Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications
Abstract
:1. Introduction
2. Systems for Microfluidics
2.1. Microchannel Arrangements in Microfluidic Platforms
2.2. Materials for Microfluidic Chips
Materials | Optical Clarity | Mechanics | Biocompatibility | Thermostability | Bonding Performance | Formability | Refs | |
---|---|---|---|---|---|---|---|---|
Inorganic | Silicon | Good | Medium | Bad | Good | Difficult | Difficult | [118,119] |
Glass | Bad | Medium | Bad | Good | Difficult | Difficult | [120,121] | |
LTCC | Bad | Medium | Good | Good | Difficult | Difficult | [95,96] | |
Organic | PDMS | Good | - | Good | Good | Easy | Easy | [122] |
PMMA | Good | Good | Good | Medium | Easy | Easy | [123,124] | |
PC | Good | Good | Medium | Medium | Easy | Medium | [119,125] | |
PS | Good | Medium | Bad | Medium | Easy | Easy | [118,119] | |
PVC | Good | Good | Good | Medium | Easy | Medium | [118,119] | |
SU-8 | Medium | Good | Good | Good | Easy | Easy | [126,127] | |
Paper | - | Bad | Bad | Medium | Medium | - | - | [128,129] |
3. Microfluidic Spinning Technology for Micro-/Nanofibers and Films
3.1. Solidification Methods for Microfiber Generation
3.2. Design Principle of Fibers with Different Shapes
3.3. Applications of Microfibers in Analysis and Encapsulations
Materials | Solidification | Shape | Functional Component | Applications | Refs |
---|---|---|---|---|---|
Konjac glucomannan/polyvinylidene fluoride | Off-site | Solid | Epigallocatechin-3-gallate | Drug release | [63] |
Konjac glucomannan/sodium polyacrylate | Off-site | Solid | Ofloxacin | Microreactors | [23] |
Konjac glucomannan/polylactic acid | Off-site | Solid | Trans-cinnamic | Food packaging | [24] |
Konjac glucomannan/poly(ε-caprolactone) | Off-site | Solid | Silver nanoparticles | Food packaging | [149] |
Konjac glucomannan/poly (methyl methacrylate) | Off-site | Solid | Chlorogenic acid | Food packaging | [150] |
Ethyl cellulose/polyvinylpyrrolidone | Off-site | Solid | - | Food packaging | [64] |
Polyurethane/sodium dodecyl sulfate | On-site | Janus | - | 3D scaffold | [83] |
Graphene oxide/ bacterial cellulose | On-site | Core–shell | Silver nanoparticles | Antibacterial | [151] |
3.4. Applications of Microfilms as Food Packaging and Purification Systems
4. Droplet Microfluidics for Micro-/Nanoemulsions and Capsules
4.1. Principle of Droplet Microfluidics
4.2. Droplet Microfluidics for Microcapsules
4.3. Droplet Microfluidics for Emulsions
Shell Materials | Embedding Materials | Type | Applications | Refs |
---|---|---|---|---|
Polycaprolactone | Chlorophyll | Microparticle | Drug encapsulation | [47] |
Starch | Nisin | Nanoparticle | Drug encapsulation | [48] |
Silk fibroin/chondroitin sulfate/alginate | Bovine serum albumin/polystyrene latex | Microgel | Drug delivery | [51] |
4,4-methylenediphenyl diisocyanate/ethylenediamine | Pendimethalin | Microcapsule | Drug delivery | [187] |
Chitosan | Curcumin/catechin | Microcapsule | Drug delivery | [188] |
Sodium alginate | Sucralfate | Microcapsule | Intestinal barriers | [189] |
Zein | Nisin | Microcapsule | Drug encapsulation | [190] |
Zein | Lecithin | Microcapsule | Drug delivery | [191] |
N-isopropylacrylamide/methacrylic acid | Lumogen Red | Microcapsule | Drug delivery | [192] |
Liposomes | Plasminogen activator | Liposome | Drug encapsulation | [193] |
Sodium alginate/gelatin | Vitamin A | O/W emulsion | Drug encapsulation | [194] |
Sodium alginate/cellulose nanocrystals | Oil | O/W emulsion | Lipophilic compound delivery | [195] |
Gelatin | β-carotene | O/W emulsion | Drug encapsulation | [196] |
Polyvinyl alcohol | Rifampicin | W/O/W emulsion | Drug delivery | [27] |
PDMS-b-PDMAEMA | Sucrose/catechin | W/O/W emulsion | Drug encapsulation | [34] |
Sodium alginate | Phycocyanin | W/O/W emulsion | Drug delivery | [42] |
Sodium alginate/calcium–ethylenediaminetetraacetic acid | Oil | O/W/O emulsion | Lipophilic compound delivery | [197] |
Silica nanoparticles/poly(diallyldimethylammoniumchloride)/polystyrene sodium sulfate | Trypsin | W/W emulsion | Enzyme delivery | [198] |
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The safety of nanomaterials in food production and packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D.; Augustin, M.A. Food processing needs, advantages and misconceptions. Trends Food Sci. Technol. 2021, 108, 103–110. [Google Scholar] [CrossRef]
- Scholten, E. Composite foods: From structure to sensory perception. Food Funct. 2017, 8, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr. Polym. 2020, 242, 116388. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhao, S.; Guan, X.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll. 2021, 119, 106812. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, W. Micro/nano emulsion delivery systems: Effects of potato protein/chitosan complex on the stability, oxidizability, digestibility and β-carotene release characteristics of the emulsion. Innov. Food Sci. Emerg. Technol. 2022, 77, 102980. [Google Scholar] [CrossRef]
- Dai, J.; Sameen, D.E.; Zeng, Y.; Li, S.; Qin, W.; Liu, Y. An overview of tea polyphenols as bioactive agents for food packaging applications. LWT 2022, 167, 113845. [Google Scholar] [CrossRef]
- Wu, M.; Dong, Q.; Ma, Y.; Yang, S.; Zohaib Aslam, M.; Liu, Y.; Li, Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res. Int. 2022, 160, 111733. [Google Scholar] [CrossRef]
- Cao, G.; Bu, N.; Zeng, T.; Sun, R.; Mu, R.; Pang, J.; Wang, L. Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int. J. Biol. Macromol. 2022, 219, 897–906. [Google Scholar] [CrossRef]
