Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Material and Preparation
2.3. Physical and Mechanical Properties
2.3.1. Flexural Strength
2.3.2. Drop Test
2.3.3. Measurement of Color Parameters
2.3.4. Differential Scanning Calorimetry (DSC)
2.3.5. Water Activity
2.3.6. Water Absorption
2.3.7. Biodegradability Test
2.4. Nutritional Properties
2.4.1. Antioxidant Activity of the Extracts by DPPH Assay
2.4.2. Total Phenolics Content (TPC)
2.5. Statistical Analysis
3. Results
3.1. Mechanical and Thermal Properties
3.2. Absorption Properties and Stability of Packaging
3.3. Nutritional Properties
3.4. Biodegradability Properties
4. Conclusions and Future Perspectives
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Lobato, L.; López-Sánchez, Y.; Blejman, G.; Jurado, F.; Moyano-Fuentes, J.; Vera, D. Life cycle assessment of the Spanish virgin olive oil production: A case study for Andalusian region. J. Clean. Prod. 2021, 290, 125677. [Google Scholar] [CrossRef]
- Hazreen-Nita, M.K.; Kari, Z.A.; Mat, K.; Rusli, N.D.; Sukri, S.A.M.; Harun, H.C.; Lee, S.W.; Rahman, M.M.; Norazmi-Lokman, N.H.; Nur-Nazifah, M.; et al. Olive oil by-products in aquafeeds: Opportunities and challenges. Aquac. Rep. 2022, 22, 100998. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. RCR Adv. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Guclu, G.; Kelebek, H.; Selli, S. Antioxidant activity in olive oils. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2021; pp. 313–325. [Google Scholar] [CrossRef]
- Arulprakasajothi, M.; Beemkumar, N.; Parthipan, J. Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste. Arab. J. Sci. Eng. 2020, 45, 563–574. [Google Scholar] [CrossRef]
- Meena, R.A.A.; Banu, J.R.; Kannah, R.Y.; Yogalakshmi, K.N.; Kumar, G. Biohythane production from food processing wastes—Challenges and perspectives. Bioresour. Technol. 2020, 298, 122449. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, P.; Gilliland, J.A. A systematic review of food losses and food waste generation in developed countries. Waste Resour. Manag. 2017, 170, 1747–6534. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lu, F.; Zhang, H.; Wang, W.; Shao, L.; Ye, J.; He, P. Is incineration the terminator of plastics and microplastics. J. Hazard. Mater. 2021, 401, 123429. [Google Scholar] [CrossRef] [PubMed]
- Skrypko, T.; Popadynets, N.; Yakhno, T.; Shulla, R.; Vlasenko, T.; Irtyshcheva, I.; Boiko, Y. Optimizing the polymer waste supply chains based on circular economy. Uncertain Supply Chain Manag. 2021, 9, 343–350. [Google Scholar] [CrossRef]
