Mineral Content (Essential and Toxic Elements) of Squid Flesh Is Affected by Maceration with Sodium Salts and Vacuum-Cooking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Squid Obtention and Processing
2.2. Proximate Composition, Volatile Basic Nitrogen and pH
2.3. Determination of Minerals
2.4. Calculation of Dietary Indexes for Minerals
2.5. Experimental Design
3. Results
3.1. Differences in Squid Composition and pH
3.2. Changes in Mineral Content during Squid Processing
3.3. Dietary Intake and Consumer Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). 1961–2009 Fish and Fisheries Products: World Apparent Consumption Statistics Based on Food Balance Sheets. FAO Yearbook, Fishery and Aquaculture Statistics. 2011. Available online: https://www.fao.org/fishery/docs/CDrom/CD_yearbook_2011/root/food_balance/introduction.pdf (accessed on 5 November 2018).
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Crustáceos y moluscos. Calamar, Squid, Loligo vugaris. In Tablas de Composición de Alimentos. Guía de Prácticas 16th; Ediciones Pirámide: Madrid, Spain, 2013; pp. 517–518. [Google Scholar]
- Torrinha, A.; Gomes, F.; Oliveira, M.; Cruz, R.; Mendes, E.; Delerue-Matos, C.; Casal, S.; Morais, S. Commercial Squids: Characterization, Assessment of Potential Health Benefits/Risks and Discrimination Based on Mineral, Lipid and Vitamin E Concentrations. Food Chem. Toxicol. 2014, 67, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Devesa, V.; Macho, M.L.; Jalón, M.; Urieta, I.; Muñoz, O.; Súñer, M.A.; López, F.; Vélez, D.; Montoro, R. Arsenic in Cooked Seafood Products: Study on the Effect of Cooking on Total and Inorganic Arsenic Contents. J. Agric. Food Chem. 2001, 49, 4132–4140. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, J.; Li, W.; Liu, Y.; Xin, C.; Yang, L. Trace Elements Concentrations in Squids Consumed in Shandong Province China and Their Associated Risks to the Human Health. Mar. Pollut. Bull. 2018, 128, 267–274. [Google Scholar] [CrossRef]
- Duysak, Ö.; Uğurlu, E. Metal accumulations in different tissues of cuttlefish (Sepia officinalis L.) in the Eastern Mediterranean coasts of Turkey. Environ. Sci. Pollut. Res. 2017, 24, 9614–9623. [Google Scholar] [CrossRef] [Green Version]
- Storelli, M.M. Potential Human Health Risks from Metals (Hg, Cd, and Pb) and Polychlorinated Biphenyls (PCBs) via Seafood Consumption: Estimation of Target Hazard Quotients (THQs) and Toxic Equivalents (TEQs). Food Chem. Toxicol. 2008, 46, 2782–2788. [Google Scholar] [CrossRef] [PubMed]
- Toyes-Vargas, E.; Robles-Romo, A.; Méndez, L.; Palacios, E.; Civera, R. Changes in Fatty Acids, Sterols, Pigments, Lipid Classes, and Heavy Metals of Cooked or Dried Meals, Compared to Fresh Marine by-products. Anim. Feed Sci. Technol. 2016, 221, 195–205. [Google Scholar] [CrossRef]
- Vieira, H.C.; Rendón-von Osten, J.; Soares, A.M.V.M.; Morgado, F.; Abreu, S.N. Mercury Bioaccumulation in the Long-Fin Squid Loligo Forbesi near the Mid-Atlantic Ridge: Implications to Human Exposure. Ecotoxicol. Environ. Saf. 2020, 203, 110957. [Google Scholar] [CrossRef] [PubMed]
- Gokoglu, N.; Topuz, O.K.; Gokoglu, M.T.; Fahrettin, G.T. Characterization of Protein Functionality and Texture of Tumbled Squid, Octopus and Cuttlefish Muscles. J. Food Meas. Charact. 2017, 11, 1699–1705. [Google Scholar] [CrossRef]
- Guldas, M.; Canan, H. Influences of the Selected Additives on the Weight Loss and Organoleptic Properties of Marinated Mussels and Squids. Acta Vet. Brno 2012, 81, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, B.; Akif, Ö. The Effect of Cooking Methods on Mineral and Vitamin Contents of African Catfish. Food Chem. 2009, 115, 419–422. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Karavoltsos, S.; Sakellari, A.; Avramidou, S.; Dassenakis, M.; Scoullos, M. Heavy Metals in Raw, Fried and Grilled Mediterranean Finfish and Shellfish. Food Chem. Toxicol. 2012, 50, 3702–3708. [Google Scholar] [CrossRef]