- Pan, L.-H.; Chen, L.-P.; Wu, C.-L.; Wang, J.-F.; Luo, S.-Z.; Luo, J.-P.; Zheng, Z. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability. Food Chem. 2022, 395, 133626. [Google Scholar] [CrossRef]
- Sridhar, K.; Bouhallab, S.; Croguennec, T.; Renard, D.; Lechevalier, V. Application of high-pressure and ultrasound technologies for legume proteins as wall material in microencapsulation: New insights and advances. Trends Food Sci. Technol. 2022, 127, 49–62. [Google Scholar] [CrossRef]
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for food packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Panda, P.K.; Sadeghi, K.; Seo, J. Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag. Shelf Life 2022, 33, 100904. [Google Scholar] [CrossRef]
- Fu, Y.; Dudley, E.G. Antimicrobial-coated films as food packaging: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3404–3437. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Bai, X.; Xiao, Q.; Liu, F.; Zhou, L.; Zhang, C. Detection of adulteration in food based on nondestructive analysis techniques: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2351–2371. [Google Scholar] [CrossRef]
- Torre, R.; Freitas, M.; Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C. Food allergen control: Tropomyosin analysis through electrochemical immunosensing. Food Chem. 2022, 396, 133659. [Google Scholar] [CrossRef]
- Tarhan, Ö.; Jafari, S.M. Chapter Seventeen—Spectroscopic and Chromatographic Analyses of Nanoencapsulated Food Ingredients. In Characterization of Nanoencapsulated Food Ingredients; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 585–615. [Google Scholar]
- Li, X.; You, B.; Shum, H.C.; Chen, C.-H. Future foods: Design, fabrication and production through microfluidics. Biomaterials 2022, 287, 121631. [Google Scholar] [CrossRef]
- Chen, K.-H.; Liu, C.-C.; Lu, S.-Y.; Chen, S.-J.; Sheu, F.; Fu, L.-M. Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chem. Eng. J. 2022, 427, 131530. [Google Scholar] [CrossRef]
- Hong Tham Phan, T.; Kim, S.-J. Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem. Eng. Sci. 2022, 258, 117768. [Google Scholar] [CrossRef]
- Jolvis Pou, K.R.; Raghavan, V.; Packirisamy, M. Microfluidics in smart packaging of foods. Food Res. Int. 2022, 161, 111873. [Google Scholar] [CrossRef]
- Schroën, K.; Wu, L.; Corstens, M. Food-grade microgel capsules tailored for anti-obesity strategies through microfluidic preparation. Curr. Opin. Food Sci. 2022, 45, 100816. [Google Scholar] [CrossRef]
- Mu, R.-J.; Ni, Y.; Wang, L.; Yuan, Y.; Yan, Z.; Pang, J.; Chen, S. Fabrication of ordered konjac glucomannan microfiber arrays via facile microfluidic spinning method. Mater. Lett. 2017, 196, 410–413. [Google Scholar] [CrossRef]
- Lin, W.; Ni, Y.; Liu, D.; Yao, Y.; Pang, J. Robust microfluidic construction of konjac glucomannan-based micro-films for active food packaging. Int. J. Biol. Macromol. 2019, 137, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Chi, J.; Shang, L.; Fan, Q.; Ye, F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater. 2022, 138, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Cheng, Y.; Zhao, Y. Emerging Droplet Microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, G.; Panhwar, F.; Akbar, M.F.; Shu, Z. Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release. J. Drug Deliv. Sci. Technol. 2017, 39, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Pu, H.; Xiao, W.; Sun, D.-W. SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 2017, 70, 114–126. [Google Scholar] [CrossRef]
- Escarpa, A. Lights and shadows on food microfluidics. Lab Chip 2014, 14, 3213–3224. [Google Scholar] [CrossRef]
- Lin, L.; Lin, J.-M. Design and Preparation of Microfluidics Device. In Cell Analysis on Microfluidics; Lin, J.-M., Ed.; Springer: Singapore, 2018; pp. 1–42. [Google Scholar]
- Purwanti, N.; Ichikawa, S.; Neves, M.A.; Uemura, K.; Nakajima, M.; Kobayashi, I. β-lactoglobulin as food grade surfactant for clove oil-in-water and limonene-in-water emulsion droplets produced by microchannel emulsification. Food Hydrocoll. 2016, 60, 98–108. [Google Scholar] [CrossRef]
- Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018, 117, 112–128. [Google Scholar] [CrossRef]
- Stoukatch, S.; Francis, L.A.; Dupont, F.; Kraft, M. Low-cost microfluidic device micromachining and sequential integration with SAW sensor intended for biomedical applications. Sens. Actuators A Phys. 2021, 319, 112526. [Google Scholar] [CrossRef]
- Bodin-Thomazo, N.; Malloggi, F.; Pantoustier, N.; Perrin, P.; Guenoun, P.; Rosilio, V. Formation and stabilization of multiple w/o/w emulsions encapsulating catechin, by mechanical and microfluidic methods using a single pH-sensitive copolymer: Effect of copolymer/drug interaction. Int. J. Pharm. 2022, 622, 121871. [Google Scholar] [CrossRef] [PubMed]
- Escareño, N.; Hassan, N.; Kogan, M.J.; Juárez, J.; Topete, A.; Daneri-Navarro, A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J. Colloid Interface Sci. 2021, 591, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Vit, F.F.; Nunes, R.; Wu, Y.T.; Prado Soares, M.C.; Godoi, N.; Fujiwara, E.; Carvalho, H.F.; Gaziola de la Torre, L. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal. Chim. Acta 2021, 1185, 339068. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Fu, K.; Liu, Y.; Ding, X.; Hu, J.; Wu, W.; Xu, K.; Song, X.; Wang, J.; Mu, Y.; et al. Development of a self-priming PDMS/paper hybrid microfluidic chip using mixed-dye-loaded loop-mediated isothermal amplification assay for multiplex foodborne pathogens detection. Anal. Chim. Acta 2018, 1040, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, X.; Zhang, Y.; Wang, Y.; Wang, B.; Zheng, L.; Zhang, D.; Zhuang, S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem. 2021, 339, 127857. [Google Scholar] [CrossRef]