- Egessa, R.; Nankabirwa, A.; Basooma, R.; Nabwire, R. Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria. Environ. Pollut. 2020, 257, 113442. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, J.; Wang, M.; Ying, R.; Li, X.; Hu, Z.; Zhang, Y. Disposable plastic materials release microplastics and harmful substances in hot water. Sci. Total Environ. 2021, 818, 151685. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B. Biodegradable and compostable alternatives to conventional plastics. Philosophical transactions of the Royal Society of London. Ser. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [Green Version]
- Dybka-Stępień, K.; Antolak, H.; Kmiotek, M.; Piechota, D.; Koziróg, A. Disposable Food Packaging and Serving Materials—Trends and Biodegradability. Polymers 2021, 13, 3606. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- George, N.; Debroy, A.; Bhat, S.; Bindal, S.; Singh, S. Biowaste to Bioplastics: An Ecofriendly Approach for a Sustainable Future. Appl. Biotechnol. Rep. 2021, 3, 221–233. [Google Scholar] [CrossRef]
- Razza, F.; Innocenti, F.D.; Dobon, A.; Aliaga, C.; Sanchez, C.; Hortal, M. Environmental profle of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J. Clean. Prod. 2015, 102, 493–500. [Google Scholar] [CrossRef]
- Spierling, S.; Knüpfer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.-J. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-based materials and transitioning to a circular economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Espadas-Aldana, G.; Guaygua-Amaguaña, P.; Vialle, C.; Belaud, J.P.; Evon, P.; Sablayrolles, C. Life Cycle Assessment of Olive Pomace as a Reinforcement in Polypropylene and Polyethylene Biocomposite Materials: A New Perspective for the Valorization of This Agricultural By-Product. Coatings 2021, 11, 525. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Coelho, A.; de Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part I: Energy consumption and CO2 emissions. J. Waste Manag. 2013, 33, 1258–1267. [Google Scholar] [CrossRef]
- Olt, J.; Maksarov, V.; Soots, K.; Leemet, T. Technology for the Production of Environment Friendly Tableware. Environ. Clim. Technol. 2020, 24, 57–66. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, Y.; Liu, Y.; Lu, B.; Ji, J.; Ding, Y. High performance and water-degradable poly(neopentyl terephthalate-co-neopentyl succinate) copolymers: Synthesis, properties, and hydrolysis in different aquatic bodies. J. Appl. Polym. Sci. 2022, e53316. [Google Scholar] [CrossRef]
- Kılıç, R. The Problem of Hunger In The World and A New Model Proposal To Solve This Problem. Balk. Sos. Bilim. Derg. 2022, 11, 63–68. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxoo, S.; Jeetah, P. Feasibility of producing biodegradable disposable paper cup from pineapple peels, orange peels and Mauritian hemp leaves with beeswax coating. SN Appl. Sci. 2020, 2, 1359. [Google Scholar] [CrossRef]
