Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Samples Preparation
2.3. Mycotoxins Detection and Quantification
2.4. Statistical Processing
2.4.1. Variables
2.4.2. Mycotoxin Co-Occurrence
2.4.3. Ingredients’ Impact on Mycotoxin Levels—Comparisons and Risk Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef] [PubMed]
- Egal, A.; Oldewage-Theron, W. Extruded food products and their potential impact on food and nutrition security. S. Afr. J. Clin. Nutr. 2020, 33, 142–143. [Google Scholar] [CrossRef] [Green Version]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef] [Green Version]
- Abou Dib, A.; Assaf, J.C.; El Khoury, A.; El Khatib, S.; Koubaa, M.; Louka, N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022, 11, 3304. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Babič, J.; Pezo, L.; Banjac, V.; Čolović, R.; Kos, J.; Krulj, J.; Pavšič-Vrtač, K.; Jakovac-Strajn, B. Effects of extrusion process on Fusarium and Alternaria mycotoxins in whole grain triticale flour. LWT 2022, 155, 112926. [Google Scholar] [CrossRef]
- Massarolo, K.C.; Mendoza, J.R.; Verma, T.; Kupski, L.; Badiale-Furlong, E.; Bianchini, A. Fate of aflatoxins in cornmeal during single-screw extrusion: A bioaccessibility approach. LWT 2021, 138, 110734. [Google Scholar] [CrossRef]
- Kiseleva, M.; Chalyy, Z.; Sedova, I.; Aksenov, I. Stability of Mycotoxins in Individual Stock and Multi-Analyte Standard Solutions. Toxins 2020, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Minutillo, S.A.; Ruano-Rosa, D.; Abdelfattah, A.; Schena, L.; Malacrinò, A. The Fungal Microbiome of Wheat Flour Includes Potential Mycotoxin Producers. Foods 2022, 11, 676. [Google Scholar] [CrossRef]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Juan, C.; Ferrer, E.; Mañes, J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. J. Sci. Food Agric. 2015, 95, 540–551. [Google Scholar] [CrossRef]
- Dos Santos, J.L.P.; Bernardi, A.O.; Morassi, L.L.P.; Silva, B.S.; Copetti, M.V.; Sant’Ana, A.S. Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Res. Int. 2016, 87, 103–108. [Google Scholar] [CrossRef]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Witaszak, N.; Stępień, Ł.; Bocianowski, J.; Waśkiewicz, A. Fusarium Species and Mycotoxins Contaminating Veterinary Diets for Dogs and Cats. Microorganisms 2019, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jajić, I.; Dudaš, T.; Krstović, S.; Krska, R.; Sulyok, M.; Bagi, F.; Savić, Z.; Guljaš, D.; Stankov, A. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins 2019, 11, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Esawi, M.A.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Pereira, C.; Cunha, S.C.; Fernandes, J.O. Mycotoxins of Concern in Children and Infant Cereal Food at European Level: Incidence and Bioaccessibility. Toxins 2022, 14, 488. [Google Scholar] [CrossRef]
- Foerster, C.; Monsalve, L.; Ríos-Gajardo, G. Mycotoxin Exposure in Children through Breakfast Cereal Consumption in Chile. Toxins 2022, 14, 324. [Google Scholar] [CrossRef]
- Gazzotti, T.; Biagi, G.; Pagliuca, G.; Pinna, C.; Scardilli, M.; Grandi, M.; Zaghini, G. Occurrence of Mycotoxins in Extruded Commercial Dog Food. Anim. Feed Sci. Technol. 2015, 202, 81–89. [Google Scholar] [CrossRef]
- Grandi, M.; Vecchiato, C.G.; Biagi, G.; Zironi, E.; Tondo, M.T.; Pagliuca, G.; Palmonari, A.; Pinna, C.; Zaghini, G.; Gazzotti, T. Occurrence of Mycotoxins in Extruded Commercial Cat Food. ACS Omega 2019, 4, 14004–14012. [Google Scholar] [CrossRef] [Green Version]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of a (semi-) quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, A.; Font, G.; Ruiz, M.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A. Co-occurrence of aflatoxins, ochratoxin A and zearalenone in Capsicum powder samples available on the Spanish market. Food Chem. 2010, 122, 826–830. [Google Scholar] [CrossRef]
- Holanda, D.M.; Kim, S.W. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef]