- Lin, J.J.; Yang, D.; Ou, S.J.L.; Mak, Y.Y.; Lee, D.P.S.; Lim, K.L.; Tai, E.S.; Liu, M.H.; Khan, S.A. Creating texturally tuneable, low calorie and palatable noodle-like food assemblies via microfluidics. Food Hydrocoll. 2022, 127, 107544. [Google Scholar] [CrossRef]
- Mesquita, C.R.S.; Charelli, L.E.; Baptista, L.S.; Naveira-Cotta, C.P.; Balbino, T.A. Continuous-mode encapsulation of human stem cell spheroids using droplet-based glass-capillary microfluidic device for 3D bioprinting technology. Biochem. Eng. J. 2021, 174, 108122. [Google Scholar] [CrossRef]
- Comunian, T.A.; Ravanfar, R.; Alcaine, S.D.; Abbaspourrad, A. Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Res. Int. 2018, 106, 945–951. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, M.; Wang, K.; He, S.; Shi, X.; Yuan, B.; Dong, B.; Wang, Z. Preparation of core-shell microcapsules based on microfluidic technology for the encapsulation, protection and controlled delivery of phycocyanin. J. Drug Deliv. Sci. Technol. 2022, 72, 103361. [Google Scholar] [CrossRef]
- Othman, R.; Vladisavljević, G.T.; Nagy, Z.K. Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem. Eng. Sci. 2015, 137, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Ravanfar, R.; Comunian, T.A.; Dando, R.; Abbaspourrad, A. Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chem. 2018, 241, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Abbaspourrad, A.; Favaro-Trindade, C.S.; Weitz, D.A. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chem. 2014, 152, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Bandara, G.C.; Heist, C.A.; Remcho, V.T. Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein content analysis. Talanta 2018, 176, 589–594. [Google Scholar] [CrossRef]
- Hsiao, C.-J.; Lin, J.-F.; Wen, H.-Y.; Lin, Y.-M.; Yang, C.-H.; Huang, K.-S.; Shaw, J.-F. Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chem. 2020, 306, 125300. [Google Scholar] [CrossRef]
- Liu, X.; Ibarra-Sánchez, L.A.; Miller, M.J.; Lee, Y. Fabrication of zein-modified starch nanoparticle complexes via microfluidic chip and encapsulation of nisin. Curr. Res. Food Sci. 2022, 5, 1110–1117. [Google Scholar] [CrossRef]
- Xie, M.; Chen, T.; Xin, X.; Cai, Z.; Dong, C.; Lei, B. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip. Food Control 2022, 136, 108824. [Google Scholar] [CrossRef]
- Zhou, Z.; Kong, T.; Mkaouar, H.; Salama, K.N.; Zhang, J.M. A hybrid modular microfluidic device for emulsion generation. Sens. Actuators A Phys. 2018, 280, 422–428. [Google Scholar] [CrossRef]
- de Carvalho, B.G.; Taketa, T.B.; Garcia, B.B.M.; Han, S.W.; de la Torre, L.G. Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarrier. Mater. Sci. Eng. C 2021, 118, 111467. [Google Scholar] [CrossRef]
- Sitkov, N.; Zimina, T.; Kolobov, A.; Sevostyanov, E.; Trushlyakova, V.; Luchinin, V.; Krasichkov, A.; Markelov, O.; Galagudza, M.; Kaplun, D. Study of the Fabrication Technology of Hybrid Microfluidic Biochips for Label-Free Detection of Proteins. Micromachines 2022, 13, 20. [Google Scholar] [CrossRef]
- Xie, L.; Zi, X.; Zeng, H.; Sun, J.; Xu, L.; Chen, S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal. Chim. Acta 2019, 1053, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Dias, B.C.; Batista, A.D.; da Silveira Petruci, J.F. μOPTO: A microfluidic paper-based optoelectronic tongue as presumptive tests for the discrimination of alkaloid drugs for forensic purposes. Anal. Chim. Acta 2021, 1187, 339141. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-Q.; Guo, S.-M.; Zuo, P.; Ye, B.-C. A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification. Biosens. Bioelectron. 2015, 63, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Trouillon, R.; Gijs, M.A.M. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv. 2016, 6, 31069–31073. [Google Scholar] [CrossRef]
- Li, C.; Boban, M.; Tuteja, A. Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab Chip 2017, 17, 1436–1441. [Google Scholar] [CrossRef]
- Thompson, B.L.; Birch, C.; Li, J.; DuVall, J.A.; Le Roux, D.; Nelson, D.A.; Tsuei, A.-C.; Mills, D.L.; Krauss, S.T.; Root, B.E.; et al. Microfluidic enzymatic DNA extraction on a hybrid polyester-toner-PMMA device. Analyst 2016, 141, 4667–4675. [Google Scholar] [CrossRef]
- Kaba, A.M.; Jeon, H.; Park, A.; Yi, K.; Baek, S.; Park, A.; Kim, D. Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip. Sens. Actuators B Chem. 2021, 346, 130511. [Google Scholar] [CrossRef]
- Powell, L.; Wiederkehr, R.S.; Damascus, P.; Fauvart, M.; Buja, F.; Stakenborg, T.; Ray, S.C.; Fiorini, P.; Osburn, W.O. Rapid and sensitive detection of viral nucleic acids using silicon microchips. Analyst 2018, 143, 2596–2603. [Google Scholar] [CrossRef]
- Mishra, R.; Maiti, T.K.; Bhattacharyya, T.K. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J. Micromech. Microeng. 2018, 28, 105017. [Google Scholar] [CrossRef]
- Ni, Y.; Lin, W.; Mu, R.-J.; Wang, L.; Zhang, X.; Wu, C.; Pang, J. Microfluidic fabrication of robust konjac glucomannan-based microfiber scaffolds with high antioxidant performance. J. Sol-Gel Sci. Technol. 2019, 90, 214–220. [Google Scholar] [CrossRef]
- Ni, Y.; Lin, W.; Mu, R.-J.; Wu, C.; Wang, L.; Wu, D.; Chen, S.; Pang, J. Robust microfluidic construction of hybrid microfibers based on konjac glucomannan and their drug release performance. RSC Adv. 2018, 8, 26432–26439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, J.; Shen, C.; Yang, Z.; Fawole, O.A.; Li, J.; Wu, D.; Chen, K. Facile microfluidic fabrication and characterization of ethyl cellulose/PVP films with neatly arranged fibers. Carbohydr. Polym. 2022, 292, 119702. [Google Scholar] [CrossRef] [PubMed]
