Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plant Material and Preparation
2.1.2. Study Materials
2.2. Characterization of DFS and Final Products
2.2.1. Proximate Analysis Composition
Total Protein
Moisture
Ash
Total Fat
Total Fiber
2.2.2. Physicochemical Analysis
2.2.3. Microbiological Analysis
2.3. Cheese-Making Procedure
2.4. Texture Analysis
2.5. Microstructural Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of DFS
3.2. Characterization of Cheeses Fortified with DFS during Storage
3.3. Microbiological Quality
3.4. Texture Properties
3.5. Microstructure Properties
3.6. Colorimetric Measurements
3.7. Sensorial Attributes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- Caponio, F.; Piga, A.; Poiana, M. Valorization of Food Processing By-Products. Foods 2022, 11, 3246. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Miguel, E.; del Castillo, M. Food Byproducts as Sustainable Ingredients for Innovative and Healthy Dairy Foods. Nutrients 2018, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Picciotti, U.; Massaro, A.; Galiano, A.; Garganese, F. Cheese Fortification: Review and Possible Improvements. Food Rev. Int. 2022, 38, 474–500. [Google Scholar] [CrossRef]
- Olson, R.; Gavin-Smith, B.; Ferraboschi, C.; Kraemer, K. Food Fortification: The Advantages, Disadvantages and Lessons from Sight and Life Programs. Nutrients 2021, 13, 1118. [Google Scholar] [CrossRef]
- Ottaway, P.B. Food Fortification and Supplementation Technological, Safety and Regulatory Aspects, 1st ed.; Elsevier: Cambridge, UK, 2008. [Google Scholar]
- Kumar, D.S. Herbal Bioactives and Food Fortification: Extraction and Formulation; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; et al. Fortification and Health: Challenges and Opportunities. Adv. Nutr. 2015, 6, 124–131. [Google Scholar] [CrossRef]
- Chadare, F.J.; Idohou, R.; Nago, E.; Affonfere, M.; Agossadou, J.; Fassinou, T.K.; Kénou, C.; Honfo, S.; Azokpota, P.; Linnemann, A.R.; et al. Conventional and Food-to-food Fortification: An Appraisal of Past Practices and Lessons Learned. Food Sci. Nutr. 2019, 7, 2781–2795. [Google Scholar] [CrossRef]
- Das, J.K.; Salam, R.A.; bin Mahmood, S.; Moin, A.; Kumar, R.; Mukhtar, K.; Lassi, Z.S.; Bhutta, Z.A. Food Fortification with Multiple Micronutrients: Impact on Health Outcomes in General Population. Cochrane Database Syst. Rev. 2019, 2020, CD011400. [Google Scholar] [CrossRef]
- Thielecke, F.; Lecerf, J.-M.; Nugent, A.P. Processing in the Food Chain: Do Cereals Have to Be Processed to Add Value to the Human Diet? Nutr. Res. Rev. 2021, 34, 159–173. [Google Scholar] [CrossRef]
- Sajid Arshad, M.; Khalid, W.; Shabir Ahmad, R.; Kamran Khan, M.; Haseeb Ahmad, M.; Safdar, S.; Kousar, S.; Munir, H.; Shabbir, U.; Zafarullah, M.; et al. Functional Foods and Human Health: An Overview. In Functional Foods-Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021. [Google Scholar]
- Koç, E.; Karayiğit, B. Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. J. Soil Sci. Plant Nutr. 2022, 22, 475–500. [Google Scholar] [CrossRef]
- Romina Alina, V.; Crina Carmen, M.; Sevastita, M.; Andruţa, M.; Vlad, M.; Ramona, S.; Georgiana, P.; Mihaela, M. Food Fortification through Innovative Technologies. In Food Engineering; IntechOpen: London, UK, 2019. [Google Scholar]
- Kaur, N.; Agarwal, A.; Sabharwal, M. Food Fortification Strategies to Deliver Nutrients for the Management of Iron Deficiency Anaemia. Curr. Res. Food Sci. 2022, 5, 2094–2107. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, Nutritional and Sensory Properties of Pasta Fortified with Agro-industrial By-products: A Review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- FAO. Thinking about the Future of Food Safety; FAO: Roma, Italy, 2022; ISBN 978-92-5-135783-5. [Google Scholar]
- Vermeir, I.; Weijters, B.; de Houwer, J.; Geuens, M.; Slabbinck, H.; Spruyt, A.; van Kerckhove, A.; van Lippevelde, W.; de Steur, H.; Verbeke, W. Environmentally Sustainable Food Consumption: A Review and Research Agenda from a Goal-Directed Perspective. Front. Psychol. 2020, 11, 1603. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public Health 2019, 17, 169. [Google Scholar] [CrossRef]
- FAO FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://faostat.fao.org/ (accessed on 1 December 2022).