- Czech, K.; Stachyra, K. Effect of processing treatments (frozen, frying) on contents of minerals in tissues of “frutti di mare”. Int. J. Food Sci. Tech. 2013, 48, 238–245. [Google Scholar] [CrossRef]
- Karimian-Khosroshahi, N.; Hosseini, H.; Rezaei, M.; Khaksar, R.; Mahmoudzadeh, M. Effect of Different Cooking Methods on Minerals, Vitamins, and Nutritional Quality Indices of Rainbow Trout (Oncorhynchus mykiss). Int. J. Food Prop. 2016, 19, 2471–2480. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of Heat on Meat Proteins. Implications on Structure and Quality of Meat Products. Meat. Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; Ferreira-Andrade, G.; Mateó, B.S.O.; Naozuka, J. Protein and Metalloprotein Distribution in Different Varieties of Beans (Phaseolus vulgaris L.): Effects of Cooking. Int. J. Food Sci. 2017, 2017, 5957178. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.V.; Plankensteiner, L.; Faxholm, P.L.; Olsen, K.; Mouritsen, O.G.; Frøst, M.B. Physicochemical characterization of sous vide cooked squid (Loligo forbesii and Loligo vulgaris) and the relationship to selected sensory properties and hedonic response. Int. J. Gastron. Food Sci. 2021, 23, 100298. [Google Scholar] [CrossRef]
- González-Fandos, E.; Villarino-Rodríguez, A.; García-Linares, M.C.; García-Arias, M.T.; García-Fernández, M.C. Microbiological safety and sensory characteristics of salmon slices processed by the sous vide method. Food Cont. 2005, 16, 77–85. [Google Scholar] [CrossRef]
- International Standards Organization (ISO) Meat and Meat Products. Norms No 936,1998, 937,1978, 1442,1997, 1443,1973 (1973–1998). Available online: https://www.iso.org (accessed on 27 November 2020).
- European Commission EC Regulation No 95/149, Commission Decision of 8 March 1995 fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. OJEU 1995, 97, 84–87.
- International Standards Organization (ISO) 11885,2007. Water Quality. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). 2016. Available online: https://www.iso.org/standard/36250.html (accessed on 13 March 2020).
- Fernández, F.; Lucas, C.; Bañón, S. Mineral composition of raw and marinated-cooked arms from Pacific giant squid (Dosidicus gigas). Emir. J. Food Agric. 2021, 33, 20–28. [Google Scholar] [CrossRef]
- European Commission (EC). EC Regulation No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJEU 2006, 364, 5–24, Modified by EC Regulation No 629/2008 of 2 July 2008 setting maximum levels for certain contaminants in foodstuffs. Last amended 3 May 2022. OJEU 2008, 173, 6–9.. [Google Scholar]
- Motas, M.; Jiménez, S.; Oliva, J.; Cámara, M.A.; Pérez-Cárceles, M.D. Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain. Int. J. Environ. Res. Public Health 2021, 18, 9289. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Tolerable Upper Intake Levels for Vitamins and Minerals. 2006. Available online: https://www.efsa.europa.eu (accessed on 13 March 2020).
- European Food Safety Authority (EFSA). Overview on Dietary Reference Values for the EU Population as Derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies. 2017. Available online: https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf (accessed on 13 March 2020).
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. Available online: http://www.efsa.europa.eu (accessed on 23 May 2022). [CrossRef]
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion. Statement on Tolerable Weekly Intake for Cadmium. EFSA J. 2011, 9, 1975. Available online: http://www.efsa.europa.eu (accessed on 13 March 2020).
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food. EFSA J. 2012, 10, 2985. Available online: www.efsa.europa.eu (accessed on 23 May 2022).
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. Available online: www.efsa.europa.eu (accessed on 23 May 2022).
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; Available online: http://nap.nationalacademies.org/11537 (accessed on 14 February 2021).
