Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Tartary Buckwheat Dried Noodles (TBDNs)
2.3. Quality Analysis of TBDNs
2.3.1. Cooking Quality Analysis of TBDNs
2.3.2. Texture Quality Analysis of TBDNs
2.4. Estimation of Total Phenolic and Flavonoid Content
2.4.1. Extraction of Phenolic and Flavonoids from TBDNs
2.4.2. Total Phenolic Content
2.4.3. Total Flavonoids Content
2.5. Determination of Dietary Fiber
2.6. Analysis of In Vitro Starch Digestion
2.7. Differential Scanning Calorimetry Measurements (DSC)
2.8. X-ray Diffraction Analysis (XRD)
2.9. FTIR Analysis
2.10. Fluorescence Quenching Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Quality and Bioactive Compounds Content of TBDNs
3.1.1. Cooking and Textural Properties
3.1.2. Total Contents of Phenolic and Flavonoids
3.1.3. Dietary Fiber Content
3.2. In Vitro Starch Digestion
3.3. Thermal Properties of TBDNs
3.4. XRD Results of TBDNs
3.5. FTIR Results of TBDNs
3.6. Fluorescence Quenching of TBDNs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.Y.; Guo, X.N.; Xing, J.J.; Zhu, K.X. Effect of thermal treatments on in vitro starch digestibility of sorghum dried noodles. Food Funct. 2020, 11, 3420–3431. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Garcia-Perez, P.; Carpena, M.; Prieto, M.A.; Cao, H.; et al. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. 2021, 1–17. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yao, H. Fractionation and characterization of Tartary buckwheat flour proteins. Food Chem. 2006, 98, 90–94. [Google Scholar] [CrossRef]
- Fu, M.; Sun, X.; Wu, D.; Meng, L.; Feng, X.; Cheng, W.; Gao, C.; Yang, Y.; Shen, X.; Tang, X. Effect of partial substitution of buckwheat on cooking characteristics, nutritional composition, and in vitro starch digestibility of extruded gluten-free rice noodles. LWT 2020, 126, 109332. [Google Scholar] [CrossRef]
- Biney, K.; Beta, T. Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT 2014, 57, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Costantini, L.; Timperio, A.M.; Lelli, V.; Bonafaccia, F.; Bonafaccia, G.; Merendino, N. Tartary buckwheat malt as ingredient of gluten-free cookies. J. Cereal Sci. 2018, 80, 37–43. [Google Scholar] [CrossRef]
- Zou, S.; Wang, L.; Wang, A.; Zhang, Q.; Li, Z.; Qiu, J. Effect of Moisture Distribution Changes Induced by Different Cooking Temperature on Cooking Quality and Texture Properties of Noodles Made from Whole Tartary Buckwheat. Foods 2021, 10, 2543. [Google Scholar] [CrossRef]
- Ge, R.H.; Wang, H. Nutrient components and bioactive compounds in Tartary buckwheat bran and flour as affected by thermal processing. Int. J. Food Prop. 2020, 23, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Rachman, A.; Chen, L.; Brennan, M.; Brennan, C. Effects of addition of buckwheat bran on physicochemical, pasting properties and starch digestion of buckwheat gels. Eur. Food Res. Technol. 2020, 246, 2111–2117. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; He, X.; Li, F.; Zhao, J.; Yin, R.; Ming, J. Effects of steam explosion pretreatment on the composition and biological activities of Tartary buckwheat bran phenolics. Food Funct. 2020, 11, 4648–4658. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Song, S.; Tao, L.; Yu, L.; Wang, J. Effects of common buckwheat bran on wheat dough properties and noodle quality compared with common buckwheat hull. LWT 2022, 155, 112971. [Google Scholar] [CrossRef]