- Iewkittayakorn, J.; Khunthongkaew, P.; Wongnoipla, Y.; Kaewtatip, K.; Suybangdum, P.; Sopajarn, A. Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. J. Mater. Res. Technol. 2020, 9, 5056–5066. [Google Scholar] [CrossRef]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Food Sci. Technol. Res. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Sun, X.; Cao, D.; Zhu, H. Biodegradable, Hygienic, and Compostable Tableware from Hybrid Sugarcane and Bamboo Fibers as Plastic Alternative. Matter 2020, 3, 2066–2079. [Google Scholar] [CrossRef]
- Szulc, J.; Machnowski, W.; Kowalska, S.; Jachowicz, A.; Ruman, T.; Steglińska, A.; Gutarowska, B. Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers 2020, 12, 344. [Google Scholar] [CrossRef] [Green Version]
- BaratianGhorghi, Z.; Faezian, A.; Yeganehzad, S.; Hesarinejad, M.A. Changes in Thermal, Textural, Color and Microstructure Properties of Oleogel Made from Beeswax with Grape Seed Oil under the Effect of Cooling Rate and Oleogelator Concentration. Res. Innov. Food Sci. Technol. 2022, 11, 43–54. [Google Scholar] [CrossRef]
- Wang, D.; Bean, S.; McLaren, K.; Seib, P.; Madl, R.; Tuinstra, M.; Shi, Y.; Lenz, M.; Wu, X.; Zhao, R. Grain sorghum is a viable feedstock for ethanol production. J. Ind. Microbiol. Biotechnol. 2008, 35, 313–320. [Google Scholar] [CrossRef]
- Adebowale, A.R.A.; Naushad Emmambux, M.; Beukes, M.; Taylor, J.R.N. Fractionation and characterization of teff proteins. J. Cereal Sci. 2011, 54, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Mészáros Szécsény, K.; Esztelecki, I.; Pokol, G. Adventages and limits on usage of thermal methods in complex systems: Bread and bread additives analyses. J. Therm. Anal. Calorim. 2007, 89, 829–833. [Google Scholar] [CrossRef]
- Arvanitoyannis, I. Totally and Partially Biodegradable Polymer Blends Based on Natural and Synthetic Macromolecules: Preparation, Physical Properties, and Potential as Food Packaging Materials. J. Macromol. Sci. Part. C Polym. Rev. 1999, 39, 205–271. [Google Scholar] [CrossRef]
- Droussi, Z.; D’orazio, V.; Provenzano, M.R.; Hafidi, M.; Ouatmane, A. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 2009, 164, 1281–1285. [Google Scholar] [CrossRef]
- Rolandelli, G.; Farroni, A.E.; Buera, M.d.P. Analysis of molecular mobility in corn and quinoa flours through 1H NMR and its relationship with water distribution, glass transition and enthalpy relaxation. Food Chem. 2022, 373, 131422. [Google Scholar] [CrossRef]
- Bogdanova, E.; Kocherbitov, V. Assessment of activation energy of enthalpy relaxation in sucrose-water system: Effects of DSC cycle type and sample thermal history. J. Therm. Anal. Calorim 2022, 147, 9695–9709. [Google Scholar] [CrossRef]
- Garske, R.P.; Mercali, G.D.; Thys, R.C.S.; Cladera-Olivera, F. Cassava starch and chickpea flour pre-treated by microwave as a substitute for gluten-free bread additives. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (a w) on Microbial Stability as a Hurdle in Food Preservation. Water Activity in Foods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar] [CrossRef]