- Habib, H.M.; El-Fakharany, E.M.; Souka, U.D.; Elsebaee, F.M.; El-Ziney, M.G.; Ibrahim, W.H. Polyphenol-Rich Date Palm Fruit Seed (Phoenix dactylifera L.) Extract Inhibits Labile Iron, Enzyme, and Cancer Cell Activities, and DNA and Protein Damage. Nutrients 2022, 2022, 3536. [Google Scholar] [CrossRef]
- Kamal, H.; Habib, H.M.; Ali, A.; Show, P.L.; Koyande, A.K.; Kheadr, E.; Ibrahim, W.H. Food Waste Valorization Potential: Fiber, Sugar, and Color Profiles of 18 Date Seed Varieties (Phoenix dactylifera L.). J. Saudi Soc. Agric. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Najjar, Z.; Stathopoulos, C.; Chockchaisawasdee, S. Utilization of Date By-Products in the Food Industry. Emir. J. Food Agric. 2020, 32, 808. [Google Scholar] [CrossRef]
- Sayas-Barberá, E.; Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers. Foods 2020, 9, 102. [Google Scholar] [CrossRef]
- Devaraj, A.; Mahalingam, G. Bioactive Molecules from Medicinal Plants as Functional Foods (Biscuits) for the Benefit of Human Health as Antidiabetic Potential. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; IntechOpen: London, UK, 2021. [Google Scholar]
- Oladipupo Kareem, M.; Edathil, A.A.; Rambabu, K.; Bharath, G.; Banat, F.; Nirmala, G.S.; Sathiyanarayanan, K. Extraction, Characterization and Optimization of High Quality Bio-Oil Derived from Waste Date Seeds. Chem. Eng. Commun. 2021, 208, 801–811. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khorshidian, N.; Yousefi, M.; Khaneghah, A.M. Physicochemical, Rheological, and Sensory Properties of Gluten-Free Cookie Produced by Flour of Chestnut, Date Seed, and Modified Starch. J. Food Qual. 2022, 2022, 5159084. [Google Scholar] [CrossRef]
- Sriharsha, C.H.; Swamy, R.; Padmavathi, T.V.N. Development and Quality Evaluation of Date Seed Powder Incorporated Cookies. J. Exp. Agric. Int. 2021, 43, 87–93. [Google Scholar] [CrossRef]
- Djaoudene, O.; Mansinhos, I.; Gonçalves, S.; Jara-Palacios, M.J.; Bachir Bey, M.; Romano, A. Phenolic Profile, Antioxidant Activity and Enzyme Inhibitory Capacities of Fruit and Seed Extracts from Different Algerian Cultivars of Date (Phoenix dactylifera L.) Were Affected by in Vitro Simulated Gastrointestinal Digestion. S. Afr. J. Bot. 2021, 137, 133–148. [Google Scholar] [CrossRef]
- Platat, C.; Habib, H.M.; Hashim, I.B.; Kamal, H.; AlMaqbali, F.; Souka, U.; Ibrahim, W.H. Production of Functional Pita Bread Using Date Seed Powder. J. Food Sci. Technol. 2015, 52, 6375–6384. [Google Scholar] [CrossRef] [PubMed]
- Alqattan, A.M.; Alqahtani, N.K.; Aleid, S.M.; Alnemr, T.M. Effects of Date Pit Powder Inclusion on Chemical Composition, Microstructure, Rheological Properties, and Sensory Evaluation of Processed Cheese Block. Am. J. Food Nutr. 2020, 8, 69–77. [Google Scholar] [CrossRef]
- Alqahtani, N. Effects of Replacing Pectin with Date Pits Powder in Strawberry Jam Formulation. Basic Appl. Sci. Sci. J. King Faisal Univ. 2020, 8, 69–77. [Google Scholar] [CrossRef]
- Habib, H.M.; Kamal, H.; Ibrahim, W.H.; Dhaheri, A.S.A. Carotenoids, Fat Soluble Vitamins and Fatty Acid Profiles of 18 Varieties of Date Seed Oil. Ind. Crops Prod. 2013, 42, 567–572. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H. Nutritional Quality Evaluation of Eighteen Date Pit Varieties. Int. J. Food Sci. Nutr. 2009, 60, 99–111. [Google Scholar] [CrossRef]