- Nooranidoost, M.; Haghshenas, M.; Muradoglu, M.; Kumar, R. Cell encapsulation modes in a flow-focusing microchannel: Effects of shell fluid viscosity. Microfluid. Nanofluid. 2019, 23, 31. [Google Scholar] [CrossRef]
- Nikoo, A.H.; Malayeri, M.R. Incorporation of geochemical, geometrical and intermolecular interactions into modelling of scale removal in a capillary microchannel. J. Pet. Sci. Eng. 2022, 208, 109311. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y.; Qian, C.; Yang, D.; Nie, J.; Ma, G. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater. 2020, 114, 193–205. [Google Scholar] [CrossRef]
- Liu, Z.; Fontana, F.; Python, A.; Hirvonen, J.T.; Santos, H.A. Microfluidics for Production of Particles: Mechanism. Methodol. Appl. Small 2020, 16, 1904673. [Google Scholar] [CrossRef]
- Deshpande, S.; Dekker, C. On-chip microfluidic production of cell-sized liposomes. Nat. Protoc. 2018, 13, 856–874. [Google Scholar] [CrossRef]
- Lüken, A.; Geiger, M.; Steinbeck, L.; Joel, A.-C.; Lampert, A.; Linkhorst, J.; Wessling, M. Biocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning. Adv. Healthc. Mater. 2021, 10, 2100898. [Google Scholar] [CrossRef]
- Jiang, B.; White, A.; Ou, W.; Van Belleghem, S.; Stewart, S.; Shamul, J.G.; Rahaman, S.O.; Fisher, J.P.; He, X. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioact. Mater. 2022, 16, 346–358. [Google Scholar] [CrossRef]
- Bedram, A.; Moosavi, A. Droplet breakup in an asymmetric microfluidic T junction. Eur. Phys. J. E 2011, 34, 78. [Google Scholar] [CrossRef]
- Davies, R.T.; Kim, D.; Park, J. Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. J. Micromech. Microeng. 2012, 22, 055003. [Google Scholar] [CrossRef]
- Wang, S.; Dong, S.; Shen, H.; Li, B. Preparation of monodisperse S/W/O compound droplets with thick liquid film via a dual-cross microfluidic device. Colloids Surf. A 2021, 620, 126413. [Google Scholar] [CrossRef]
- Gao, M.; Peng, K.; Pan, T.; Long, F.; Lin, Y. Improving the local thermal conductivity of flexible films by microchannels filled with graphene. Compos. Commun. 2021, 25, 100689. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, W.; Zhang, P. Developing advanced polymer films based on microfluidic laminar flow. Giant 2022, 9, 100091. [Google Scholar] [CrossRef]
- Michelon, M.; Leopércio, B.C.; Carvalho, M.S. Microfluidic production of aqueous suspensions of gellan-based microcapsules containing hydrophobic compounds. Chem. Eng. Sci. 2020, 211, 115314. [Google Scholar] [CrossRef]
- Wang, K.; Ni, J.; Li, H.; Tian, X.; Tan, M.; Su, W. Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device. Food Res. Int. 2022, 160, 111723. [Google Scholar] [CrossRef]
- Du, J.; Ibaseta, N.; Guichardon, P. Characterization of polyurea microcapsules synthesized with an isocyanate of low toxicity and eco-friendly esters via microfluidics: Shape, shell thickness, morphology and encapsulation efficiency. Chem. Eng. Res. Des. 2022, 182, 256–272. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Liu, X.; Chen, Y. Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chem. Eng. Sci. 2021, 243, 116648. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, C.; Tahir, M.F.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels. Chem. Eng. Process.-Process Intensif. 2018, 132, 148–159. [Google Scholar] [CrossRef]
- Clark, I.; Thakur, R.; Abate, A. Concentric electrodes improve microfluidic droplet sorting. Lab Chip 2018, 18, 710–713. [Google Scholar] [CrossRef]
- Ahi, E.E.; Torul, H.; Zengin, A.; Sucularlı, F.; Yıldırım, E.; Selbes, Y.; Suludere, Z.; Tamer, U. A capillary driven microfluidic chip for SERS based hCG detection. Biosens. Bioelectron. 2022, 195, 113660. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, X.; Yang, W.; Xu, F.; Chen, B.; Peng, J.; Huang, J.; Mi, S. Stretch-driven microfluidic chip for nucleic acid detection. Biotechnol. Bioeng. 2021, 118, 3559–3568. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, M.; Sartipzadeh Hematabad, O.; Askari, E.; Shokati, F.; Bakhshi, A.; Moghadam, S.; Olfatbakhsh, A.; Al Sadat Hashemi, E.; Khorsand Ahmadi, M.; Morteza Naghib, S.; et al. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J. Adv. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, Y.; Trujillo de Santiago, G.; Alvarez, M.; Ribas, J.; Jonas, S.; Weiss, P.; Andrews, A.; Aizenberg, J.; Khademhosseini, A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017, 2, 17016. [Google Scholar] [CrossRef]
- Shakeri, A.; Khan, S.; Didar, T.F. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 2021, 21, 3053–3075. [Google Scholar] [CrossRef]
- Verma, G.; Mondal, K.; Gupta, A. Si-based MEMS resonant sensor: A review from microfabrication perspective. Microelectron. J. 2021, 118, 105210. [Google Scholar] [CrossRef]
- Sahu, A.K.; Malhotra, J.; Jha, S. Laser-based hybrid micromachining processes: A review. Opt. Laser Technol. 2022, 146, 107554. [Google Scholar] [CrossRef]
- Sairam, K.P.; Kumar, D.; Ang, D.S. Highly Transparent ITO/HfO2/ITO Device for Visible-Light Sensing. IEEE Access 2020, 8, 91648–91652. [Google Scholar] [CrossRef]
- Karabchevsky, A.; Katiyi, A.; Ang, A.S.; Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 2020, 9, 3733–3753. [Google Scholar] [CrossRef]