- Ntougias, S.; Bourtzis, K.; Tsiamis, G. The microbiology of olive mill wastes. Biomed. Res. Int. 2013, 2013, 784591. [Google Scholar] [CrossRef] [Green Version]
- Songok, J.; Salminen, P.; Toivakka, M. Temperature effects on dynamic water absorption into paper. J. Colloid Interface Sci. 2014, 418, 373–377. [Google Scholar] [CrossRef]
- Pulivarthi, M.K.; Selladurai, M.; Nkurikiye, E.; Li, Y.; Siliveru, K. Significance of milling methods on brown teff flour, dough, and bread properties. J. Texture Stud. 2022, 53, 478–489. [Google Scholar] [CrossRef]
- Alemneh, S.T.; Emire, S.A.; Hitzmann, B. Comparative Study of Chemical Composition, Pasting, Thermal and Functional properties of Teff (Eragrostis tef) Flours Grown in Ethiopia and South Africa. Int. J. Food Prop. 2022, 25, 144–158. [Google Scholar] [CrossRef]
- Batariuc, A.; Ungureanu-Iuga, M.; Mironeasa, S. Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics. Appl. Sci. 2021, 11, 11881. [Google Scholar] [CrossRef]
- Badau, M.H.; Nkama, I.; Jideani, I.A. Water-absorption characteristics of various pearl millet cultivars and sorghum grown in northern Nigeria. J. Food Process. Eng. 2005, 28, 282–298. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Suan, M.S.M. Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. Int. J. Biol. Macromol. 2021, 190, 224–232. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Shen, Y.; Wu, D.; Wu, R.; Sheng, J.; Feng, X.; Tang, X. Biodegradable films of chitosan and tea polyphenols catalyzed by laccase and their physical and antioxidant activities. Food Biosci. 2021, 46, 101513. [Google Scholar] [CrossRef]
- De Carli, C.; Aylanc, V.; Mouffok, K.M.; Santamaria-Echart, A.; Barreiro, F.; Tomás, A.; Pereira, C.; Rodrigues, P.; Vilas-Boas, M.; Falcão, S.I. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. Int. J. Biol. Macromol. 2022, 213, 486–497. [Google Scholar] [CrossRef]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Dordevic, D.; Necasova, L.; Antonic, B.; Jancikova, S.; Tremlová, B. Plastic Cutlery Alternative: Case Study with Biodegradable Spoons. Foods 2021, 10, 1612. [Google Scholar] [CrossRef]
- Chaabane, A.B.; Robbe, E.; Schernewski, G.; Schubert, H. Behavior of Biodegradable and Single-Use Tableware Items in the Warnow Estuary (Baltic Sea). Sustainability 2022, 14, 2544. [Google Scholar] [CrossRef]
Mixture | Olive Pomace | Teff Flour | Sorghum Groats | Lecithin |
---|---|---|---|---|
OTSL | + | + | + | + |
OTL | + | + | − | + |
OSL | + | − | + | + |
OTS | + | + | + | − |
Mixture | Flexural Strength [N/mm2] | ||||
---|---|---|---|---|---|
After Baking | 1 Week | 2 Weeks | 4 Weeks | 8 Weeks | |
OTSL | 10.25 ± 0.01 a | 10.28 ± 0.02 a | 10.29 ± 0.01 a | 10.31 ± 0.02 a | 11.45 ± 0.02 d |