- Zanoletti, M.; Marti, A.; Marengo, M.; Iametti, S.; Pagani, M.A.; Renzetti, S. Understanding the influence of buckwheat bran on wheat dough baking performance: Mechanistic insights from molecular and material science approaches. Food Res. Int. 2017, 102, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Huang, R.; Yang, P.; Wang, L.; Xing, Y.; Liu, H.; Wu, L.; Che, Z.; Zhang, P. Effect of different superfine grinding technologies on the physicochemical and antioxidant properties of Tartary buckwheat bran powder. RSC Adv. 2021, 11, 30898–30910. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis, 10th ed.; Method 66-50; American Association of Cereal Chemists International: St. Paul, MN, USA, 2010. [Google Scholar]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Liu, Q.; Zhou, J.; Gao, S.; Yu, J.; Zhang, X.; Wang, M. Comparing impacts of dielectric barrier discharge plasma and electron beam irradiation processing on characteristics of Tartary buckwheat whole flour. Innov. Food Sci. Emerg. 2022, 77, 102986. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis; Method 991.43; Association of Official Analytical Chemists: Arlington, TX, USA, 1991. [Google Scholar]
- Fan, J.; Guo, X.; Zhu, K. Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. Food Hydrocolloid. 2022, 124, 107298. [Google Scholar] [CrossRef]
- Zou, W.; Sissons, M.; Gidley, M.J.; Gilbert, R.G.; Warren, F.J. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chem. 2015, 188, 559–568. [Google Scholar] [CrossRef]
- Sun, X.; Yu, C.; Fu, M.; Wu, D.; Gao, C.; Feng, X.; Cheng, W.; Shen, X.; Tang, X. Extruded whole buckwheat noodles: Effects of processing variables on the degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility. Food Funct. 2019, 10, 6362–6373. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xing, J.; Han, C.; Guo, X.; Zhu, K. The effects of extruded endogenous starch on the processing properties of gluten-free Tartary buckwheat noodles. Carbohydr. Polym. 2021, 267, 118170. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Yang, Z.; Yu, C.; Xing, J.; Guo, X.; Zhu, K. Effect of acidity regulators on the shelf life, quality, and physicochemical characteristics of fresh wet noodles. J. Cereal Sci. 2022, 103, 103409. [Google Scholar] [CrossRef]
- Liu, X.; Lu, K.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chem. 2019, 284, 118–124. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, H.; Liu, X. Effects of different crop starches on the cooking quality of Chinese dried noodles. Int. J. Food Sci. Technol. 2022, 57, 2080–2092. [Google Scholar] [CrossRef]
- Tan, H.; Tan, T.; Easa, A.M. Comparative study of cooking quality, microstructure, and textural and sensory properties between fresh wheat noodles prepared using sodium chloride and salt substitutes. LWT 2018, 97, 396–403. [Google Scholar] [CrossRef]
