2019, 201, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.; Kaushik, N.; Choi, E. T-2 mycotoxin: Toxicological effects and decontamination strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Sancho, G.; Valle-Algarra, F.; Jiménez, M.; Burdaspal, P.; Legarda, T.; Ramos, A.; Sanchis, V.; Marín, S. Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 2011, 22, 490–495. [Google Scholar] [CrossRef]
- Meneely, J.; Ricci, F.; van Egmond, H.; Elliott, C. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal. Chem. 2011, 30, 192–203. [Google Scholar] [CrossRef]
- Zeng, D.; Lin, Z.; Zeng, Z.; Fang, B.; Li, M.; Cheng, Y.; Sun, Y. Assessing global human exposure to T-2 toxin via poultry meat consumption using a lifetime physiologically based pharmacokinetic model. J. Agric. Food Chem. 2019, 67, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Ancsin, Z.; Erdélyi, M.; Balogh, K.; Szabó-Fodor, J.; Mézes, M. Effect of garlic oil supplementation on the glutathione redox system of broiler chickens fed with T-2 toxin contaminated feed. World Mycotoxin J. 2013, 6, 73–81. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Kuča, K.; Dohnal, V.; Tian, Z. Deoxynivalenol: Signaling pathways and human exposure risk assessment—An update. Arch. Toxicol. 2014, 88, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Goyarts, T.; Dänicke, S.; Valenta, H.; Ueberschär, K. Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food Addit. Contam. 2007, 24, 369–380. [Google Scholar] [CrossRef]
- Perczak, A.; Juś, K.; Gwiazdowska, D.; Marchwińska, K.; Waśkiewicz, A. The efficiency of deoxynivalenol degradation by essential oils under in vitro conditions. Foods 2019, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, Z.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential oils as feed additives—Future perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef] [Green Version]
- Bampidis, V.; Azimonti, G.; de Bastos, M.; Christensen, H.; Kos Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; Mayo, B.; et al. Safety and efficacy of essential oil, oleoresin and tincture from Zingiber Officinale Roscoe when used as sensory additives in feed for all animal species. EFSA J. 2020, 18, e06147. [Google Scholar] [PubMed]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Bastos, M.; Bories, G.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; Kolar, B.; et al. Safety and efficacy of an essential oil from Origanum vulgare subsp. hirtum (link) letsw. var. Vulkan when used as a sensory additive in feed for all animal species. EFSA J. 2017, 15, e05095. [Google Scholar] [PubMed]
- Oancea, F.; Velea, S.; Doni, M.; Răut, I.; Popescu, M.; Jecu, M.L. Composition Meant to Limit Mycotoxin Production and Process for Preparing the Same. RO131830B1, 27 April 2018. [Google Scholar]
- Sharma, H.; Mendiratta, S.; Agarwal, R.; Goswami, M. Optimization of various essential oils and their effect on the microbial and sensory attributes of chicken sausages. Agric. Res. 2018, 8, 374–382. [Google Scholar] [CrossRef]
- Bulai, I.; Georgescu, M.; Tăpăloagă, D.; Ghimpețeanu, O.; Raita, Ș.; Ilie, L. Pork sausages fortified with various concentrations of lavender essential oil: Microbiological and sensorial properties. Sci. Pap. Agron. Ser. 2021, 64, 217–222. [Google Scholar]
- Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr. Opin. Food Sci. 2017, 14, 78–84. [Google Scholar] [CrossRef]