- Arcella, D.; Gergelova, P.; Innocenti, M.L.; Steinkellner, H. Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017, 15, 4972. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A (OTA) as undesirable substance in animal feed. EFSA J. 2004, 2, 1. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- EFSA. Evaluation of the increase of risk for public health related to a possible temporary derogation from the maximum level of deoxynivalenol, zearalenone and fumonisins for maize and maize products. EFSA J. 2014, 12, 3699. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.-K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018, 16, e05172. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Recommendation 2016/1319/EC of 29 July 2016 amending Commission Recommendation 2006/576/EC on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2016, L208, 58. [Google Scholar]
- Grenier, B.; Oswald, I. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J.L. Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Appl. Spectrosc. Rev. 2015, 50, 728–774. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Gorniak, L.; Stela, M.; Bijak, M. The Existing Methods and Novel Approaches in Mycotoxins’ Detection. Molecules 2021, 26, 3981. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Lattanzio, V.M.T.; Ciasca, B.; Powers, S.; Visconti, A. Improved method for the simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in cereals and derived products by liquid chromatography–tandem mass spectrometry after multi-toxin immunoaffinity clean up. J. Chromatogr. A 2014, 1354, 139–143. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.S.; Haddad, M.A.; Parisi, S. Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) techniques for detection and quantification of aflatoxins in different food samples. Foods 2020, 9, 661. [Google Scholar] [CrossRef]
- Pleadin, J.; Perši, N.; Zadravec, M.; Sokolović, M.; Vulić, A.; Jaki, V.; Mitak, M. Correlation of deoxynivalenol and fumonisin concentration determined in maize by ELISA methods. J. Immunoass. Immunochem. 2012, 33, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Meng, C.; Wen, Y.; Fu, W.; He, P. Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads. Mikrochim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pripp, A.H. Statistics in Food Science and Nutrition; Springer: New York, NY, USA, 2013; p. 66. [Google Scholar]
- Mousavi Khaneghah, A.; Fakhri, Y.; Raeisi, S.; Armoon, B.; Sant’Ana, A.S. Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis. Food Chem. Toxicol. 2018, 118, 830–848. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Khaneghah, A.; Fakhri, Y.; Gahruie, H.H.; Niakousari, M.; Sant’Ana, A.S. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends Food Sci. Technol. 2019, 91, 95–105. [Google Scholar] [CrossRef]
- Sarmast, E.; Fallah, A.A.; Jafari, T.; Mousavi Khaneghah, A. Occurrence and fate of mycotoxins in cereals and cereal-based products: A narrative review of systematic reviews and meta-analyses studies. Curr. Opin. Food Sci. 2021, 39, 68–75. [Google Scholar] [CrossRef]
- Santos, M.; Matias, F.; Rito, A.I.; Castanheira, I.; Torres, D.; Loureiro, I.; Assunção, R. Breakfast Cereals Intended for Children: Opportunities for Reformulation and Potential Impact on Nutrient Intake. Foods 2021, 10, 1772. [Google Scholar] [CrossRef]
- Carcea, M. Nutritional Value of Grain-Based Foods. Foods 2020, 9, 504. [Google Scholar] [CrossRef]
- Joshi, P.; Chauysrinule, C.; Mahakarnchanakul, W.; Maneeboon, T. Multi-Mycotoxin Contamination, Mold Incidence and Risk Assessment of Aflatoxin in Maize Kernels Originating from Nepal. Microbiol. Res. 2022, 13, 258–277. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef]
Diet Category | Total | |||
---|---|---|---|---|
MC | AC | GC | ||
Producer A | 3 | 4 | 7 | 14 |
Producer B | 3 | 3 | 2 | 8 |
Producer C | 3 | 3 | 6 | 12 |
Total | 9 | 10 | 15 | 34 |
Diet Category | Corn * | Wheat * | Rice | Barley | Oat | Green Peas | Beet | Potatoes | Soy | Flax | Sorghum | Fibers | Oil |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MC | 9 | 8 | 2 | 4 | 2 | 3 | 8 | 2 | 3 | 3 | 0 | 3 | 6 |
AC | 4 | 1 | 6 | 1 | 1 | 2 | 7 | 3 | 3 | 0 | 1 | 2 | 10 |
GC | 14 | 8 | 15 | 5 | 2 | 2 | 12 | 0 | 2 | 2 | 1 | 0 | 11 |