- Mrabet, A.; Jiménez-Araujo, A.; Guillén-Bejarano, R.; Rodríguez-Arcos, R.; Sindic, M. Date Seeds: A Promising Source of Oil with Functional Properties. Foods 2020, 9, 787. [Google Scholar] [CrossRef]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of Date Fruits and Potential Use in Nutritional Bars for Athletes. Food Nutr. Sci. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Habib, H.M.; Platat, C.; Meudec, E.; Cheynier, V.; Ibrahim, W.H. Polyphenolic Compounds in Date Fruit Seed (Phoenix dactylifera): Characterisation and Quantification by Using UPLC-DAD-ESI-MS. J. Sci. Food Agric. 2014, 94, 1084–1089. [Google Scholar] [CrossRef]
- Habib, H.M.; El-Fakharany, E.M.; Kheadr, E.; Ibrahim, W.H. Grape Seed Proanthocyanidin Extract Inhibits DNA and Protein Damage and Labile Iron, Enzyme, and Cancer Cell Activities. Sci. Rep. 2022, 12, 12393. [Google Scholar] [CrossRef]
- Hilary, S.; Tomás-Barberán, F.A.; Martinez-Blazquez, J.A.; Kizhakkayil, J.; Souka, U.; Al-Hammadi, S.; Habib, H.; Ibrahim, W.; Platat, C. Polyphenol Characterisation of Phoenix dactylifera L. (Date) Seeds Using HPLC-Mass Spectrometry and Its Bioaccessibility Using Simulated in-Vitro Digestion/Caco-2 Culture Model. Food Chem. 2020, 311, 125969. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H. Effect of Date Seeds on Oxidative Damage and Antioxidant Status in Vivo. J. Sci. Food Agric. 2011, 91, 1674–1679. [Google Scholar] [CrossRef]
- Habib, H.; Platat, C.; AlMaqbali, F.; Ibrahim, W. Date Seed (Phoenix dactylifera) Extract Reduces the Proliferation of Pancreatic Cancer Cells, DNA Damage and Superoxide-dependent Iron Release from Ferritin in Vitro (829.20). FASEB J. 2014, 28, 829. [Google Scholar] [CrossRef]
- Al-Meqbaali, F.; Habib, H.; Othman, A.; Al-Marzooqi, S.; Al-Bawardi, A.; Pathan, J.Y.; Hilary, S.; Souka, U.; Al-Hammadi, S.; Ibrahim, W.; et al. The Antioxidant Activity of Date Seed: Preliminary Results of a Preclinical in Vivo Study. Emir. J. Food Agric. 2017, 29, 822. [Google Scholar] [CrossRef]
- Guinee, T.P.; O’Kennedy, B.T. Reducing the Level of Added Disodium Phosphate Alters the Chemical and Physical Properties of Processed Cheese. Dairy Sci. Technol. 2012, 92, 469–486. [Google Scholar] [CrossRef]
- Talbot-Walsh, G.; Selomulya, C. The Effect of Rennet Casein Hydration on Gel Strength and Matrix Stability of Block-Type Processed Cheese. Food Struct. 2021, 28, 100174. [Google Scholar] [CrossRef]
- ISO Standard No. 5534; Cheese and Processed Cheese–Determination of the Total Solids Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- Nehdi, I.; Omri, S.; Khalil, M.I.; Al-Resayes, S.I. Characteristics and Chemical Composition of Date Palm (Phoenix Canariensis) Seeds and Seed Oil. Ind. Crops Prod. 2010, 32, 360–365. [Google Scholar] [CrossRef]
- Nielsen, S.S. Heldman, D.R., Ed.; Correction to: Food Analysis, 5th ed.; Heldman Associates: Mason, OH, USA, 2021; pp. C1–C3. [Google Scholar]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J.; Cummings, J.H. Determination of Dietary Fibre as Non-Starch Polysaccharides by Gas–Liquid Chromatography. Analyst 1992, 117, 1707–1714. [Google Scholar] [CrossRef]
- Habib, H.M.; Theuri, S.W.; Kheadr, E.E.; Mohamed, F.E. Functional, Bioactive, Biochemical, and Physicochemical Properties of the Dolichos Lablab Bean. Food Funct. 2017, 8, 872–880. [Google Scholar] [CrossRef]