- Li, K.; Xu, G.; Huang, X.; Chen, Q.; Xie, Z.; Gong, F. Surface evolution analysis of CrxWyNz coatings on WC mold in glass molding process. Surf. Coat. Technol. 2020, 393, 125839. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.Y.; Ye, P.; Huang, Z.; Ng, A.Y.R.; Du, Z.; Dong, Z.; Tang, D.; Gan, C.L. 3D Printing of Transparent Spinel Ceramics with Transmittance Approaching the Theoretical Limit. Adv. Mater. 2021, 33, 2007072. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Ling, S.; Huang, J.; Xu, J. Multiphase Microfluidics: Fundamentals, Fabrication, and Functions. Small 2020, 16, 1906357. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Ma, M.; Li, H.; Zhang, F.; Liu, F.; Liu, Z.; Li, X. Integrated wireless microfluidic liquid sensors based on low temperature co-fired ceramic (LTCC) technology. Sens. Actuators A Phys. 2022, 346, 113840. [Google Scholar] [CrossRef]
- Montes, R.; Céspedes, F.; Baeza, M. Determination of pesticides using a low-temperature co-fired ceramic microfluidic platform. Instrum. Sci. Technol. 2018, 46, 76–92. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020, 41, 1900430. [Google Scholar] [CrossRef]
- Lau, K.; Akhavan, B.; Lord, M.S.; Bilek, M.M.; Rnjak-Kovacina, J. Dry Surface Treatments of Silk Biomaterials and Their Utility in Biomedical Applications. ACS Biomater. Sci. Eng. 2020, 6, 5431–5452. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Tian, J.; Wu, T.; Li, Z.; Xing, F.; Fu, S. Polymer-based microfluidic devices: A comprehensive review on preparation and applications. Polym. Eng. Sci. 2022, 62, 3–24. [Google Scholar] [CrossRef]
- Le, T.N.Q.; Tran, N.N.; Escribà-Gelonch, M.; Serra, C.A.; Fisk, I.; McClements, D.J.; Hessel, V. Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chem. Soc. Rev. 2021, 50, 11979–12012. [Google Scholar] [CrossRef]
- Rabiee, N.; Ahmadi, S.; Fatahi, Y.; Rabiee, M.; Bagherzadeh, M.; Dinarvand, R.; Bagheri, B.; Zarrintaj, P.; Saeb, M.R.; Webster, T.J. Nanotechnology-assisted microfluidic systems: From bench to bedside. Nanomedicine 2021, 16, 237–258. [Google Scholar] [CrossRef]
- Saez, J.; Catalan-Carrio, R.; Owens, R.M.; Basabe-Desmonts, L.; Benito-Lopez, F. Microfluidics and materials for smart water monitoring: A review. Anal. Chim. Acta 2021, 1186, 338392. [Google Scholar] [CrossRef]
- Bamshad, A.; Cho, H.J. Laserjet Printed Micro/Nano Sensors and Microfluidic Systems: A Simple and Facile Digital Platform for Inexpensive, Flexible, and Low-Volume Devices. Adv. Mater. Technol. 2021, 6, 2100401. [Google Scholar] [CrossRef]
- Hsu, Y.M.; Chang, C.C. The portable fluorescence detection system matched with PDMS microfluidic biochip for DNA hybridization detection. Optik 2015, 126, 2600–2605. [Google Scholar] [CrossRef]
- Lakhera, P.; Chaudhary, V.; Bhardwaj, B.; Kumar, P.; Kumar, S. Development and recent advancement in microfluidics for point of care biosensor applications: A review. Biosens. Bioelectron. X 2022, 11, 100218. [Google Scholar] [CrossRef]
- Campbell, S.B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater. Sci. Eng. 2021, 7, 2880–2899. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Ciprioti, S.V. Characterization of Hybrid Materials Prepared by Sol-Gel Method for Biomedical Implementations. A Critical Review. Materials 2021, 14, 1788. [Google Scholar] [CrossRef]
- Qin, Y.; Yeh, P.; Hao, X.; Cao, X. Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly(amidoamine) engraftment. Colloids Surf. B 2015, 127, 247–255. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Z.; Lee, Y.-K.; Mak, A.; Yang, M. A PDMS microfluidic system with poly(ethylene glycol)/SU-8 based apertures for planar whole cell-patch-clamp recordings. Sens. Actuators A Phys. 2011, 166, 219–225. [Google Scholar] [CrossRef]
- Ecochard, Y.; Caillol, S. Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties? Eur. Polym. J. 2020, 137, 109915. [Google Scholar] [CrossRef]
- Hassanpour-Tamrin, S.; Sanati-Nezhad, A.; Sen, A. A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Sci. Rep. 2021, 11, 4821. [Google Scholar] [CrossRef]
- Chang, X.; Chen, L.; Chen, J.; Zhu, Y.; Guo, Z. Advances in transparent and stretchable strain sensors. Adv. Compos. Hybrid Mater. 2021, 4, 435–450. [Google Scholar] [CrossRef]
- Hsieh, Y.-K.; Chen, S.-C.; Huang, W.-L.; Hsu, K.-P.; Gorday, K.A.V.; Wang, T.; Wang, J. Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation. Polymers 2017, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogosanu, D.-E.; Verplancke, R.; Dubruel, P.; Vanfleteren, J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater. Des. 2016, 89, 1315–1324. [Google Scholar] [CrossRef]
- Riahi, R.; Tamayol, A.; Shaegh, S.A.M.; Ghaemmaghami, A.M.; Dokmeci, M.R.; Khademhosseini, A. Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 2015, 7, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cai, Y.; Cao, Y.; Hong, Z.; Chai, Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening, TrAC. Trends Anal. Chem. 2021, 134, 116118. [Google Scholar] [CrossRef]
- Hu, X.; Yang, F.; Guo, M.; Pei, J.; Zhao, H.; Wang, Y. Fabrication of polyimide microfluidic devices by laser ablation based additive manufacturing. Microsyst. Technol. 2020, 26, 1573–1583. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Zhou, J.; Wu, H. Materials for Microfluidic Chip Fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef]
- Hwang, J.; Cho, Y.H.; Park, M.S.; Kim, B.H. Microchannel Fabrication on Glass Materials for Microfluidic Devices. Int. J. Precis. Eng. Manuf. 2019, 20, 479–495. [Google Scholar] [CrossRef]
- Shakeri, A.; Jarad, N.A.; Leung, A.; Soleymani, L.; Didar, T.F. Biofunctionalization of Glass- and Paper-Based Microfluidic Devices: A Review. Adv. Mater. Interfaces 2019, 6, 1900940. [Google Scholar] [CrossRef]
- Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- Shakeri, A.; Jarad, N.A.; Khan, S.; FDidar, T. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal. Chim. Acta 2022, 1209, 339283. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Chen, G. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 2008, 29, 1801–1814. [Google Scholar] [CrossRef] [PubMed]
- Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers 2012, 4, 1349–1398. [Google Scholar] [CrossRef]
- Arscott, S. SU-8 as a material for lab-on-a-chip-based mass spectrometry. Lab Chip 2014, 14, 3668–3689. [Google Scholar] [CrossRef] [PubMed]
- Abgrall, P.; Conedera, V.; Camon, H.; Gue, A.-M.; Nguyen, N.-T. SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis 2007, 28, 4539–4551. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Yang, Y.; Chu, J.; He, B. Emerging paper microfluidic devices. Analyst 2019, 144, 6497–6511. [Google Scholar] [CrossRef] [PubMed]
- Alsaeed, B.; Mansour, F.R. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem. J. 2020, 155, 104664. [Google Scholar] [CrossRef]
- Du, X.-Y.; Li, Q.; Wu, G.; Chen, S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Adv. Mater. 2019, 31, 1903733. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef] [Green Version]
- Jun, Y.; Kang, E.; Chae, S.; Lee, S.-H. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 2014, 14, 2145–2160. [Google Scholar] [CrossRef]
- Kamnerdsook, A.; Juntasaro, E.; Khemthongcharoen, N.; Chanasakulniyom, M.; Sripumkhai, W.; Pattamang, P.; Promptmas, C.; Atthi, N.; Jeamsaksiri, W. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic–hydrophobic surface. RSC Adv. 2021, 11, 35653–35662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Peng, X.; Fan, P.; Zhou, Y.; Xiao, P. Recent Progress in Preparation and Application of Fibers Using Microfluidic Spinning Technology. Macromol. Chem. Phys. 2022, 223, 2100451. [Google Scholar] [CrossRef]
- Kiriya, D.; Kawano, R.; Onoe, H.; Takeuchi, S. Microfluidic Control of the Internal Morphology in Nanofiber-Based Macroscopic Cables. Angew. Chem. 2012, 51, 7942–7947. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Du, X.-Y.; Zhang, Y.-W.; Chen, S. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C 2017, 5, 9398–9404. [Google Scholar] [CrossRef]
- Chen, J.; Hu, J.; Sasaki, S.; Naka, K. Modular Assembly of a Conserved Repetitive Sequence in the Spider Eggcase Silk: From Gene to Fiber. ACS Biomater. Sci. Eng. 2018, 4, 2748–2757. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, F.; Lu, J.; Shang, L.; Xie, Z.; Zhao, Y.; Chen, Y.; Gu, Z. Bioinspired Multicompartmental Microfibers from Microfluidics. Adv. Mater. 2014, 26, 5184–5190. [Google Scholar] [CrossRef]
- Daniele, M.A.; Radom, K.; Ligler, F.S.; Adams, A.A. Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping. RSC Adv. 2014, 4, 23440–23446. [Google Scholar] [CrossRef]
- Jung, J.-H.; Choi, C.-H.; Chung, S.; Chung, Y.-M.; Lee, C.-S. Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 2009, 9, 2596–2602. [Google Scholar] [CrossRef]
- Choi, C.-H.; Yi, H.; Hwang, S.; Weitz, D.A.; Lee, C.-S. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab Chip 2011, 11, 1477–1483. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Wang, Y.; Xu, C.; Guo, Y.; Qin, J. Simple Spinning of Heterogeneous Hollow Microfibers on Chip. Adv. Mater. 2016, 28, 6649–6655. [Google Scholar] [CrossRef]
- Cheng, J.; Jun, Y.; Qin, J.; Lee, S.-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017, 114, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Angelozzi, M.; Miotto, M.; Penolazzi, L.; Mazzitelli, S.; Keane, T.; Badylak, S.F.; Piva, R.; Nastruzzi, C. Composite ECM–alginate microfibers produced by microfluidics as scaffolds with biomineralization potential. Mater. Sci. Eng. C 2015, 56, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chen, Q.; Shi, C.; Chen, M.; Ma, K.; Wan, J.; Liu, R. Dealing with the Foreign-Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Adv. Funct. Mater. 2021, 31, 2007226. [Google Scholar] [CrossRef]
- Chaurasia, A.S.; Sajjadi, S. Flexible Asymmetric Encapsulation for Dehydration-Responsive Hybrid Microfibers. Small 2016, 12, 4146–4155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Z.-J.; Wang, W.; Xie, R.; Ju, X.-J.; Liu, Z.; Chu, L.-Y. Microfluidic generation of hollow Ca-alginate microfibers. Lab Chip 2016, 16, 2673–2681. [Google Scholar] [CrossRef]
- Pham, U.H.T.; Hanif, M.; Asthana, A.; Iqbal, S.M. A microfluidic device approach to generate hollow alginate microfibers with controlled wall thickness and inner diameter. J. Appl. Phys. 2015, 117, 214703. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Ni, Y.; Pang, J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int. J. Biol. Macromol. 2020, 149, 853–860. [Google Scholar] [CrossRef]
- Lin, W.; Ni, Y.; Pang, J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr. Polym. 2019, 222, 114986. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, T.; Dai, B.; Zhang, H.; Chen, X.; Yang, J.; Liu, J.; Sun, D. Rapid Fabrication of Composite Hydrogel Microfibers for Weavable and Sustainable Antibacterial Applications. ACS Sustain. Chem. Eng. 2016, 4, 6534–6542. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, D.; Shao, Z.; Zhu, P.; Qiu, J.; Zhu, L. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking. Carbohydr. Polym. 2022, 296, 119886. [Google Scholar] [CrossRef]
- Ni, Y.; Lin, W.; Mu, R.; Wu, C.; Lin, Z.; Chen, S.; Pang, J. Facile fabrication of novel konjac glucomannan films with antibacterial properties via microfluidic spinning strategy. Carbohydr. Polym. 2019, 208, 469–476. [Google Scholar] [CrossRef] [PubMed]