- Tantasuttikul, A.; Kijroongrojana, K.; Benjakul, S. Quality Indices of Squid (Photololigo duvaucelii) and Cuttlefish (Sepia aculeata) Stored in Ice. J. Aquat. Food Prod. Tech. 2011, 20, 129–147. [Google Scholar] [CrossRef]
- Martínez-Álvarez, O.; Gómez-Guillen, M. The Effect of Brine Composition and pH on the Yield and Nature of Water-Soluble Proteins Extractable from Brined Muscle of Cod. Food Chem. 2005, 92, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Leerahawong, A.; Arii, R.; Tanaka, M.; Osako, K. Edible Film from Squid (Todarodes pacificus) Mantle Muscle. Food Chem. 2011, 124, 177–182. [Google Scholar] [CrossRef]
- Dublán-García, O.; Cruz-Camarillo, R.; Guerrero-Legarreta, I.; Ponce-Alquicira, E. Effect of refrigerated storage on proteolytic activity and physicochemical and microstructural properties of giant squid (Dosidicus gigas) mantle muscle. J. Muscle Foods 2006, 17, 291–310. [Google Scholar] [CrossRef]
- Pastorelli, A.A.; Baldini, M.; Stacchini, P.; Baldini, G.; Morelli, S.; Sagratella, E.; Zaza, S.; Ciardullo, S. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: A pilot evaluation. Food Addit. Contam. Part A 2012, 29, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, Y.; Mizuno, H.; Ogawa, H.; Ishimura, K.; Tsuchiya, H.; Iso, N. Changes of Rheological Properties of Cuttlefish and Squid Meat by Heat Treatment. Fish. Sci. 1995, 61, 680–683. [Google Scholar] [CrossRef] [Green Version]
- Torres-Arreola, W.; Ocaño-Higuera, V.M.; Ezquerra-Brauer, J.M.; López-Corona, B.E.; Rodríguez-Félix, F.; Castro-Longoria, R.; Ramírez-Guerra, H.E. Effect of cooking on physicochemical and structural properties of jumbo squid (Dosidicus gigas) muscle. J. Food Process. Preserv. 2018, 42, e13528. [Google Scholar] [CrossRef]
- Galitsopoulou, A.; Georgantelis, D.; Kontominas, M.G. Effect of thermal processing and canning on cadmium and lead levels in California market squid: The role of metallothioneins. Food Addit. Contam. Part A 2013, 30, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Perelló, G.; Martí-Cid, R.; Llobet, J.M.; Domingo, J.L. Effects of Various Cooking Processes on the Concentrations of Arsenic, Cadmium, Mercury, and Lead in Foods. J. Agric. Food Chem. 2008, 56, 11262–11269. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Australia—New Zeeland. Chemicals in Food. Arsenic. Maximum Levels for Arsenic in Food. 2022. Available online: https://www.foodstandards.gov.au/consumer/chemicals/arsenic (accessed on 16 March 2022).
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouédraogo, O.; Amyot, M. Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environ. Res. 2011, 111, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Normanno, G.; Barone, G.; Dambrosio, A.; Errico, L.; Garofalo, R.; Giacominelli-Stuffler, R. Toxic Metals (Hg, Cd, and Pb) in Fishery Products Imported into Italy: Suitability for Human Consumption. J. Food Protec. 2012, 75, 189–194. [Google Scholar] [CrossRef]
