Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Location, Preparation of Samples
2.2. Colour Determination
2.3. Floral Origin of Honey Stored in the Beeswax
2.4. Characterization of Beeswax Samples
2.4.1. X-ray Diffraction (XRD)
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Analyzer (EDX)
2.4.4. Thermogravimetric Analyses (TGA)
2.4.5. Determination of the Acid Value
- A—Milliliters of KOH solution required for the titration of the sample
- N—Normality of the KOH solution.
- C—Grams of the samples used.
- 56.1—Molecular mass of KOH
2.4.6. Measurement of the Ester Value
- A—Milliliters of Hydrochloric Acid required for the titration of the sample.
- B—Milliliters of Hydrochloric Acid required for titration of the blank.
- N—Normality of the Hydrochloric Acid.
- 56.1—Molar mass of KOH
- C—Grams of the sample used
2.4.7. Evaluation of the Saponification Value
2.4.8. Ester/Acid Ratio
2.4.9. Melting Point
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Floral Origins of the Beeswax Samples
3.2. Effect of Storage Time on the Beeswax Samples Color
3.3. Crystalline Degree of Samples
3.4. FTIR Analysis Results
3.5. Thermogravimetric Analysis (TGA)
3.6. SEM and EDX Characterizations
3.7. Effect of Storage Time on the Chemical Compounds
3.7.1. Melting Point
3.7.2. Acid Value
3.7.3. Ester Value
3.7.4. Saponification Value
3.7.5. Ester/Acid Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Waili, N.S. Topical application of natural honey, beeswax and olive oil mixture for atopic dermatitis or psoriasis: Partially controlled, single-blinded study. Complement. Ther. Med. 2003, 11, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, N.M.; Khan, H.; Naseem, S. Encapsulation and characterization of controlled release flurbiprofen loaded microspheres using beeswax as an encapsulating agent. J. Mater. Sci. Mater. Med. 2010, 21, 1621–1630. [Google Scholar] [CrossRef]
- Fabra, M.J.; Hambleton, A.; Talens, P.; Debeaufort, F.; Chiralt, A.; Voilley, A. Influence of interactions on water and aroma permeabilities of ι-carrageenan–oleic acid–beeswax films used for flavour encapsulation. Carbohydr. Polym. 2009, 76, 325–332. [Google Scholar] [CrossRef]
- Trevisani, M.; Cecchini, M.; Siconolfi, D.; Mancusi, R.; Rosmini, R. Effects of beeswax coating on the oxidative stability of long-ripened Italian salami. J. Food Qual. 2017, 2017, 8089135. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gallardo, A.; García-Almendárez, B.; Barbosa-Cánovas, G.; Pimentel-González, D.; Reyes-González, L.; Regalado, C. Effect of starch-beeswax coatings on quality parameters of blackberries (Rubus spp.). J. Food Sci. Technol. 2015, 52, 5601–5610. [Google Scholar] [CrossRef] [Green Version]
- Tulloch, A.P. Beeswax—Composition and analysis. Bee World 1980, 61, 47–62. [Google Scholar] [CrossRef]
- Bogdanov, S. Beeswax: Uses and trade. Beeswax Book 2009, 1–16. [Google Scholar]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef]
- Bogdanov, S. Quality and standards of pollen and beeswax. Apiacta 2004, 38, 334–341. [Google Scholar]
- Svečnjak, L.; Chesson, L.A.; Gallina, A.; Maia, M.; Martinello, M.; Mutinelli, F.; Muz, M.N.; Nunes, F.M.; Saucy, F.; Tipple, B.J. Standard methods for Apis mellifera beeswax research. J. Apic. Res. 2019, 58, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, H. Composition and synthesis of beeswax. In Honeybees and Wax; Springer: Berlin/Heidelberg, Germany, 1986; pp. 44–56. [Google Scholar]
- Regert, M.; Colinart, S.; Degrand, L.; Decavallas, O. Chemical alteration and use of beeswax through time: Accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 2001, 43, 549–569. [Google Scholar] [CrossRef]