- He, X.-H.; Wang, W.; Liu, Y.-M.; Jiang, M.-Y.; Wu, F.; Deng, K.; Liu, Z.; Ju, X.-J.; Xie, R.; Chu, L.-Y. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection. ACS Appl. Mater. Interfaces 2015, 7, 17471–17481. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, J.; Zhao, Z.; Yu, Y.; Shang, L.; Zhao, Y. Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption. ChemPhysChem 2018, 19, 1990–1994. [Google Scholar] [CrossRef]
- Shang, L.; Wang, Y.; Yu, Y.; Wang, J.; Zhao, Z.; Xu, H.; Zhao, Y. Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics. J. Mater. Chem. A 2017, 5, 15026–15030. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, Y.; Khalid, N.; Shu, G.; Neves, M.A.; Kobayashi, I.; Nakajima, M. Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocoll. 2020, 108, 105977. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, X.; Wang, S.; Liu, D. Generation and evolution of double emulsions in a circular microchannel. Chem. Eng. Sci. 2022, 255, 117683. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Li, N.; Wei, J. Fabrication of multicolor Janus microbeads based on photonic crystals and upconversion nanoparticles. J. Colloid Interface Sci. 2021, 592, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Kost, B.; Kunicka-Styczyńska, A.; Plucińska, A.; Rajkowska, K.; Basko, M.; Brzeziński, M. Microfluidic preparation of antimicrobial microparticles composed of l-lactide/1,3-dioxolane (co)polymers loaded with quercetin. Food Chem. 2022, 396, 133639. [Google Scholar] [CrossRef]
- Tsougeni, K.; Tserepi, A.; Gogolides, E. Photosensitive poly(dimethylsiloxane) materials for microfluidic applications. Microelectron. Eng. 2007, 84, 1104–1108. [Google Scholar] [CrossRef]
- Seiffert, S.; Friess, F.; Lendlein, A.; Wischke, C. Faster droplet production by delayed surfactant-addition in two-phase microfluidics to form thermo-sensitive microgels. J. Colloid Interface Sci. 2015, 452, 38–42. [Google Scholar] [CrossRef]
- Gaal, G.; Mendes, M.; de Almeida, T.P.; Piazzetta, M.H.O.; Gobbi, Â.L.; Riul, A.; Rodrigues, V. Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sens. Actuators B Chem. 2017, 242, 35–40. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Wu, F.; Min, L.; Chen, X.; Hou, X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small 2020, 16, 1905318. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Q.; Guo, P.; Zhou, Y.-G. Dip-Pen Nanolithography Enabled Functional Nanomaterials and Their Applications. Adv. Mater. Technol. 2021, 6, 2000897. [Google Scholar] [CrossRef]
- Saboti, D.; Maver, U.; Chan, H.-K.; Planinšek, O. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying. J. Pharm. Sci. 2017, 106, 1881–1888. [Google Scholar] [CrossRef]
- Wu, L.; Guo, Z.; Liu, W. Surface behaviors of droplet manipulation in microfluidics devices. Adv. Colloid Interface Sci. 2022, 308, 102770. [Google Scholar] [CrossRef]
- Gu, H.; Rong, F.; Tang, B.; Zhao, Y.; Fu, D.; Gu, Z. Photonic Crystal Beads from Gravity-Driven Microfluidics. Langmuir 2013, 29, 7576–7582. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, B. Controlled formation of double-emulsion drops in sudden expansion channels. J. Colloid Interface Sci. 2014, 415, 26–31. [Google Scholar] [CrossRef]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; He, Y. Multiphysics numerical investigation of photothermal self-driving characteristics of SiO2@Au Janus microparticles for drug delivery. Particuology 2022, 76, 165–175. [Google Scholar] [CrossRef]
- Raza, Z.A.; Khalil, S.; Ayub, A.; Banat, I.M. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr. Res. 2020, 492, 108004. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.; Zhu, Q.-L.; Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2017, 3, 17075. [Google Scholar] [CrossRef]
- Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci. Technol. 2018, 78, 167–179. [Google Scholar] [CrossRef]
- Siavashy, S.; Soltani, M.; Ghorbani-Bidkorbeh, F.; Fallah, N.; Farnam, G.; Mortazavi, S.A.; Shirazi, F.H.; Tehrani, M.H.H.; Hamedi, M.H. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr. Polym. 2021, 265, 118027. [Google Scholar] [CrossRef]
- Marra, F.; De Vivo, A.; Sarghini, F. Virtualization of fluid-dynamics in micro-air assisted extruders for food microfluidic based encapsulation. J. Food Eng. 2017, 213, 89–98. [Google Scholar] [CrossRef]
- Kang, S.-M.; Lee, J.-H.; Huh, Y.S.; Takayama, S. Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomater. Sci. Eng. 2021, 7, 2864–2879. [Google Scholar] [CrossRef]
- Mu, R.-J.; Yuan, Y.; Wang, L.; Ni, Y.; Li, M.; Chen, H.; Pang, J. Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocoll. 2018, 76, 42–48. [Google Scholar] [CrossRef]
- Bu, N.; Huang, L.; Cao, G.; Pang, J.; Mu, R. Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: Preparation, characterization, and application. J. Sci. Food Agric. 2022, 102, 6555–6565. [Google Scholar] [CrossRef]
- Bu, N.; Sun, R.; Huang, L.; Lin, H.; Pang, J.; Wang, L.; Mu, R. Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. Int. J. Biol. Macromol. 2022, 220, 1072–1083. [Google Scholar] [CrossRef]
- Murray, B.S. Pickering emulsions for food and drinks. Curr. Opin. Food Sci. 2019, 27, 57–63. [Google Scholar] [CrossRef]
- Xu, S.; Nisisako, T. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device. Sci. Rep. 2020, 10, 4549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, C.; Yoon, J.; Ryu, S.A.; Choi, C.-H.; Lee, H. Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation. ACS Appl. Mater. Interfaces 2018, 10, 40366–40371. [Google Scholar] [CrossRef] [PubMed]