- Xavier, L.O.; Sganzerla, W.G.; Rosa, G.B.; da Rosa, C.G.; Agostinetto, L.; Veeck, A.P.D.L.; Bretanha, L.C.; Micke, G.A.; Dalla Costa, M.; Bertoldi, F.C.; et al. Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein: A proposal for meat conservation. Int. J. Biol. Macromol. 2021, 169, 183–193. [Google Scholar] [CrossRef]
- Sirbu, V.I.; Popa (Burlacu), A.; Israel-Roming, F. Mycotoxins in feed: An overview on biological effects and decontamination methods. Int. J. Biol. Macromol. 2020, 9, 285–296. [Google Scholar]
- Denli, M. Implications of mycotoxins in livestock feeds. Sci. Pap. Ser. AgroLife J. 2015, 4, 52–55. [Google Scholar]
- Stan (Tudora), C.; Cardei, P.; Muscalu, A.; Boiu-Sicuia, O.A.; Vladut, N.V.; Israel-Roming, F. Statistical analysis on the potential antifungal activity of some essential oils obtained from medicinal plants. AgroLife Sci. J. 2022, 11, 211–220. [Google Scholar]
- Gheorghe-Irimia, R.-A.; Tăpăloagă, D.; Militaru, M.; Georgescu, M. Prospects for using essential oils in the meat industry: A review. Rev. Rom. Med. Vet. 2022, 32, 43–50. [Google Scholar]
- Regnier, T.; Combrinck, S.; Du Plooy, W. Essential oils and other plant extracts as food preservatives. Prog. Food Preserv. 2012, 539–579. [Google Scholar] [CrossRef]
- Chivandi, E.; Dangarembizi, R.; Nyakudya, T.T.; Erlwanger, K.H. Use of essential oils as a preservative of meat. Essent. Oils Food Preserv. Flavor Saf. 2016, 85–91. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeiren, L.; Debevere, J. New Preservation Technologies: Possibilities and limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
Mycotoxin | Total Daily Intake (TDI) | Toxicity LD50 (mg/kg bw) | Health Effects | References | |
---|---|---|---|---|---|
Ochratoxin A | European Food Safety Authority | 120 ng/kg bw/week | 20–25 mg/kg−1 in humans | Nephrotoxicity hepatotoxicity, immunotoxicity, neurotoxicity, teratogenicity, and carcinogenicity | [11,12] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | 100 ng/kg bw/week | ||||
Scientific Committee of Food (SCF) of the European Union | 5 ng/kg bw/day | ||||
Aflatoxin B1 | European Food Safety Authority | 4 µg/kg to 10 µg/kg for total aflatoxins | 0.36 mg/kg body weight in humans | Genotoxicity, hepatotoxicity, immunotoxicity, teratogenicity, carcinogenicity | [13,14,15,16] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | Not more than 10 µg/kg for total aflatoxin of which aflatoxin B1 shall not be more than 5 µg/kg | ||||
Scientific Committee of Food (SCF) of the European Union | 5–10 µg/kg for total aflatoxins | ||||
Aflatoxin B2 | European Food Safety Authority | 4 µg/kg to 10 µg/kg for total aflatoxins | 1.7 mg/kg bw in duck (oral) | Hepatotoxicity, carcinogenicity, weak mutagenic effects | [13,14,15,17] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | Not more than 10 µg/kg for total aflatoxin of which aflatoxin B1 shall not be more than 5 µg/kg | ||||
Scientific Committee of Food (SCF) of the European Union | 5–10 µg/kg for total aflatoxins | ||||
Aflatoxin G2 | European Food Safety Authority | 4 µg/kg to 10 µg/kg for total aflatoxins | 2.5 mg/kg in ducklings (oral) NA | Low toxicity | [13,14,15,17,18] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | Not more than 10 µg/kg for total aflatoxin of which aflatoxin B1 shall not be more than 5 µg/kg | ||||
Scientific Committee of Food (SCF) of the European Union | 5–10 µg/kg for total aflatoxins | ||||