Fishing Zone | ||
---|---|---|
Mauritania | South Africa | |
FAO classification | No. 34 | No. 47 |
FAO area coordinates | 20.992732, −17.396224 | −34.455970, 16.802051 |
Transportation in board to freezer | Frozen | Frozen |
Capture and freezing date | 13 December 2018 | 23 July 2018 |
Block’s reception date | 12 February 2019 | 09 February 2019 |
Body weight average (±SD) | 210 ± 28 g | 243 ± 32 g |
Macrominerals | g/100 g | Microminerals | >1 mg/kg | Toxic Elements | mg/kg |
---|---|---|---|---|---|
Ca | <0.01 | Al | 3.60 | As | 0.48 |
K | 0.02 | Fe | 3.25 | Cd | <0.01 |
Mg | <0.01 | Si | 2.18 | Pb | <0.01 |
Na | 1.31 | Sr | 1.43 | Hg | <0.01 |
P | <0.01 | Zn | 5.20 |
FAO 47 | FAO 34 | FAO 47 + 34 | Overall | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Cooked | Raw | Cooked | Raw | Cooked | Effects | |||||||||||
M | M | M | M | M | M | SEM | Ma | C | Ma * C | ||||||||
Moisture | Untreated | 81.10 | b | 77.07 | d | 78.56 | b | 76.59 | c | 79.83 | b | 76.83 | c | 0.277 | *** | *** | *** |
g/100 g | Macerated | 85.34 | a | 79.53 | c | 82.65 | a | 78.26 | b | 84.00 | a | 79.54 | b | ||||
Proteins | Untreated | 15.86 | b | 18.63 | a | 18.81 | b | 19.93 | a | 17.34 | b | 19.28 | a | 0.345 | *** | *** | NS |
g/100 g | Macerated | 11.06 | d | 13.98 | c | 14.19 | d | 16.34 | c | 12.63 | d | 15.16 | c | ||||
TBVN | Untreated | 10.58 | c | 17.47 | a | 10.64 | d | 16.41 | b | 10.61 | c | 16.94 | a | 0.332 | *** | *** | *** |
mg/100 g | Macerated | 14.41 | bc | 16.33 | ab | 15.03 | c | 18.11 | a | 14.72 | b | 17.22 | a | ||||
Lipids | Untreated | 2.01 | d | 3.35 | b | 1.77 | c | 2.67 | b | 1.89 | c | 3.01 | b | 0.095 | *** | *** | * |
g/100 g | Macerated | 2.37 | c | 3.89 | a | 1.77 | c | 3.29 | a | 2.07 | c | 3.59 | a | ||||
Ash | Untreated | 1.52 | c | 1.69 | b | 1.55 | c | 1.62 | c | 1.53 | c | 1.66 | bc | 0.034 | *** | *** | *** |
g/100 g | Macerated | 1.74 | b | 2.81 | a | 1.77 | b | 2.37 | a | 1.76 | b | 2.59 | a | ||||
pH | Untreated | 6.75 | c | 7.15 | a | 6.56 | b | 7.13 | a | 6.66 | b | 7.14 | a | 0.061 | *** | ** | *** |
Macerated | 6.96 | b | 7.11 | a | 7.21 | a | 7.10 | a | 7.09 | a | 7.10 | a |
FAO 47 | FAO 34 | FAO 47 + 34 | Overall | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Cooked | Raw | Cooked | Raw | Cooked | Effects | |||||||||||
Macrominerals (g/100 g) | |||||||||||||||||
M | M | M | M | M | M | SEM | Ma | C | Ma*C | ||||||||
Ca | Untreated | 0.03 | a | 0.01 | b | 0.02 | 0.02 | 0.03 | a | 0.01 | b | 0.003 | NS | *** | NS | ||
Macerated | 0.03 | a | 0.02 | ab | 0.02 | 0.02 | 0.02 | ab | 0.02 | ab | |||||||
K | Untreated | 0.16 | a | 0.17 | a | 0.29 | a | 0.17 | b | 0.23 | a | 0.17 | b | 0.011 | *** | ** | * |
Macerated | 0.06 | b | 0.09 | b | 0.11 | c | 0.08 | c | 0.08 | c | 0.08 | c | |||||
Mg | Untreated | 0.05 | a | 0.02 | c | 0.05 | a | 0.03 | b | 0.05 | a | 0.03 | c | 0.002 | NS | *** | *** |