- Bagdi, A.; Szabó, F.; Gere, A.; Kókai, Z.; Sipos, L.; Tömösközi, S. Effect of aleurone-rich flour on composition, cooking, textural, and sensory properties of pasta. LWT 2014, 59, 996–1002. [Google Scholar] [CrossRef]
- Fan, L.; Ma, S.; Wang, X.; Zheng, X. Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. Int. J. Food Sci. Technol. 2016, 51, 602–608. [Google Scholar] [CrossRef]
- Jin, X.; Lin, S.; Gao, J.; Wang, Y.; Ying, J.; Dong, Z.; Zhou, W. Effect of Coarse and Superfine-ground Wheat Brans on the Microstructure and Quality Attributes of Dried White Noodle. Food Bioprocess. Tech. 2021, 14, 1089–1100. [Google Scholar] [CrossRef]
- Han, L.; Zhou, Y.; Tatsumi, E.; Shen, Q.; Cheng, Y.; Li, L. Thermomechanical Properties of Dough and Quality of Noodles Made from Wheat Flour Supplemented with Different Grades of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) Flour. Food Bioprocess. Tech. 2012, 6, 1953–1962. [Google Scholar] [CrossRef]
- Cao, Z.; Yu, C.; Yang, Z.; Xing, J.; Guo, X.; Zhu, K. Impact of gluten quality on textural stability of cooked noodles and the underlying mechanism. Food Hydrocolloid. 2021, 119, 106842. [Google Scholar] [CrossRef]
- Sinkovič, L.; Kokalj Sinkovič, D.; Meglič, V. Milling fractions composition of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Food Chem. 2021, 365, 130459. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and Tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z.; Qin, F.; Qiu, J. Anti-diabetic effects of the soluble dietary fiber from Tartary buckwheat bran in diabetic mice and their potential mechanisms. Food Nutr. Res. 2021, 65, 4998. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Yin, L.; Dong, J.; Shen, R.; Zhu, Y. Physicochemical characteristics and in vitro digestibility of starches from colored quinoa (Chenopodium quinoa) varieties. J. Food Sci. 2022, 87, 2147–2158. [Google Scholar] [CrossRef]
- Xie, F.; Huang, Q.; Fang, F.; Chen, S.; Wang, Z.; Wang, K.; Fu, X.; Zhang, B. Effects of tea polyphenols and gluten addition on in vitro wheat starch digestion properties. Int. J. Biol. Macromol. 2019, 126, 525–530. [Google Scholar] [CrossRef]
- Zhu, F. Interactions between starch and phenolic compound. Trends Food Sci. Tech. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Qi, X.; Al Ghazzewi, F.H.; Tester, R.F. Dietary Fiber, Gastric Emptying, and Carbohydrate Digestion: A Mini-Review. Starch Stärke 2018, 70, 1700346. [Google Scholar] [CrossRef]
- Lu, L.; He, C.; Liu, B.; Wen, Q.; Xia, S. Incorporation of chickpea flour into biscuits improves the physicochemical properties and in vitro starch digestibility. LWT 2022, 159, 113222. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Du, J.; Yang, Z.; Xu, X.; Wang, X.; Du, X. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch. Food Hydrocolloid. 2019, 91, 256–262. [Google Scholar] [CrossRef]
- Amoako, D.B.; Awika, J.M. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chem. 2016, 208, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, M.T.; Lamothe, L.; Gunes, D.Z.; Vaz, S.M.; Bouchon, P. The Effect of Arabinoxylan and Wheat Bran Incorporation on Dough Rheology and Thermal Processing of Rotary-Moulded Biscuits. Foods 2021, 10, 2335. [Google Scholar] [CrossRef]