- Kantak, C.; Beyer, S.; Yobas, L.; Bansal, T.; Trau, D. A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 2011, 11, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-H.; Lee, H.; Abbaspourrad, A.; Kim, J.H.; Fan, J.; Caggioni, M.; Wesner, C.; Zhu, T.; Weitz, D.A. Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. Adv. Mater. 2016, 28, 3340–3344. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Lu, X.; Que, H.; Wang, D.; He, T.; Liang, D.; Liu, X.; Chen, J.; Ding, C.; Xiu, P.; et al. Preparation and Characterization of Pendimethalin Microcapsules Based on Microfluidic Technology. ACS Omega 2021, 6, 34160–34172. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-L.; Ju, X.-J.; Mu, X.-T.; Wang, W.; Xie, R.; Liu, Z.; Chu, L.-Y. Core–Shell Chitosan Microcapsules for Programmed Sequential Drug Release. ACS Appl. Mater. Interfaces 2016, 8, 10524–10534. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Y.; Zhang, X.; Wu, X.; Ren, J.; Zhao, Y. Biomimetic intestinal barrier based on microfluidic encapsulated sucralfate microcapsules. Sci. Bull. 2019, 64, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Ibarra-Sánchez, L.A.; Luu, L.; Miller, M.J.; Lee, Y. Co-assembly of nisin and zein in microfluidics for enhanced antilisterial activity in Queso Fresco. LWT 2019, 111, 355–362. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, Y. Microfluidic fabrication of hollow protein microcapsules for rate-controlled release. RSC Adv. 2017, 7, 49455–49462. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Gong, J.; Ma, J. Microfluidic Fabrication of Monodisperse Microcapsules for Thermo-Triggered Release of Liposoluble Drugs. Polymers 2020, 12, 2200. [Google Scholar] [CrossRef]
- Kandadai, M.A.; Mukherjee, P.; Shekhar, H.; Shaw, G.J.; Papautsky, I.; Holland, C.K. Microfluidic manufacture of rt-PA -loaded echogenic liposomes. Biomed. Microdevices 2016, 18, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, R.; Zhang, Y.; Pan, Y.; Shum, H.C.; Jiang, Z. Alginate-gelatin emulsion droplets for encapsulation of vitamin A by 3D printed microfluidics. Particuology 2022, 64, 164–170. [Google Scholar] [CrossRef]
- Marquis, M.; Alix, V.; Capron, I.; Cuenot, S.; Zykwinska, A. Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery. ACS Biomater. Sci. Eng. 2016, 2, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, M.A.; Ribeiro, H.S.; Kobayashi, I.; Nakajima, M. Encapsulation of Lipophilic Bioactive Molecules by Microchannel Emulsification. Food Biophys. 2008, 3, 126–131. [Google Scholar] [CrossRef]
- Mou, C.-L.; Deng, Q.-Z.; Hu, J.-X.; Wang, L.-Y.; Deng, H.-B.; Xiao, G.; Zhan, Y. Controllable preparation of monodisperse alginate microcapsules with oil cores. J. Colloid Interface Sci. 2020, 569, 307–319. [Google Scholar] [CrossRef]
- Zou, Y.; Song, J.; You, X.; Yao, J.; Xie, S.; Jin, M.; Wang, X.; Yan, Z.; Zhou, G.; Shui, L. Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS Appl. Mater. Interfaces 2019, 11, 21227–21238. [Google Scholar] [CrossRef]
Material | Type (Microchannel Arrangement) | Applications | Refs |
---|---|---|---|
PDMS | Cross-junction | Construction of emulsions and encapsulation of active substances | [34] |
Y-junction | Controlled assembly of nanoparticles and drug delivery | [35] | |
Multichannel | Screening of drugs | [36] | |
Multichannel | Detection of pathogens | [37] | |
Multichannel | Immunoassay | [38] | |
Glass | Capillary | Creation of food assemblies | [39] |
Capillary | 3D bioprinting | [40] | |
Capillary | Construction of multiple emulsions and protection of natural pigments | [41] | |
Capillary | Encapsulation, protection, and delivery of protein | [42] | |
Capillary | Construction of nanoparticles for pharmaceutical delivery | [43] | |
Capillary | Preservation of oil | [44] | |
Capillary | Encapsulation of food ingredients | [45] | |
Cross-junction | Content analysis of protein | [46] | |
Cross-junction | Enhancement of the stability of pigment | [47] | |
T-junction | Encapsulation of polypeptide | [48] | |
Glass-based hybrids | Capillary | Detection of pathogens | [49] |
Cross-junction | Generation of emulsion | [50] | |
Cross-junction | Delivery of nanocarriers | [51] | |
Serpentine channel | Detection of protein | [52] | |
Paper | Multichannel | Monitoring systems of food adulterants | [53] |
Multichannel | Detection of drugs | [54] | |
Humped circle | Detection of pathogens | [55] | |
Syringe needle | Delivery of drugs | [56] | |
Cross-junction | Water-in-oil emulsification | [57] | |
PMMA | Multichannel | Extraction of DNA | [58] |
Polycarbonate | Capillary | Extraction of DNA | [59] |
Fused silica | Serpentine channel | Detection of nucleic acids | [60] |
Hollow microneedle | Delivery of drugs | [61] | |
Stainless steel | Syringe needle | Wound dressing | [62] |
Syringe needle | Release of drugs | [63] | |
Syringe needle | Microreactor for amine detection | [23] | |
Syringe needle | Food packaging | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, R.; Bu, N.; Pang, J.; Wang, L.; Zhang, Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022, 11, 3727. https://doi.org/10.3390/foods11223727
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods. 2022; 11(22):3727. https://doi.org/10.3390/foods11223727
Chicago/Turabian StyleMu, Ruojun, Nitong Bu, Jie Pang, Lin Wang, and Yue Zhang. 2022. "Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications" Foods 11, no. 22: 3727. https://doi.org/10.3390/foods11223727
APA StyleMu, R., Bu, N., Pang, J., Wang, L., & Zhang, Y. (2022). Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods, 11(22), 3727. https://doi.org/10.3390/foods11223727