Macerated | 0.04 | b | 0.03 | bc | 0.04 | a | 0.04 | a | 0.04 | b | 0.04 | b | |||||
Na | Untreated | 0.48 | bc | 0.34 | c | 0.48 | b | 0.21 | c | 0.48 | b | 0.28 | c | 0.037 | *** | *** | *** |
Macerated | 0.70 | a | 0.59 | ab | 0.80 | a | 0.36 | bc | 0.75 | a | 0.49 | b | |||||
P | Untreated | 0.28 | a | 0.16 | b | 0.29 | a | 0.18 | b | 0.28 | a | 0.18 | b | 0.015 | *** | *** | *** |
Macerated | 0.14 | b | 0.15 | b | 0.16 | b | 0.15 | b | 0.15 | b | 0.15 | b | |||||
S | Untreated | 0.30 | a | 0.17 | b | 0.30 | a | 0.21 | b | 0.30 | a | 0.19 | b | 0.011 | *** | *** | *** |
Macerated | 0.21 | b | 0.19 | b | 0.23 | b | 0.19 | b | 0.22 | b | 0.19 | b | |||||
Microminerals (>1 mg/kg) | |||||||||||||||||
Al | Untreated | 3.72 | 2.14 | 0.74 | 0.97 | 2.23 | 1.89 | 0.441 | NS | NS | NS | ||||||
Macerated | 1.99 | 1.26 | 1.13 | 0.68 | 2.04 | 0.97 | |||||||||||
Cu | Untreated | 2.85 | a | 2.39 | a | 1.42 | ab | 1.79 | a | 2.03 | a | 2.09 | a | 0.164 | *** | * | NS |
Macerated | 2.12 | a | 0.92 | b | 1.07 | b | 0.98 | b | 1.59 | a | 0.95 | b | |||||
Fe | Untreated | 3.82 | a | 2.55 | ab | 1.46 | 2.34 | 2.64 | 2.44 | 0.368 | NS | NS | NS | ||||
Macerated | 2.58 | ab | 1.36 | b | 1.35 | 2.04 | 1.96 | 1.70 | |||||||||
Mn | Untreated | 2.57 | a | 1.26 | c | 2.63 | a | 2.48 | ab | 2.60 | a | 1.87 | b | 0.145 | NS | *** | * |
Macerated | 2.05 | ab | 1.78 | bc | 2.21 | ab | 1.75 | b | 2.13 | ab | 1.77 | b | |||||
Si | Untreated | 11.43 | 13.51 | 3.53 | b | 4.75 | ab | 7.48 | 9.13 | 1.508 | NS | NS | NS | ||||
Macerated | 9.65 | 10.50 | 8.54 | a | 5.53 | ab | 9.09 | 8.01 | |||||||||
Sr | Untreated | 3.44 | a | 2.35 | c | 2.54 | 3.02 | 2.30 | 2.81 | 0.195 | NS | NS | NS | ||||
Macerated | 3.08 | ab | 2.64 | bc | 3.02 | 2.71 | 3.05 | 2.68 | |||||||||
Zn | Untreated | 10.99 | 10.21 | 11.72 | a | 12.18 | a | 11.36 | a | 11.19 | a | 0.562 | *** | NS | NS | ||
Macerated | 8.32 | 9.53 | 8.14 | b | 10.33 | ab | 8.23 | bc | 9.93 | ab | |||||||
Toxic elements (mg/kg) | |||||||||||||||||
As | Untreated | 1.53 | a | 1.45 | a | 1.37 | a | 1.11 | a | 1.45 | a | 1.28 | ab | 0.104 | *** | *** | NS |
Macerated | 1.14 | a | 0.51 | b | 0.90 | ab | 0.41 | b | 1.02 | b | 0.46 | c | |||||
Cd | Untreated | 0.23 | b | 0.46 | a | 0.09 | bc | 0.17 | a | 0.16 | b | 0.32 | a | 0.025 | *** | *** | NS |
Macerated | 0.17 | b | 0.21 | b | 0.02 | d | 0.14 | ab | 0.10 | b | 0.17 | b | |||||
Hg | Untreated | 0.02 | a | 0.01 | b | 0.02 | 0.01 | 0.02 | a | 0.01 | b | 0.002 | * | ** | ** | ||
Macerated | 0.01 | b | 0.01 | b | 0.01 | 0.01 | 0.01 | b | 0.01 | b | |||||||
Pb | Untreated | 0.02 | 0.05 | <0.01 | b | 0.05 | a | 0.01 | b | 0.05 | ab | 0.014 | NS | *** | NS | ||
Macerated | 0.01 | 0.08 | <0.01 | b | 0.07 | a | 0.01 | b | 0.07 | a |
FAO 47 | FAO 34 | FAO 47 + 34 | ||||||
---|---|---|---|---|---|---|---|---|
M | M | M | DRIs | |||||
