Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Fillet Storage and Sampling
2.2. Microbiological Analysis
2.3. Sensory Assessment
2.4. Spectral Data Acquisition
2.5. E-Nose Measurements
2.6. Data Analysis
3. Results and Discussion
3.1. Fish Quality Degradation Due to Microbial Growth
3.2. Sensory Evaluation
3.3. Rapid Assessment of Fish Spoilage Using FT-IR, MSI, and E-Nose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome. 2020. Available online: https://www.fao.org/documents/card/en/c/ca9229en (accessed on 1 July 2022).
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Rome. 2018. Available online: https://www.fao.org/3/i9540en/i9540en.pdf (accessed on 1 July 2022).
- Eurostat, 2019. Agriculture, Forestry and Fishery Statistics, 2019 Edition. Publications Office of the European Union, Luxemburg. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=fish_aq2a&lang=en (accessed on 1 June 2022).
- Gornik, S.G.; Albalat, A.; Theethakaew, C.; Neil, D.M. Shelf-life extension of whole Norway lobster nephrops norvegicus using modified atmosphere packaging. Int. J. Food Microbiol. 2013, 167, 369–377. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, C.A.M.; Oliveira, A.C.M. Modified atmosphere systems and shelf life extension of fish and fishery products. Foods 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Giaouris, E.D.; Nychas, G.-J.E. The adherence of Salmonella Enteritidis PT4 to stainless steel: The importance of the air-liquid interface and nutrient availability. Food Microbiol. 2006, 23, 747–752. [Google Scholar] [CrossRef]
- Sofos, J.N.; Flick, G.; Nychas, G.J.; O’Bryan, C.A.; Ricke, S.C.; Crandall, P.G. Meat, Poultry and Seafood. In Food Microbiology: Fundamentals and Frontiers, 4th ed.; Doyle, M.P., Buchanan, R.L., Eds.; American Society for Microbiology: Washington, DC, USA, 2013; pp. 111–167. [Google Scholar]
- Rahman, U.; Shahzad, T.; Sahar, A.; Ishaq, A.; Khan, M.I.; Zahhoor, T.; Aslam, S. Recapitulating the competence of novel and rapid monitoring tools for microbial documentation in food systems. LWT-Food Sci. Technol. 2016, 67, 62–66. [Google Scholar] [CrossRef]
- Fengou, L.C.; Lianou, A.; Tsakanikas, P.; Gkana, E.N.; Panagou, E.Z.; Nychas, G.-J.E. Evaluation of Fourier transform infrared spectroscopy and multispectral imaging as means of estimating the microbiological spoilage of farmed sea bream. Food Microbiol. 2019, 79, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.-J.E. Multispectral Imaging (MSI): A Promising method for the detection of minced beef adulteration with horsemeat. Food Control 2017, 73, 57–63. [Google Scholar] [CrossRef]
- Manthou, E.; Lago, S.-L.; Dagres, E.; Lianou, A.; Tsakanikas, P.; Panagou, E.Z.; Anastasia, M.; Mohareb, F.; Nychas, G.-J.E. Application of spectroscopic and multispectral imaging technologies on the assessment of ready-to-eat pineapple quality: A performance evaluation study of machine learning models generated from two commercial data analytics tools. Comput. Electron. Agric. 2020, 175, 105529. [Google Scholar] [CrossRef]
- Nychas, G.-J.E.; Sims, E.; Tsakanikas, P.; Mohareb, F. Data Science in the Food Industry. Annu. Rev. Biomed. Data Sci. 2021, 4, 341–367. [Google Scholar] [CrossRef] [PubMed]
- Ropodi, A.; Panagou, E.Z.; Nychas, G.-J.E. Data mining derived from Food analyses using non-invasive/non-destructive analytical techniques; Determination of Food authenticity, quality & safety in tandem with Computer Science Disciplines. Trends Food Sci. Technol. 2016, 50, 11–25. [Google Scholar]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Papadopoulou, O.S.; Panagou, E.Z.; Mohareb, F.R.; Nychas, G.-J.E. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Res. Int. 2013, 50, 241–249. [Google Scholar] [CrossRef]
- Argyri, A.A.; Jarvis, R.M.; Wedge, D.; Xub, Y.; Panagou, E.Z.; Goodacre, R.; Nychas, G.-J.E. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 2013, 29, 461–470. [Google Scholar] [CrossRef]
- Govari, M.; Tryfinopoulou, P.; Parlapani, F.F.; Boziaris, I.S.; Panagou, E.Z.; Nychas, G.-J.E. Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods 2021, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, M.; Gallado-Velázquez, T.; Osorio-Revilla, G.; Almaraz-Abarca, N.; Castañeda-Pérez, E. Application of MIR-FTIR spectroscopy and chemometrics to the rapid prediction of fish fillet quality. CyTA-J. Food. 2014, 4, 369–377. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15. [Google Scholar] [CrossRef]
- El Barbri, N.; Llobet, E.; El Bari, N.; Correig, X.; Bouchikhi, B. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors 2008, 8, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Grassi, S.; Benedetti, S.; Opizzio, M.; di Nardo, E.; Buratti, S. Meat and Fish Freshness Assessment by a Portable and Simplified Electronic Nose System (Mastersense). Sensors 2019, 19, 3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) 8586-1, 1993. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors, Part 1: Selected Assessors. Geneva. Available online: https://www.iso.org/standard/15875.html (accessed on 25 July 2022).