- Nandy, S.K.; Venkatesh, K. Study of CFU for Individual Microorganisms in Mixed Cultures with a Known Ratio Using MBRT. AMB Express 2014, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Guinee, T.P. Cheese: Pasteurized Processed Cheese Products. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Nasiri, M.; Tavakolipour, H.; Safaeian, S.; Mousavi Nadushan, R. Exploring the Potential of Modified Potato Starch and Seaweed Salt as Structuring Agents to Design Processed Cheeses with Desirable Properties. Int. Dairy J. 2022, 133, 105439. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Drake, M.A. Sensory Character of Cheese and Its Evaluation. Cheese Chem. 2004, 1, 455–487. [Google Scholar]
- Akasha, I.; Campbell, L.; Lonchamp, J.; Euston, S.R. The Major Proteins of the Seed of the Fruit of the Date Palm (Phoenix dactylifera L.): Characterisation and Emulsifying Properties. Food Chem. 2016, 197, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, Ö.; Mogol, B.A.; Gökmen, V. Syneresis and Rheological Behaviors of Set Yogurt Containing Green Tea and Green Coffee Powders. J. Dairy Sci. 2017, 100, 901–907. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Abbas, H.M.; Bayoumi, H.M.; Kassem, J.M.; Enab, A.K.; Mohamed, A.G. Processed Cheese Spreads Fortified with Oat. J. Am. Sci. 2011, 7, 631–637. [Google Scholar]
- El-Assar, M.A.; Abou-Dawoo, S.A.; Sakr, S.S.; Younis, N.M. Low-Fat Processed Cheese Spread with Added Inulin: Its Physicochemical, Rheological and Sensory Characteristics. Int. J. Dairy Sci. 2018, 14, 12–20. [Google Scholar] [CrossRef]
- Abd El-Gawad, M.A.M.; El-Shibiny, S.; Assem, F.M.; Seleet, F.L.; Dawood, S.A.A.; Elaaser, M. Preparation, Composition and Microbiological and Rheological Properties of Functional Processed Cheese Supplemented with Rice Bran. J. Appl. Sci. Res. 2013, 9, 4927–4934. [Google Scholar]
- Aly, E.S.; el Saadany, K.; el Dakhakhny, E.; Kheadr, E. The use of Bulgur in the Production of Reduced-Fat and Substituted Block-Type Processed Cheeses. J. Appl. Sci. Res. 2017, 13, 17–30. [Google Scholar]
- Szafrańska, J.O.; Muszyński, S.; Tomasevic, I.; Sołowiej, B.G. The Influence of Dietary Fibers on Physicochemical Properties of Acid Casein Processed Cheese Sauces Obtained with Whey Proteins and Coconut Oil or Anhydrous Milk Fat. Foods 2021, 10, 759. [Google Scholar] [CrossRef]
- El-Bakry, M.; Mehta, B. Processed Cheese Science and Technology; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780128214459. [Google Scholar]
- El-Loly, M.M.; Farahat, E.S.A.; Mohamed, A.G. Novel Approach for Producing Processed Cheese Fortified with Date Syrup. ACS Food Sci. Technol. 2021, 1, 737–744. [Google Scholar] [CrossRef]
Ingredients (g), (w/w) | Cheese Codes | ||||
---|---|---|---|---|---|
Control | 5% DFS * | 10% DFS * | 15% DFS * | 20% DFS * | |
Butter | 103.50 | 98.35 | 93.15 | 88.00 | 83.00 |
DFS | 0.00 | 5.175 | 10.35 | 15.53 | 20.70 |
Standard cheddar cheese | 540 | 540 | 540 | 540 | 540 |
Frozen cheddar cheese | 300 | 300 | 300 | 300 | 300 |
Emulsifying salt (phosphate salts, Joha C) | 27.30 | 27.30 | 27.30 | 27.30 | 27.30 |
Potassium sorbate | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
Nisin | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 |
Water | 200 | 200 | 200 | 200 | 200 |