Macrominerals (mg) | ||||||||
Ca | Untreated | 27 | (2.7) | 16 | (1.6) | 22 | (2.2) | 1000 mg |
Macerated | 27 | (2.7) | 11 | (1.1) | 19 | (1.9) | ||
K | Untreated | 163 | (3.5) | 91 | (1.9) | 127 | (2.7) | 4700 mg |
Macerated | 35 | (0.7) | 170 | (3.6) | 102 | (2.2) | ||
Mg | Untreated | 53 | (15.1) | 32 | (9.1) | 42 | (12.1) | 350 mg |
Macerated | 38 | (10.9) | 23 | (6.6) | 30 | (8.7) | ||
Na | Untreated | 475 | (20.7) | 293 | (12.7) | 384 | (16.7) | 2300 mg |
Macerated | 704 | (30.6) | 594 | (25.8) | 649 | (28.2) | ||
P | Untreated | 121 | (17.3) | 176 | (25.1) | 149 | (21.2) | 700 mg |
Macerated | 150 | (21.4) | 150 | (21.4) | 150 | (21.4) | ||
S | Untreated | 169 | 212 | 191 | (1) | |||
Macerated | 195 | 187 | 191 | |||||
Microminerals (μg) | ||||||||
Cu | Untreated | 92 | (0.9) | 98 | (1.0) | 95 | (1.0) | 10,000 μg |
Macerated | 239 | (2.4) | 179 | (1.8) | 209 | (2.1) | ||
Fe | Untreated | 255 | (0.6) | 204 | (0.5) | 230 | (0.5) | 45,000 μg |
Macerated | 136 | (0.3) | 234 | (0.5) | 185 | (0.4) | ||
Mn | Untreated | 178 | (8.7) | 175 | (8.5) | 177 | (8.6) | 2050 μg |
Macerated | 126 | (6.1) | 248 | (12.1) | 187 | (9.1) | ||
Zn | Untreated | 953 | (9.5) | 1033 | (10.3) | 993 | (9.9) | 10,000 μg |
Macerated | 1020 | (10.2) | 1218 | (12.2) | 1119 | (11.2) |
FAO 47 | FAO 34 | FAO 47 + 34 | ||||||
---|---|---|---|---|---|---|---|---|
PTWI (μg Per kg Body wt and wk) | EWI | % PTWI | EWI | % PTWI | EWI | % PTWI | ||
As | 15 μg | Untreated | 1.66 | 11.1 | 1.27 | 8.5 | 1.38 | 9.8 |
Macerated | 0.68 | 3.9 | 0.47 | 3.1 | 0.50 | 3.5 | ||
Cd | 2.5 μg | Untreated | 0.52 | 20.8 | 0.20 | 8.0 | 0.36 | 14.4 |
Macerated | 0.23 | 9.2 | 0.16 | 6.4 | 0.20 | 7.8 | ||
Hg | 7 μg | Untreated | 0.01 | 0.1 | 0.01 | 0.1 | 0.01 | 0.1 |
Macerated | 0.01 | 0.1 | 0.01 | 0.1 | 0.01 | 0.1 | ||
Pb | 25 μg | Untreated | 0.06 | 0.2 | 0.06 | 0.2 | 0.06 | 0.2 |
Macerated | 0.09 | 0.4 | 0.08 | 0.1 | 0.09 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, C.; Fernández, F.; Bañón, S. Mineral Content (Essential and Toxic Elements) of Squid Flesh Is Affected by Maceration with Sodium Salts and Vacuum-Cooking. Foods 2022, 11, 3688. https://doi.org/10.3390/foods11223688
Lucas C, Fernández F, Bañón S. Mineral Content (Essential and Toxic Elements) of Squid Flesh Is Affected by Maceration with Sodium Salts and Vacuum-Cooking. Foods. 2022; 11(22):3688. https://doi.org/10.3390/foods11223688
Chicago/Turabian StyleLucas, Celia, Faustina Fernández, and Sancho Bañón. 2022. "Mineral Content (Essential and Toxic Elements) of Squid Flesh Is Affected by Maceration with Sodium Salts and Vacuum-Cooking" Foods 11, no. 22: 3688. https://doi.org/10.3390/foods11223688
APA StyleLucas, C., Fernández, F., & Bañón, S. (2022). Mineral Content (Essential and Toxic Elements) of Squid Flesh Is Affected by Maceration with Sodium Salts and Vacuum-Cooking. Foods, 11(22), 3688. https://doi.org/10.3390/foods11223688