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.A.; Boziaris, I.S. Microbiological spoilage and investigation of volatile profile during storage of sea bream fillets under various conditions. Int. J. Food Microbiol. 2014, 189, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Panagou, E.Z.; Papadopoulou, O.; Carstensen, J.M.; Nychas, G.-J.E. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage. Int. J. Food Microbiol. 2014, 174, 1–11. [Google Scholar] [CrossRef]
- Dissing, B.S.; Papadopoulou, O.S.; Tassou, C.C.; Ersbøll, B.K.; Carstensen, J.M.; Panagou, E.Z.; Nychas, G.-J.E. Using multispectral imaging for spoilage detection of pork meat. Food Bioprocess Technol. 2013, 6, 2268–2279. [Google Scholar] [CrossRef]
- Jiarpinijnum, A.; Osako, K.; Siripatrawan, U. Visualization of volatomic profiles for early detection of fungal infection on storage Jasmine brown rice using electronic nose coupled chemometrics. Measurement 2020, 157, 107561. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta 2013, 109, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; El Masry, G.; Sun, D.-W.; Allen, P.; Morsy, N. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 17, 180–191. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSO) in Fish. In Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Sykes, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 60–98. [Google Scholar]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 2015, 81, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Semeano, A.T.S.; Maffeic, D.F.; Palma, S.; Lia, R.W.C.; Franco, B.D.G.; Ana, C.A.; Roque, A.C.A.; Grubera, J. Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control 2018, 89, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Guney, S.; Atasoy, A. Study of fish species discrimination via electronic nose. Comput. Electronics Agric. 2015, 119, 83–91. [Google Scholar] [CrossRef]
- Grassi, S.; Benedetti, S.; Magnani, L.; Pianezzola, A.; Buratti, S. Seafood freshness: E-nose data for classification purposes. Food Control 2022, 138, 108994. [Google Scholar] [CrossRef]
- Barbri, N.E.; Mirhisse, J.; Ionescu, R.; Bari, N.E.; Correig, X.; Bouchikhi, B.; Llobet, E. An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines. Sens. Actuators B Chem. 2009, 141, 538–543. [Google Scholar] [CrossRef]
- Olafsdottir, G.; Nesvadba, P.; Di Natale, C.; Careche, M.; Oehlenschläger, J.; Tryggvadóttir, S.V.; Schubring, R.; Kroeger, M.; Heia, K.; Esaiassen, M.; et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004, 15, 86–93. [Google Scholar] [CrossRef]
- Saeed, R.; Feng, H.; Wang, X.; Zhang, X.; Fu, Z. Fish quality evaluation by sensor and machine learning: A mechanistic review. Food Control 2022, 137, 108902. [Google Scholar] [CrossRef]
Sensor Number | Name | Detection of Chemical Components |
---|---|---|
1 | LY/LG | Oxidation gas |
2 | LY2/G | NH3/CO |
3 | LY2/AA | C2H5OH |
4 | LY2/GH | NH3/Amine |
5 | LY2/gCTL | H2S |
6 | LY2/gCT | C3H8/C4H10 |
7 | T30/1 | Organic solvents |
8 | P10/1 | Hydrocarbons |
9 | P10/2 | CH4 |
10 | P10/2 | F2 |
11 | T70/2 | Aromatic components |
12 | PA/2 | C2H5OH/NH3/Amine |
Storage | Data Set | LV | Slope | Offset | R2 | RMSE |
---|---|---|---|---|---|---|
Air | Calibration | 7 | 0.98 | 0.10 | 0.98 | 0.16 |
Cross-validation * | 0.94 | 0.50 | 0.89 | 0.49 | ||
Prediction | 0.78 | 1.80 | 0.74 | 0.87 | ||
MAP | Calibration | 7 | 0.94 | 0.38 | 0.94 | 0.38 |
Cross-validation * | 0.80 | 1.35 | 0.76 | 0.78 | ||
Prediction | 0.94 | 0.44 | 0.94 | 0.43 |
Storage | Data Set | LV | Slope | Offset | R2 | RMSE |
---|---|---|---|---|---|---|
Air | Calibration | 9 | 0.79 | 1.59 | 0.79 | 0.78 |
Cross-validation * | 0.67 | 2.54 | 0.52 | 1.21 | ||
Prediction | 0.88 | 0.36 | 0.58 | 1.43 | ||
MAP | Calibration | 9 | 0.77 | 1.42 | 0.77 | 0.72 |
Cross-validation * | 0.72 | 1.77 | 0.60 | 0.97 | ||
Prediction | 0.80 | 1.24 | 0.54 | 1.10 |
Storage | Data Set | LV | Slope | Offset | R2 | RMSE |
---|---|---|---|---|---|---|
Air | Calibration | 3 | 0.21 | 6.04 | 0.21 | 1.47 |
Cross-validation * | 0.18 | 6.28 | 0.14 | 1.56 | ||
Prediction | 0.16 | 6.38 | 0.17 | 1.43 | ||
MAP | Calibration | 3 | 0.17 | 5.50 | 0.17 | 1.54 |
Cross-validation * | 0.16 | 5.61 | 0.14 | 1.59 | ||
Prediction | 0.34 | 6.31 | 0.34 | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govari, M.; Tryfinopoulou, P.; Panagou, E.Z.; Nychas, G.-J.E. Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets. Foods 2022, 11, 2356. https://doi.org/10.3390/foods11152356
Govari M, Tryfinopoulou P, Panagou EZ, Nychas G-JE. Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets. Foods. 2022; 11(15):2356. https://doi.org/10.3390/foods11152356
Chicago/Turabian StyleGovari, Maria, Paschalitsa Tryfinopoulou, Efstathios Z. Panagou, and George-John E. Nychas. 2022. "Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets" Foods 11, no. 15: 2356. https://doi.org/10.3390/foods11152356
APA StyleGovari, M., Tryfinopoulou, P., Panagou, E. Z., & Nychas, G. -J. E. (2022). Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets. Foods, 11(15), 2356. https://doi.org/10.3390/foods11152356