OTL | 10.02 ± 0.02 a | 10.03 ± 0.01 a | 10.31 ± 0.02 a | 10.55 ± 0.01 a | 12.01 ± 0.03 e |
OSL | 10.33 ± 0.01 a | 10.35 ± 0.02 a | 10.39 ± 0.02 a | 10.98 ± 0.01 a | 12.22 ± 0.02 e |
OTS | 7.45 ± 0.01 b | 8.49 ± 0.02 c | 9.01± 0.01 c | 10.82 ± 0.02 a | 19.21 ± 0.04 f |
OTSL + B | 10.28 ± 0.02 a | 10.31 ± 0.02 a | 10.33 ± 0.02 a | 10.55 ± 0.02 a | 11.59 ± 0.03 d |
OTL + B | 10.04 ± 0.01 a | 10.12 ± 0.02 a | 10.48 ± 0.02 a | 10.64 ± 0.02 a | 12.25 ± 0.01 e |
OSL + B | 10.36 ± 0.02 a | 10.39 ± 0.01 a | 10.95 ± 0.01 a | 11.01 ± 0.01 d | 12.18 ± 0.02 e |
OTS + B | 7.49 ± 0.01 b | 8.55 ± 0.01 c | 9.88 ± 0.03 c | 11.05 ± 0.01 d | 19.59 ± 0.03 f |
Mixture | Without the Addition of Beeswax | With the Addition of Beeswax | ||||
---|---|---|---|---|---|---|
a* | b* | L* | a* | b* | L* | |
After baking | ||||||
OTSL | 3.31 ± 0.01 a | 7.56 ± 0.02 c | 38.51 ± 0.06 e | 3.30 ± 0.01 a | 7.57 ± 0.01 c | 38.59 ± 0.05 e |
OTL | 3.65 ± 0.02 a | 10.00 ± 0.02 d | 41.56 ± 0.04 f | 3.62 ± 0.01 a | 10.02 ± 0.02 d | 41.62 ± 0.03 f |
OSL | 3.77 ± 0.01 a | 10.28 ± 0.01 d | 42.44 ± 0.05 f | 3.74 ± 0.01 a | 10.29 ± 0.02 d | 42.49 ± 0.03 f |
OTS | 4.03± 0.01 b | 9.05 ± 0.01 c,d | 39.40 ± 0.06 e | 4.00± 0.01 b | 9.06 ± 0.01 c,d | 39.45 ± 0.05 e |
1 week | ||||||
OTSL | 3.32 ± 0.01 a | 7.55 ± 0.02 c | 37.50 ± 0.03 e | 3.33 ± 0.01 a | 7.56 ± 0.02 c | 37.68 ± 0.03 e |
OTL | 3.72 ± 0.01 a | 10.45 ± 0.01 d | 42.31 ± 0.03 f | 3.73 ± 0.01 a | 10.47 ± 0.02 d | 42.87 ± 0.04 f |
OSL | 3.81 ± 0.01 a | 10.32 ± 0.01 d | 43.18 ± 0.04 f | 3.84 ± 0.02 a | 10.33 ± 0.03 d | 43.65 ± 0.03 f |
OTS | 4.03 ± 0.01 b | 9.18 ± 0.02 c,d | 39.17 ± 0.04 e | 4.05 ± 0.01 b | 9.20 ± 0.02 c,d | 39.28 ± 0.06 e |
2 weeks | ||||||
OTSL | 3.32 ± 0.01 a | 7.56 ± 0.01 c | 37.55 ± 0.02 e | 3.34 ± 0.01 a | 7.59 ± 0.01 c | 37.71 ± 0.04 e |
OTL | 3.72 ± 0.01 a | 10.45 ± 0.01 d | 42.31 ± 0.03 f | 3.74 ± 0.02 a | 10.48 ± 0.02 d | 42.92 ± 0.03 f |
OSL | 3.81 ± 0.01 a | 10.32 ± 0.01 d | 43.18 ± 0.04 f | 3.86 ± 0.01 a | 10.34 ± 0.02 d | 43.99 ± 0.04 f |
OTS | 4.06 ± 0.02 b | 7.40 ± 0.01 c | 37.10 ± 0.03 e | 4.08 ± 0.02 b | 7.42 ± 0.02 c | 37.45 ± 0.02 e |
3 weeks | ||||||
OTSL | 3.33 ± 0.01 a | 7.58 ± 0.01 c | 37.59 ± 0.02 e | 3.34 ± 0.02 a | 7.62 ± 0.02 c | 37.72 ± 0.04 e |
OTL | 3.83 ± 0.02 a | 10.62 ± 0.03 d | 42.67 ± 0.03 f | 3.85 ± 0.02 a | 10.68 ± 0.03 d | 43.01 ± 0.02 f |
OSL | 3.95 ± 0.02 a | 10.77 ± 0.02 d | 42.97 ± 0.02 f | 3.99 ± 0.02 a | 10.81 ± 0.03 d | 44.11 ± 0.06 f |
OTS | 4.11 ± 0.03 b | 10.98 ± 0.05 d | 40.22 ± 0.05 f | 4.15 ± 0.01 b | 11.01 ± 0.02 d | 44.01 ± 0.03 f |
4 weeks | ||||||
OTSL | 3.36 ± 0.01 a | 7.71 ± 0.02 c | 37.84 ± 0.01 e | 3.38 ± 0.02 a | 7.71 ± 0.03 c | 37.89 ± 0.04 e |
OTL | 3.92 ± 0.01 a | 10.78 ± 0.01 d | 43.75 ± 0.02 f | 3.99 ± 0.02 a | 10.78 ± 0.02 d | 43.22 ± 0.02 f |
OSL | 4.01 ± 0.01 b | 11.02 ± 0.03 d | 43.12 ± 0.03 f | 4.18 ± 0.02 b | 11.02 ± 0.03 d | 44.18 ± 0.05 f |