Zearlenone | European Food Safety Authority | 0.25 µg/kg body weight | Between 2000 and 20,000 mg/kg−1 in rodents and guinea pigs | Reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity, intestinal toxicity, endocrine disruption | [19,20,21] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | 0.5 µg/kg bw | ||||
Citrinin | European Food Safety Authority | 0.2 µg/kg b.w. per day | 35–58 mg/kg−1 in an oral administration to a mouse, 50 mg/kg−1 to a rat, 57 mg/kg−1 to a duck, 95 mg/kg−1 to a chicken, and 134 mg/kg−1 to a rabbit | Necrotic changes of parenchyma organs ephrotoxicity, gastrointestinal ailments, fetal malformations, and lymphoid tissue damage (additively, synergistically, or antagonistically to OTA) | [22,23] |
Patulin | Joint FAO/WHO Expert Committee on Food Additives (JECFA) | 0.4 µg/kg bw | 5 mg/kg in mice (IP) | Lung congestion, epithelial cell degeneration, along with carcinogenic, genotoxic, immunosuppressive, and teratogenic effects | [24,25,26] |
Scientific Committee of Food (SCF) of the European Union | 0.4 ug/kg bw | ||||
Sterigmatocystin | European Food Safety Authority | Not established due to the lack of data | 32 mg/kg bw for sterigmatocystin dissolved in dimethylsulfoxide (DMSO) in Vervet monkeys 800 mg/kg in mice (oral) | Possible carcinogen, immunotoxic and immunomodulatory activity, together with mutagenic effects | [27,28,29] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | Not established | ||||
Scientific Committee of Food (SCF) of the European Union | – | ||||
Fusarenon-X (4-Acetylnivalenol) | European Food Safety Authority | Not established | 3.3 mg/kg in mice (i.p.) | Immunosuppression, intestinal malabsorption, developmental toxicity, and genotoxicity | [5,30,31] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | Not established | ||||
Scientific Committee of Food (SCF) of the European Union | Not established | ||||
T-2 Toxin | European Food Safety Authority | 100 ng/kg b.w. for T-2 toxins and HT-2 toxins | 2–4 mg/kg−1 in mice | Anorexia, emesis, carcinogenicity, haematotoxicity, neurotoxicity and immunotoxicity | [11,32,33,34,35] |
Joint FAO/WHO Expert Committee on Food Additives (JECFA) | 25 ng/kg bw for T-2, HT-2 and DAS, alone or in combination | ||||
Scientific Committee of Food (SCF) of the European Union | 0.06 g/kg bw/day. for T-2 toxins and HT-2 toxins |
Type | Food Product | Mycotoxin | Concentration | References |
---|---|---|---|---|
MEAT | Chicken meat | Aflatoxin/S | ≤8.01 μg/kg | [39] |
Ochratoxin A | 0.38 μg/kg | [40] | ||
Zearalenone | ≤5.10 μg/kg | [39] | ||
Pig muscle | Aflatoxin B1 | 0.46–0.74 μg/kg | [41] | |
Sterigmatocystin | 0.76–1.23 μg/kg | [41] | ||
Ochratoxin A | ≤0.04–0.06 μg/kg | [42] | ||
T-2 Toxin | 0.0240–0.4515 μg/kg | [43] | ||
Pork meat | Ochratoxin A | ≤0.14 μg/kg | [44] | |
Zearalenone | ≤4.31 μg/kg | [45] | ||
Duck meat | Ochratoxin A | 0.09 μg/kg | [46] | |
Fish | Aflatoxin B1 | tr-moderately high | [47] | |
Aflatoxin B2 | 1.2 μg/kg | [48] | ||
Aflatoxin G1 | tr-moderately high | [47] | ||
Aflatoxin G2 | tr-moderately high | [47] | ||
Aflatoxin/S | >9.9–20.4 μg/kg | [49] | ||
Ochratoxin A | 0.5–1.4 μg/kg | [48] | ||
Enniatin A1 | 1.7–6.9 μg/kg | [50] | ||
Enniatin B | 7.0 μg/kg | [51] | ||
Enniatin B1 | 1.4–31.5 μg/kg | [50] | ||
Fusarenon-X (4-Acetylnivalenol) | 4.0 μg/kg | [51] | ||
Zearalenone | 11.2–14.8 μg/kg | [48] | ||