- Tulloch, A. Factors affecting analytical values of beeswax and detection of adulteration. J. Am. Oil Chem. Soc. 1973, 50, 269–272. [Google Scholar] [CrossRef]
- Keawpeng, I.; Venkatachalam, K. Effect of aging on changes in rice physical qualities. Int. Food Res. J. 2015, 22, 2180–2187. [Google Scholar]
- Menezes, J.; Athmaselvi, K. Report on edible films and coatings. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–212. [Google Scholar]
- Svečnjak, L.; Baranović, G.; Vinceković, M.; Prđun, S.; Bubalo, D.; Tlak Gajger, I. An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J. Apic. Sci. 2015, 59, 2. [Google Scholar] [CrossRef] [Green Version]
- Dinker, A.; Agarwal, M.; Agarwal, G. Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material. Exp. Heat Transf. 2017, 30, 139–150. [Google Scholar] [CrossRef]
- Chellappan, M. Hand Holding Entrepreneurs in Honey Processing and Value Addition. In Entrepreneurship and Skill Development in Horticultural Processing; CRC Press: Boca Raton, FL, USA, 2021; pp. 323–343. [Google Scholar]
- Hepburn, H.R. Honeybees and Wax: An Experimental Natural History; Springer Science & Business Media: Cham, Switzerland, 2012. [Google Scholar]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of beeswax, candelilla wax and paraffin wax for coating cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Almousa, N.H.; Alotaibi, M.R.; Alsohybani, M.; Radziszewski, D.; AlNoman, S.M.; Alotaibi, B.M.; Khayyat, M.M. Paraffin wax [as a phase changing material (Pcm)] based composites containing multi-walled carbon nanotubes for thermal energy storage (tes) development. Crystals 2021, 11, 951. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef]
- Adgaba, N. Physical and chemical properties of Ethiopian beeswax and detection of adulteration. Ethiop. J. Anim. Prod. (EJAP) 2007, 7, 39–48. [Google Scholar]
- Zhang, C.; Gao, Y.; Wu, Y.; Zheng, Z.; Xie, Y.; Li, Y.; Li, B.; Pei, Y.; Liu, S. Construction of stable O/W/O multiple emulsions using beeswax to control the melting point of the continuous oil phase. Food Hydrocoll. 2023, 136, 108219. [Google Scholar] [CrossRef]
- Bogdanov, S. Chapter 1: Beeswax: Production, properties, composition, control. In Beeswax Book; Visto el 23 de febrero del 2021; Bee Product Science Publishing: Muehlethurnen, Switzerland, 2016. [Google Scholar]
- Coggshall, W.L.; Morse, R.A. Beeswax: Production, harvesting, processing and products. In Beeswax: Production, Harvesting, Processing and Products; Wicwas Press: Kalamazoo, Michigan, 1984. [Google Scholar]
- Bogdanov, S. Beeswax: Quality issues today. Bee World 2004, 85, 46–50. [Google Scholar] [CrossRef]
- Hepburn, H. The Origin of Beeswax: An Historical Perspective. In Honeybees and Wax; Springer: Berlin/Heidelberg, Germany, 1986; pp. 6–10. [Google Scholar]
- Coppock, R.W. Bee products as nutraceuticals to nutraceuticals for bees. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 813–833. [Google Scholar]
- Zafeiraki, E.; Sabo, R.; Kasiotis, K.M.; Machera, K.; Sabová, L.; Majchrák, T. Adult Honeybees and Beeswax as Indicators of Trace Elements Pollution in a Vulnerable Environment: Distribution among Different Apicultural Compartments. Molecules 2022, 27, 6629. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, R.; Greenberg, A.R.; Breed, M.D. A biomechanical perspective on beeswax. Am. Entomol. 2005, 51, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Tanner, N.; Lichtenberg-Kraag, B. Identification and Quantification of Single and Multi-Adulteration of Beeswax by FTIR-ATR Spectroscopy. Eur. J. Lipid Sci. Technol. 2019, 121, 1900245. [Google Scholar] [CrossRef]
- Špaldoňová, A.; Havelcová, M.; Lapčák, L.; Machovič, V.; Titěra, D. Analysis of beeswax adulteration with paraffin using GC/MS, FTIR-ATR and Raman spectroscopy. J. Apic. Res. 2021, 60, 73–83. [Google Scholar] [CrossRef]