- Ou, S.J.L.; Yu, J.; Zhou, W.; Liu, M.H. Effects of anthocyanins on bread microstructure, and their combined impact on starch digestibility. Food Chem. 2022, 374, 131744. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. F 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liang, W.; Huang, W.; Huang, M.; Feng, J. Complexation between burdock holocellulose nanocrystals and corn starch: Gelatinization properties, microstructure, and digestibility in vitro. Food Funct. 2022, 13, 548–560. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, W.; Li, C.; Yu, J.; Wang, S. Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chem. 2015, 181, 43–50. [Google Scholar] [CrossRef]
- Huang, S.; Wang, N.; Zhang, Y.; Zhang, F.; Zheng, J. Physical, thermal and structural properties of rice starch as affected by the addition of bamboo shoot shell fibres. Int. J. Food Sci. Technol. 2020, 55, 3658–3669. [Google Scholar] [CrossRef]
- Liu, B.; Zhong, F.; Yokoyama, W.; Huang, D.; Zhu, S.; Li, Y. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydr. Polym. 2020, 247, 116667. [Google Scholar] [CrossRef]
- Lemlioglu-Austin, D.; Turner, N.D.; McDonough, C.M.; Rooney, L.W. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges. Molecules 2012, 17, 11124–11138. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem. 2016, 190, 207–215. [Google Scholar] [CrossRef]
- D’Costa, A.S.; Bordenave, N. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics. Food Chem. 2021, 341, 128256. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, Y.; Masamba, K.G.; Shoemaker, C.F.; Zhong, F.; Majeed, H.; Ma, J. The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocolloid. 2016, 52, 699–706. [Google Scholar] [CrossRef]
Control | TBBF-5 | TBBF-15 | TBBF-25 | TBBF-35 | |
---|---|---|---|---|---|
Wheat flour | 30 | 30 | 30 | 30 | 30 |
Tartary buckwheat flour | 70 | 65 | 55 | 45 | 35 |
Tartary buckwheat bran flour | 0 | 5 | 15 | 25 | 35 |
Total | 100 | 100 | 100 | 100 | 100 |
Sample | Control | TBBF-5 | TBBF-15 | TBBF-25 | TBBF-35 |
---|---|---|---|---|---|
Cooking properties | |||||
Water absorption (%) | 132.80 ± 0.40 a | 131.81 ± 0.39 a | 126.65 ± 0.05 b | 124.16 ± 0.21 c | 119.02 ± 0.72 d |
Cooking loss (%) | 4.64 ± 0.07 d | 4.72 ± 0.07 d | 5.32 ± 0.03 c | 5.55 ± 0.11 b | 6.53 ± 0.13 a |
Texture properties | |||||
Hardness (g) | 5547.64 ± 38.34 b | 5691.65 ± 35.01 b | 5844.12 ± 33.57 a | 5598.94 ± 36.44 b | 5415.43 ± 38.11 c |
Cohesiveness | 0.67 ± 0.01 a | 0.65 ± 0.02 ab | 0.63 ± 0.01 bc | 0.62 ± 0.01 bc | 0.60 ± 0.02 c |
Resilience | 0.43 ± 0.01 cd | 0.44 ± 0.01 bc | 0.48 ± 0.01 a | 0.46 ± 0.01 ab | 0.41 ± 0.02 d |
Tensile strength (g) | 15.98 ± 0.58 a | 14.80 ± 0.46 b | 13.37 ± 0.35 c | 13.00 ± 0.50 c | 13.10 ± 0.53 c |
Elasticity (mm) | 19.50 ± 0.73 a | 17.83 ± 0.79 a | 15.75 ± 0.94 b | 15.02 ± 0.76 bc | 12.68 ± 0.51 c |
Sample | Control | TBBF-5 | TBBF-15 | TBBF-25 | TBBF-35 | ||
---|---|---|---|---|---|---|---|