Total | 27 | 17 | 23 | 10 | 5 | 7 | 27 | 5 | 8 | 5 | 2 | 5 | 27 |
Primary List Ingredients | Corresponding Secondary List Ingredients |
---|---|
Corn | integral corn, corn gluten flour *, and corn starch * |
Wheat | integral wheat, wheat gluten flour * |
Rice | rice seeds, brown rice, beer rice, and rice husks * |
Oil | soybean oil, coconut oil, and vegetable oil |
Class | Notation | Description | Values |
---|---|---|---|
Primary, ingredient-related | Qualitative variables describing the presence of the ingredient in the primary list (i is indexing the ingredients in the column heads of Table 2) | 0—if the ingredient is absent 1—if the ingredient is present | |
Qualitative variables describing the presence of the ingredient in the secondary list (j is indexing the ingredients listed in Table 3) | |||
Secondary, ingredient-related | Qualitative variables describing the presence of a combination between two primary ingredients (e.g., corn and wheat), between one ingredient in the primary list and another from the secondary list (e.g., corn and wheat gluten flour), or between two ingredients in the secondary list (e.g., corn gluten flour, and integral corn); is indexing all the possible combinations | 0—if the combination is absent 1—if the combination is present | |
Primary, mycotoxin-related levels | Quantitative variables describing the mycotoxin levels (in µg/kg), is indexing the mycotoxins listed in the column heads of Table 5 | ||
Secondary, mycotoxin-related levels | Quantitative variable describing the mycotoxin levels for percentile () of the variable ; takes the values | 0—if 1—if |
Statistics | DON [µg/kg] | FUM [µg/kg] | ZEA [µg/kg] | OTA [µg/kg] | T2 [µg/kg] | AFs [µg/kg] | |
---|---|---|---|---|---|---|---|
Indexing () | 1 | 2 | 3 | 4 | 5 | 6 | |
Mean | 429.67 | 1221.02 | 90.89 | 2.66 | 17.46 | 8.82 | |
Std. Deviation | 171.08 | 1485.71 | 58.69 | 1.86 | 13.05 | 6.69 | |
Variance | 29,267.39 | 2,207,337.69 | 3444.94 | 3.48 | 170.33 | 44.70 | |
Minimum | 135.11 | 24.00 | 0.00 | 0.00 | 0.00 | 0.86 | |
Maximum | 839.21 | 7536.34 | 230.24 | 7.10 | 48.18 | 23.55 | |
Coefficient of variation (%) | 39.81 | 121.67 | 64.57 | 69.92 | 74.74 | 75.85 | |
Percentiles | 25 | 331.88 | 215.50 | 47.55 | 1.33 | 6.24 | 2.72 |
33 | 364.04 | 609.21 | 55.39 | 1.44 | 8.41 | 3.37 | |
50 | 403.06 | 962.42 | 82.53 | 1.76 | 13.75 | 8.02 | |
67 | 462.60 | 1097.56 | 112.48 | 3.12 | 23.10 | 11.52 | |
75 | 502.40 | 1189.70 | 136.88 | 3.93 | 29.87 | 13.85 | |
Recommended limit (in µg/kg) [32] | 5000 | 5000 | 100/200 | 10 | 50 | 10 | |
Beyond the recommended limit (N) | 0 | 1 | 14 | 0 | 0 | 12 | |
% | 0 | 2.9 | 41.2 | 0 | 0 | 35.3 |
AFs [µg/kg] | DON [µg/kg] | FUM [µg/kg] | OTA [µg/kg] | T2 [µg/kg] | ZEA [µg/kg] | |
---|---|---|---|---|---|---|
AFs [µg/kg] | 1 | 0.488 ** 0.003 | 0.368 * 0.032 | 0.176 0.32 | 0.185 0.296 | 0.352 * 0.041 |
DON [µg/kg] | 1 | 0.635 ** <0.001 | 0.343 * 0.047 | 0.481 ** 0.004 | 0.510 ** 0.002 | |
FUM [µg/kg] | 1 | 0.437 ** 0.01 | 0.152 0.389 | 0.507 ** 0.002 | ||
OTA [µg/kg] | 1 | 0.436 ** 0.01 | 0.329 0.057 | |||
T2 [µg/kg] | 1 | 0.368 * 0.032 | ||||
ZEA [µg/kg] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geicu, O.I.; Bilteanu, L.; Stanca, L.; Ionescu Petcu, A.; Iordache, F.; Pisoschi, A.M.; Serban, A.I. Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods. Foods 2023, 12, 110. https://doi.org/10.3390/foods12010110
Geicu OI, Bilteanu L, Stanca L, Ionescu Petcu A, Iordache F, Pisoschi AM, Serban AI. Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods. Foods. 2023; 12(1):110. https://doi.org/10.3390/foods12010110
Chicago/Turabian StyleGeicu, Ovidiu Ionut, Liviu Bilteanu, Loredana Stanca, Adriana Ionescu Petcu, Florin Iordache, Aurelia Magdalena Pisoschi, and Andreea Iren Serban. 2023. "Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods" Foods 12, no. 1: 110. https://doi.org/10.3390/foods12010110
APA StyleGeicu, O. I., Bilteanu, L., Stanca, L., Ionescu Petcu, A., Iordache, F., Pisoschi, A. M., & Serban, A. I. (2023). Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods. Foods, 12(1), 110. https://doi.org/10.3390/foods12010110