MEAT PRODUCTS | Fish products | Aflatoxin/S | 3.8 μg/kg | [52] |
Meat products (Dry-meat products) | Aflatoxin B1 | <LOQ-3.0 μg/kg | [53] | |
Aflatoxin/S | 1.0 μg/kg | [52] | ||
Citrinin | <LOQ-1.3 μg/kg | [53] | ||
Ochratoxin A | <LOQ- ≤ 7.83 μg/kg | [53] | ||
Hot dog | Aflatoxin B1 | 5 μg/kg | [54] | |
Aflatoxin B2 | 2 μg/kg | [54] | ||
Ochratoxin A | 0.38 μg/kg | [44] | ||
Ham | Aflatoxin B1 | 0.95–1.06 μg/kg | [55] | |
Ochratoxin A | ≤28.42 μg/kg | [42] | ||
Salami | Ochratoxin A | ≤0.08 μg/kg | [42] | |
Sausage | Aflatoxin B1 | 1.5 μg/kg | [53] | |
Aflatoxin B2 | 3 μg/kg | [54] | ||
Citrinin | 1.0 μg/kg | [53] | ||
Ochratoxin A | 0.12 μg/kg | [44] | ||
Zearalenone | 2.1–8.9 μg/kg | [56] | ||
ORGAN MEATS | Cow liver | Ochratoxin A | 14 μg/kg | [57] |
Pig liver | Aflatoxin B1 | 0.2–0.87 μg/kg | [58] | |
Aflatoxin B2 | 0.52 μg/kg | [41] | ||
Aflatoxin M1 | 0.20–0.44 μg/kg | [59] | ||
Citrinin | 1.45 μg/kg | [41] | ||
Ochratoxin A | ≤0.61 μg/kg | [60] | ||
Patulin | 0.69 μg/kg | [41] | ||
Chicken liver | Aflatoxin B1 | 0.61–2.48 μg/kg | [61] | |
Aflatoxin/S | 0.02–0.049 μg/kg | [62] | ||
Citrinin | 0.89 μg/kg | [41] | ||
Ochratoxin A | 0.14–3.90 μg/kg | [63] | ||
Zearalenone | 40.0–74.0 μg/kg | [64] | ||
Chicken heart | Zearalenone | 49.3–87.5 μg/kg | [64] | |
Chicken gizzard | Aflatoxin B1 | 0.81–1.34 μg/kg | [61] | |
Ochratoxin A | 0.25–9.94 μg/kg | [63] | ||
Zearalenone | 39.9–84.9 μg/kg | [64] |
Mycotoxin | EO (Antifungal/Antimycotoxigenic) | Major Constituents/Main Fungicidal Substances | References |
---|---|---|---|
Ochratoxin A | Cinnamomum zeylanicum | Cinnamaldehyde, citral, eugenol | [10,75,76,77,78] |
Origanum vulgare | Carvacrol, thymol | ||
Allium sativum | Allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine | ||
Salvia officinalis | Camphor, borneol, 1,8-cineole | ||
Azadirachta indica | Azadirachtin, nimbolinin, nimbidin, nimbidol, sodium nimbinate, gedunin, salannin, and quercetin | ||
Eucalyptus | 1,8-cineole, α-pinene, α-phellandrene, and p-cymene | ||
Rosmarinus officinalis | 1,8-cineole, camphor, α-pinene, limonene, camphene and linalool | ||
Cymbopogon citratus | Geranial, neral, myrcene | ||
Aframomum danielli | 1,8-cineole, β-pinene, α-terpineol, α-pinene, and α-terpinyl acetate | ||
Mentha | Neomenthol, menthol and menthone | ||
Aflatoxin B1 Aflatoxin B2 Aflatoxin G2 | Ocimum basilicum | Methyl eugenol, methyl chavicol | [82,87,88,89,90,91,92,93,94,95,96] |
Thymus vulgaris | p-cymene, γ-terpinene, thymol | ||
Mentha viridis | Neomenthol, menthol and menthone | ||
Mentha piperita | Neomenthol, menthol and menthone | ||
Origanum vulgare | Carvacrol, thymol | ||
Minthostachys verticillata | Pulegone, menthone, limonene | ||
Matricaria chamomilla | α-bisabolol oxide | ||
Calendula officinalis | τ-muurolol, β-eudesmol, α-cadinol, δ-cadinene | ||
Achillea millefolium | β-pinene, sabinene, 1,8-cineole, β-caryophyllene, (E)-nerolidol, guaiol, chamazulene | ||
Achillea fragrantissima | Santolina alcohol, artemisia alcohol, artemisia ketone, cis-thujone, trans-thujone | ||
Pimpinella anisum | Trans-anethole | ||
Carum carvi | Carvone, limonene, b-myrcene | ||
Foeniculum vulgare | Trans-Anethole, alpha-pinene, limonene | ||
Cinnamomum zeylanicum | Cinnamaldehyde, citral, eugenol | ||
Agrimonia eupatoria | Cedrol, α-pinene, linalool, α-terpineol, bornyl acetate, eucalyptol | ||