TDF | 3.47 ± 0.19 e | 4.58 ± 0.33 d | 6.43 ± 0.11 c | 8.47 ± 0.33 b | 9.92 ± 0.38 a | ||
IDF | 2.55 ± 0.13 e | 3.64 ± 0.21 d | 5.18 ± 0.20 c | 6.84 ± 0.29 b | 8.48 ± 0.15 a | ||
SDF | 0.70 ± 0.01 d | 0.91 ± 0.04 c | 1.07 ± 0.08 bc | 1.20 ± 0.07 ab | 1.37 ± 0.06 a | ||
TPC (mg GAE/g DW) | Raw noodles | 5.86 ± 0.01 e | 6.76 ± 0.02 d | 8.57 ± 0.02 c | 10.46 ± 0.03 b | 12.32 ± 0.04 a | |
Cooked noodles | 4.51 ± 0.03 e | 5.27 ± 0.01 d | 6.52 ± 0.24 c | 7.32 ± 0.02 b | 7.64 ± 0.05 a | ||
Retention rate (%) | 77 | 78 | 76 | 70 | 62 | ||
TFC (mg RE/g DW) | Raw noodles | 5.36 ± 0.19 d | 5.52 ± 0.05 d | 5.93 ± 0.19 c | 6.77 ± 0.05 b | 7.95 ± 0.06 a | |
Cooked noodles | 4.45 ± 0.28 c | 4.72 ± 0.05 c | 5.29 ± 0.15 b | 5.66 ± 0.05 b | 6.39 ± 0.37 a | ||
Retention rate (%) | 83 | 86 | 89 | 84 | 80 |
Sample | k × 10−2 (min−1) | k1 × 10−2 (min−1) | k2 × 10−2 (min−1) | C∞ (%) | RDS (%) | SDS (%) | RS (%) | eGI |
---|---|---|---|---|---|---|---|---|
Control | 1.56 ± 0.05 a | 3.45 ± 0.36 a | 1.50 ± 0.13 a | 54.29 ± 0.57 a | 16.78 ± 0.61 a | 27.93 ± 0.22 a | 55.29 ± 0.39 c | 59.49 ± 0.33 a |
TBBF-5 | 1.49 ± 0.06 ab | 3.47 ± 0.37 a | 1.10 ± 0.04 b | 52.57 ± 0.22 b | 16.41 ± 0.44 ab | 26.01 ± 0.49 b | 57.58 ± 0.72 b | 57.82 ± 0.32 b |
TBBF-15 | 1.40 ± 0.03 b | 3.35 ± 0.24 a | 0.98 ± 0.08 c | 50.05 ± 0.28 c | 14.88 ± 0.70 c | 23.93 ± 1.19 c | 61.19 ± 0.49 a | 54.26 ± 0.33 c |
TBBF-25 | 1.34 ± 0.04 b | 3.34 ± 0.30 a | 0.76 ± 0.02 d | 49.70 ± 0.42 c | 14.21 ± 0.49 c | 23.45 ± 0.50 c | 62.34 ± 0.50 a | 53.47 ± 0.22 d |
TBBF-35 | 1.35 ± 0.07 b | 3.81 ± 0.29 a | 0.61 ± 0.09 e | 48.50 ± 0.64 d | 15.29 ± 0.56 bc | 23.20 ± 0.56 c | 61.51 ± 0.51 a | 53.17 ± 0.22 d |
Sample | Thermal Properties | Long-Range Order | Short-Range Order | ||||
---|---|---|---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | RC (%) | R-1050/1022 | R-1022/992 | |
Control | 63.37 ± 0.29 d | 70.15 ± 0.10 a | 74.26 ± 0.28 a | 3.66 ± 0.20 a | 20.15 ± 0.65 d | 0.654 ± 0.001 d | 1.544 ± 0.003 a |
TBBF-5 | 64.36 ± 0.63 cd | 70.44 ± 0.12 a | 75.58 ± 0.04 a | 3.59 ± 0.02 a | 20.70 ± 0.40 cd | 0.680 ± 0.007 c | 1.523 ± 0.006 b |
TBBF-15 | 65.48 ± 0.17 bc | 70.73 ± 0.29 a | 75.50 ± 0.34 a | 3.06 ± 0.01 b | 22.15 ± 0.35 bc | 0.685 ± 0.004 c | 1.488 ± 0.004 c |
TBBF-25 | 65.89 ± 0.29 b | 70.83 ± 0.33 a | 75.02 ± 0.82 a | 2.26 ± 0.07 c | 22.85 ± 0.55 ab | 0.705 ± 0.003 b | 1.380 ± 0.002 d |
TBBF-35 | 67.70 ± 0.09 a | 70.58 ± 0.11 a | 75.00 ± 0.07 a | 1.81 ± 0.06 d | 24.55 ± 0.35 a | 0.738 ± 0.002 a | 1.293 ± 0.005 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Guo, X.; Zhu, K. Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods 2022, 11, 3696. https://doi.org/10.3390/foods11223696
Xue C, Guo X, Zhu K. Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods. 2022; 11(22):3696. https://doi.org/10.3390/foods11223696
Chicago/Turabian StyleXue, Chaoqiang, Xiaona Guo, and Kexue Zhu. 2022. "Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles" Foods 11, no. 22: 3696. https://doi.org/10.3390/foods11223696
APA StyleXue, C., Guo, X., & Zhu, K. (2022). Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods, 11(22), 3696. https://doi.org/10.3390/foods11223696