OTS | 4.18 ± 0.02 b | 11.18 ± 0.02 d | 42.28 ± 0.03 f | 4.21 ± 0.02 b | 11.18 ± 0.02 d | 44.22 ± 0.02 f |
8 weeks | ||||||
OTSL | 3.39 ± 0.02 a | 7.70 ± 0.01 c | 37.87 ± 0.02 e | 3.41 ± 0.03 a | 7.75 ± 0.02 c | 37.93 ± 0.03 e |
OTL | 4.02 ± 0.03 b | 11.03 ± 0.03 d | 42.95 ± 0.03 f | 4.06 ± 0.02 b | 11.09 ± 0.03 d | 43.25 ± 0.05 f |
OSL | 4.12 ± 0.02 b | 11.45 ± 0.02 d | 43.98 ± 0.04 f | 4.19 ± 0.01 b | 11.52 ± 0.01 d | 44.25± 0.04 f |
OTS | 4.24 ± 0.02 b | 8.90 ± 0.01 c,d | 39.64 ± 0.04 e | 4.31 ± 0.02 b | 8.91 ± 0.02 c,d | 43.61± 0.06 e |
Mixture | Crack Analysis | ||||
---|---|---|---|---|---|
After Baking | 1 Week | 2 Weeks | 4 Weeks | 8 Weeks | |
OTSL | remained intact | remained intact | remained intact | remained intact | remained intact |
OTL | remained intact | remained intact | remained intact | cracked/split | cracked/split |
OSL | remained intact | remained intact | remained intact | cracked/split | cracked/split |
OTS | cracked/split | cracked/split | cracked/split | cracked/split | cracked/split |
OTSL + B | remained intact | remained intact | remained intact | remained intact | remained intact |
OTL + B | remained intact | remained intact | remained intact | cracked/split | cracked/split |
OSL + B | remained intact | remained intact | remained intact | cracked/split | cracked/split |
OTS + B | cracked/split | cracked/split | cracked/split | cracked/split | cracked/split |
Water Activity | |||||
OTSL | 0.059 ± 0.01 a | 0.059 ± 0.01 a | 0.060 ± 0.01 a | 0.059 ± 0.02 a | 0.052 ± 0.2 a |
OTL | 0.069 ± 0.02 a | 0.070 ± 0.01 b | 0.072 ± 0.02 b | 0.082 ± 0.02 b | 0.089 ± 0.02 b |
OSL | 0.055 ± 0.01 a | 0.056 ± 0.01 a | 0.057 ± 0.02 a | 0.056 ± 0.01 a | 0.052 ± 0.02 a |
OTS | 0.098 ± 0.01 b | 0.170 ± 0.01 c | 0.175 ± 0.02 c | 0.198 ± 0.03 c | 0.115 ± 0.05 c |
OTSL + B | 0.057 ± 0.02 a | 0.057 ± 0.01 a | 0.060 ± 0.02 a | 0.061 ± 0.01 a | 0.062 ± 0.02 a |
OTL + B | 0.068 ± 0.02 a | 0.068 ± 0.02 b | 0.069 ± 0.02 b | 0.077 ± 0.01 b | 0.081 ± 0.01 b |
OSL + B | 0.054 ± 0.01 a | 0.061 ± 0.01 a | 0.061 ± 0.02 a | 0.065 ± 0.01 a | 0.066 ± 0.01 a |
OTS + B | 0.097 ± 0.02 b | 0.125 ± 0.03 c | 0.159 ± 0.01 c | 0.160± 0.03 c | 0.162 ± 0.03 c |
Mixture | The First Drop (h) | |||
---|---|---|---|---|
After Baking | 4 Weeks | 8 Weeks | ||
OTSL | 3.5 ± 0.01 a | 3.5 ± 0.01 a | 3.5 ± 0.01 a | |
OTL | 3 ± 0.01 a | 3.2 ± 0.01 a | 3.2 ± 0.01 a | |
OSL | 2.5 ± 0.01 b | 2.5 ± 0.01 b | 2.4 ± 0.01 b | |
OTS | 0.5 ± 0.01 c | 0.5 ± 0.01 c | 0.2 ± 0.01 c | |
OTSL + B | 4.5 ± 0.01 d | 4.5 ± 0.01 d | 4.5 ± 0.01 d | |
OTL + B | 4.1 ± 0.01 d | 4.1 ± 0.01 d | 4.1 ± 0.01 d | |
OSL + B | 3 ± 0.01 a | 3 ± 0.01 a | 3 ± 0.01 a | |
OTS + B | 1 ± 0.01 c | 1 ± 0.01 c | 1 ± 0.01 c | |
Weight before the test [g] | Weight after 6 h [g] | |||
OTSL | 2.21 ± 0.02 a | 2.26 ± 0.01 a | 2.32 ± 0.02 b | 2.36 ± 0.01 b |