Peumus boldus | Ascaridol, 1,8-cineole, terpineol, terpinene-4-ol, γ-terpinene, safrole | ||
Crocus sativus | Safranal, picrocrocin, crocin | ||
Zataria multiflora Boiss | Carvacrol, terpinene, pinene | ||
Artemisia dracunculus | Stragole | ||
Callistemon lanceolatus | 1,8-cineole, -pinene | ||
Nigella sativa | TQ, ρ-cymene, carvacrol, t-anethole, 4-terpineol, longifolene | ||
Coriandrum sativum | Linalool | ||
Anethum graveolens L. | α-phellandrene, dill ether, limonen | ||
Boswellia sacra | duva-3,9,13-trien-1,5α-diol-1-acetate, octyl acetate | ||
Citrus aurantiifolia | Limonene, linalool, citronellal, citronellol | ||
Zearalenone | Citrus aurantiifolia | Limonene, linalool, citronellal, citronellol | [101,102] |
Eucalyptus | 1,8-cineole, α-pinene, α-phellandrene, and p-cymene | ||
Citrus paradisi | D-Limonene | ||
Cymbopogon martinii | Geraniol, geranyl acetate, linalool | ||
Origanum vulgare | Carvacrol, thymol | ||
Cinnamomum zeylanicum | Cinnamaldehyde, citral, eugenol | ||
Syzygium aromaticum | Eugenol, β-caryophyllene, eugenyl acetate | ||
Cymbopogon citratus | Geranial, neral, myrcene | ||
Citrinin | Zataria multiflora Boiss | Carvacrol, terpinene, pinene | [108,109] |
Azadirachta indica | Azadirachtin, nimbolinin, nimbidin, nimbidol, sodium nimbinate, gedunin, salannin, and quercetin | ||
Eucalyptus | 1,8-cineole, α-pinene, α-phellandrene, and p-cymene | ||
Patulin | Ocimum gratissimum | Eugenol | [117,118,119] |
Cymbopogon citratus Ocimum gratissimum Thymus vulgaris | Geranial, neral, myrcene p-cymene, γ-terpinene, thymol, eugenol | ||
Sterigmatocystin | Allium cepa | Dipropyl disulfide, dipropyl trisulfide | [122,123] |
Origanum vulgare | Carvacrol, thymol | ||
Allium sativum | Allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine | ||
Fusarenon-X (4-Acetylnivalenol) | Cinnamomum zeylanicum | Cinnamaldehyde, citral, eugenol | [126] |
Origanum vulgare | Carvacrol, thymol | ||
Cymbopogon martinii | Geraniol, geranyl acetate, linalool | ||
Citrus aurantium dulcis | D-limonene | ||
Thymus hyemalis | Thymol, p-cymene, γ-terpinene | ||
Mentha viridis | Neomenthol, menthol and menthone | ||
Foeniculum vulgare | Trans-Anethole, alpha-pinene, limonene | ||
Aniba rosaeodora | Linalool | ||
T-2 Toxin | Allium sativum | Allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine | [131] |
Deoxynivelanol | Citrus aurantiifolia | Limonene, linalool, citronellal, citronellol | [134] |
Cymbopogon martinii | Geraniol, geranyl acetate, linalool |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe-Irimia, R.A.; Tăpăloagă, D.; Tăpăloagă, P.R.; Ilie, L.I.; Șonea, C.; Serban, A.I. Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022, 11, 3666. https://doi.org/10.3390/foods11223666
Gheorghe-Irimia RA, Tăpăloagă D, Tăpăloagă PR, Ilie LI, Șonea C, Serban AI. Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods. 2022; 11(22):3666. https://doi.org/10.3390/foods11223666
Chicago/Turabian StyleGheorghe-Irimia, Raluca Aniela, Dana Tăpăloagă, Paul Rodian Tăpăloagă, Lucian Ionel Ilie, Cosmin Șonea, and Andreea Iren Serban. 2022. "Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review" Foods 11, no. 22: 3666. https://doi.org/10.3390/foods11223666
APA StyleGheorghe-Irimia, R. A., Tăpăloagă, D., Tăpăloagă, P. R., Ilie, L. I., Șonea, C., & Serban, A. I. (2022). Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods, 11(22), 3666. https://doi.org/10.3390/foods11223666