Total | 1172.1 | 1172.1 | 1172.1 | 1172.1 | 1172.1 |
Contents | Chemical Compositions g/100 g | Microbiological Analysis CFU/gm | |
---|---|---|---|
Moisture% | 9.39 ± 0.10 | Coliform | Nd |
TS% | 90.61 ± 3.01 | Yeast and mold | <12 |
Protein% | 4.86 ± 0.58 (5.36% DM) | Escherichia coli | Nd |
Fat% | 18.44 ± 1.72 (20.35% DM) | Staphylococcus aureus | Nd |
Total Fiber% | 65.95 ± 0.70 (71.99% DM) | Clostridium perfringens | Nd |
Ash% | 1.36 ± 0.01(1.50% DM) | Bacillus cereus | Nd |
Storage | Control | 5% DFS ** | 10% DFS ** | 15% DFS ** | 20% DFS ** | |
---|---|---|---|---|---|---|
L* Value | Fresh | 80.96 ± 0.66 Ba | 72.90 ± 0.85 Cb | 68.96 ± 2.54 Bcb | 65.86 ± 4.73 Bc | 64.45 ± 3.01 ABc |
1 month | 80.18 ± 1.14 Ba | 73.98 ± 1.41 BCb | 69.95 ± 1.50 Bc | 66.40 ± 2.47 Bd | 64.13 ± 1.72 Bd | |
2 months | 79.44 ± 0.32 Ba | 73.11 ± 1.02 Cb | 70.22 ± 0.95 Bb | 64.92 ± 4.53 Bc | 64.43 ± 1.85 Bc | |
3 months | 80.76 ± 1.34 Ba | 73.08 ± 0.84 Cb | 69.93 ± 0.73 Bc | 66.66 ± 1.99 Bd | 64.06 ± 1.18 Be | |
4 months | 85.37 ± 0.10 Aa | 76.39 ± 0.99 Ab | 75.74 ± 2.15 Ab | 72.50 ± 0.66 Abc | 69.43 ± 4.21 Ac | |
5 months | 80.16 ± 0.70 Ba | 74.00 ± 0.59 Bb | 68.36 ± 1.05 Bc | 63.76 ± 0.58 Bd | 63.04 ± 2.30 Bd | |
a* Value | Fresh | −3.35 ± 0.04 Cd | 0.53 ± 0.10 Bc | 2.34 ± 0.32 Bb | 3.66 ± 0.82 Aa | 4.24 ± 0.23 Aa |
1 month | −6.79 ± 0.16 Ee | −2.99 ± 0.32 Dd | −1.08 ± 0.28 Dc | 0.32 ± 0.46 Bb | 1.21 ± 0.28 Ca | |
2 months | −6.49 ± 0.30 Dd | −2.70 ± 0.17 DCc | −1.03 ± 0.17 Db | 0.85 ± 1.11 Ba | 1.28 ± 0.26 Ca | |
3 months | −6.62 ± 0.06 DEe | −2.77 ± 0.11 DCd | −0.90 ± 0.21 Dc | 0.49 ± 0.47 Bb | 1.40 ± 0.16 Ca | |
4 months | −7.39 ± 0.18 Fe | −2.47 ± 0.29 Cd | −0.29 ± 0.43 Cc | 1.47 ± 0.10 Bb | 2.64 ± 0.29 Ba | |
5 months | −2.74 ± 0.11 Be | 0.75 ± 0.23 Bd | 2.71 ± 0.06 Bc | 4.26 ± 0.03 Ab | 4.57 ± 0.18 Aa | |
b* Value | Fresh | 22.66 ± 1.00 Ca | 18.22 ± 0.43 Cb | 16.35 ± 0.20 Cc | 16.65 ± 0.52 Cc | 14.31 ± 0.35 Cc |
1 month | 25.20 ± 0.62 Ba | 20.94 ± 0.04 Bb | 18.60 ± 0.42 Bc | 17.66 ± 0.16 Bd | 16.70 ± 0.34 Be | |
2 months | 25.39 ± 0.54 Ba | 20.84 ± 0.11 Bb | 18.72 ± 0.01 Bc | 17.52 ± 0.15 Bd | 16.51 ± 0.44 Be | |
3 months | 24.87 ± 0.54 Ba | 20.69 ± 0.64 Bb | 18.74 ± 0.36 Bc | 17.77 ± 0.35 Bd | 16.53 ± 0.30 Be | |
4 months | 23.40 ± 0.38 Aa | 22.74 ± 0.63 Ab | 22.26 ± 0.77 Ac | 20.65 ± 0.24 Ad | 19.56 ± 1.39 Ad | |
5 months | 21.58 ± 0.15 Da | 17.99 ± 0.02 Cb | 16.46 ± 0.26 Cc | 15.43 ± 0.23 Cd | 14.22 ± 0.33 Ce |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, N.K.; Alnemr, T.M.; Alqattan, A.M.; Aleid, S.M.; Habib, H.M. Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food. Foods 2023, 12, 679. https://doi.org/10.3390/foods12030679
Alqahtani NK, Alnemr TM, Alqattan AM, Aleid SM, Habib HM. Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food. Foods. 2023; 12(3):679. https://doi.org/10.3390/foods12030679
Chicago/Turabian StyleAlqahtani, Nashi K., Tareq M. Alnemr, Abdullah M. Alqattan, Salah M. Aleid, and Hosam M. Habib. 2023. "Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food" Foods 12, no. 3: 679. https://doi.org/10.3390/foods12030679
APA StyleAlqahtani, N. K., Alnemr, T. M., Alqattan, A. M., Aleid, S. M., & Habib, H. M. (2023). Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food. Foods, 12(3), 679. https://doi.org/10.3390/foods12030679