OTL | 2.22 ± 0.01 a | 2.51 ± 0.04 b | 2.53 ± 0.05 b | 2.55 ± 0.03 b |
OSL | 2.36 ± 0.01 a | 3.62 ± 0.03 c | 3.59 ± 0.04 c | 3.64 ± 0.02 c |
OTS | 2.44 ± 0.01 a | 6.49 ± 0.04 d | 6.48 ± 0.03 d | 6.51 ± 0.04 d |
OTSL + B | 2.22 ± 0.02 a | 2.24 ± 0.01 a | 2.24 ± 0.02 a | 2.24 ± 0.01 a |
OTL + B | 2.23 ± 0.02 b | 2.44 ± 0.01 b | 2.46 ± 0.02 b | 2.48 ± 0.02 b |
OSL + B | 2.37 ± 0.01 a | 3.01 ± 0.02 c | 3.05 ± 0.03 c | 3.02 ± 0.01 c |
OTS + B | 2.45 ± 0.02 a | 4.66 ± 0.03 d | 4.29 ± 0.01 d | 4.78 ± 0.02 d |
Mixture | DPPH (mmol TE/100 g) | ||||
---|---|---|---|---|---|
After Baking | 1 Week | 2 Weeks | 4 Weeks | 8 Weeks | |
OTSL | 1.11 ± 0.01 a | 1.25 ± 0.02 a | 1.66 ± 0.03 a | 1.89 ± 0.04 a | 2.92 ± 0.01 a |
OTL | 3.09 ± 0.02 b | 3.19 ± 0.01 b | 3.72 ± 0.02 b | 3.88 ± 0.03 b | 5.09 ± 0.03 c |
OSL | 4.11 ± 0.01 a | 4.36 ± 0.05 a | 4.57 ± 0.02 a | 4.85 ± 0.03 a | 7.50 ± 0.03 b |
OTS | 3.15 ± 0.03 b | 3.23 ± 0.01 b | 3.75 ± 0.02 b | 3.91 ± 0.02 b | 6.98 ± 0.03 c |
OTSL + B | 0.95 ± 0.01 a | 0.98 ± 0.03 a | 1.21 ± 0.02 a | 1.33 ± 0.02 a | 1.85 ± 0.03 a |
OTL + B | 2.89 ± 0.02 b | 2.95 ± 0.01 b | 3.16 ± 0.03 b | 3.44 ± 0.04 b | 4.36 ± 0.05 c |
OSL + B | 3.00 ± 0.06 a | 3.15 ± 0.03 a | 3.22 ± 0.04 a | 3.49 ± 0.03 a | 4.37 ± 0.03 b |
OTS + B | 3.03 ± 0.02 b | 3.11 ± 0.03 b | 3.37 ± 0.03 b | 3.69 ± 0.04 b | 5.87 ± 0.04 c |
Total polyphenol content [mg GAE/100 g] | |||||
OTSL | 10.95 ± 0.01 a | 10.91 ± 0.02 a | 10.89 ± 0.01 a | 10.86 ± 0.01 a | 10.82 ± 0.02 a |
OTL | 10.44 ± 0.01 b | 10.38 ± 0.01 b | 10.35 ± 0.01 b | 10.30 ± 0.01 b | 10.25 ± 0.01 b |
OSL | 8.36 ± 0.01 b | 8.31 ± 0.02 b | 6.28 ± 0.01 b | 6.24 ± 0.01 b | 6.18 ± 0.01 c |
OTS | 10.95 ± 0.01 a | 10.90 ± 0.01 a | 10.84 ± 0.01 a | 10.66 ± 0.01 a | 10.39 ± 0.01 a |
OTSL + B | 11.16 ± 0.03 a | 11.12 ± 0.02 a | 11.04 ± 0.02 a | 10.59 ± 0.02 a | 10.54 ± 0.01 a |
OTL + B | 10.66 ± 0.02 b | 10.59 ± 0.01 b | 10.52 ± 0.01 b | 10.49 ± 0.01 b | 10.47 ± 0.01 b |
OSL + B | 9.55 ± 0.03 b | 9.52 ± 0.01 b | 9.48 ± 0.01 b | 9.31 ± 0.01 b | 9.25 ± 0.01 c |
OTS + B | 10.03 ± 0.02 a | 10.58 ± 0.03 a | 10.57 ± 0.03 a | 10.56 ± 0.01 a | 10.49 ± 0.02 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzelczyk, J.; Oracz, J.; Gałązka-Czarnecka, I. Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods 2022, 11, 3776. https://doi.org/10.3390/foods11233776
Grzelczyk J, Oracz J, Gałązka-Czarnecka I. Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods. 2022; 11(23):3776. https://doi.org/10.3390/foods11233776
Chicago/Turabian StyleGrzelczyk, Joanna, Joanna Oracz, and Ilona Gałązka-Czarnecka. 2022. "Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging" Foods 11, no. 23: 3776. https://doi.org/10.3390/foods11233776
APA StyleGrzelczyk, J., Oracz, J., & Gałązka-Czarnecka, I. (2022). Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods, 11(23), 3776. https://doi.org/10.3390/foods11233776