- Zimnicka, B.; Hacura, A. An Investigation of molecular structure and dynamics of crude beeswax by Vibrational Spectroscopy. Pol. J. Environ. Stud. 2006, 15, 112–114. [Google Scholar]
- Rajisha, K.; Deepa, B.; Pothan, L.; Thomas, S. Thermomechanical and spectroscopic characterization of natural fibre composites. Interface Eng. Nat. Fibre Compos. Maximum Perform. 2011, 241–274. [Google Scholar]
- Starowicz, M.; Hanus, P.; Lamparski, G.; Sawicki, T. Characterizing the volatile and sensory profiles, and sugar content of beeswax, beebread, bee pollen, and honey. Molecules 2021, 26, 3410. [Google Scholar] [CrossRef]
- Hossain, M.E.; Rahman, M.; Ketata, C.; Mann, H.; Islam, M. SEM-based structural and chemical analysis of paraffin wax and beeswax for petroleum applications. J. Charact. Dev. Nov. Mater. 2009, 1, 21–38. [Google Scholar]
The Sample Label | Harvest Date | Beeswax Color | Storage Time |
---|---|---|---|
2-Y | January 2020 | Extra light amber | 2 Years |
1-Y | January 2021 | Extra white | 1 Year |
6-M | July 2021 | White | 6 months |
3-M | October 2021 | Water white | 3 months |
The Sample Label | 2-Y | 1-Y | 6-M | 3-M |
---|---|---|---|---|
Melting point | 74.5 ± 3.54 °C | 70.5 ± 0.71 °C | 67 ± 2.83 °C | 61.5 ± 2.12 °C |
Acid value mgKOH/g | 19.57 ± 0.95 | 22.95 ± 1.91 | 27 ± 1.91 | 34.42 ± 0.95 |
Ester value mgKOH/g | 97.19 ± 1.91 | 89.77 ± 0.95 | 66.14 ± 3.82 | 46.57 ± 2.86 |
Saponification value mgKOH/g | 116.76 ± 0.95 | 112.71 ± 0.95 | 93.14 ± 1.91 | 81 ± 3.82 |
Ester/Acid | 4.97 ± 0.34 | 3.93 ± 0.37 | 2.46 ± 0.42 | 1.35 ± 0.05 |
Carbon % | 93.26 | 92.03 | 89.69 | 88.76 |
Oxygen % | 6.74 | 7.97 | 10.31 | 11.24 |
Parameter | p-Value * | General p-Value | ||
---|---|---|---|---|
Melting point | 3 month beeswax | 6 month beeswax | 0.095 | 0.027 |
One year beeswax | 0.023 | |||
Two years beeswax | 0.007 | |||
6 month beeswax | One year beeswax | 0.238 | ||
Two years beeswax | 0.041 | |||
One year beeswax | Two years beeswax | 0.188 | ||
Acid value | 3 month beeswax | 6 month beeswax | 0.008 | 0.002 |
One year beeswax | 0.002 | |||
Two years beeswax | 0.001 | |||
6 month beeswax | One year beeswax | 0.055 | ||
Two years beeswax | 0.008 | |||
One year beeswax | Two years beeswax | 0.089 | ||
Ester value | 3 month beeswax | 6 month beeswax | 0.002 | ≤0.001 |
One year beeswax | ≤0.001 | |||
Two years beeswax | ≤0.001 | |||
6 month beeswax | One year beeswax | 0.001 | ||
Two years beeswax | ≤0.001 | |||
One year beeswax | Two years beeswax | 0.047 | ||
Saponification number | 3 month beeswax | 6 month beeswax | 0.006 | ≤0.001 |
One year beeswax | ≤0.001 | |||
Two years beeswax | ≤0.001 | |||
6 month beeswax | One year beeswax | 0.001 | ||
Two years beeswax | ≤0.001 | |||
One year beeswax | Two years beeswax | 0.145 | ||
Ester/Acid ratio | 3 month beeswax | 6 month beeswax | 0.002 | 0.001 |
One year beeswax | 0.001 | |||
Two years beeswax | ≤0.001 | |||
6 month beeswax | One year beeswax | 0.008 | ||
Two years beeswax | 0.001 | |||
One year beeswax | Two years beeswax | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shehri, B.M.; Haddadi, T.; M. Alasmari, E.; Ghramh, H.A.; Khan, K.A.; Mohammed, M.E.A.; Sager Alotaibi, M.; El-Niweiri, M.A.A.; Hamdi Assiri, A.; Khayyat, M.M. Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology. Foods 2022, 11, 3920. https://doi.org/10.3390/foods11233920
Al-Shehri BM, Haddadi T, M. Alasmari E, Ghramh HA, Khan KA, Mohammed MEA, Sager Alotaibi M, El-Niweiri MAA, Hamdi Assiri A, Khayyat MM. Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology. Foods. 2022; 11(23):3920. https://doi.org/10.3390/foods11233920
Chicago/Turabian StyleAl-Shehri, Badria M., Thahabh Haddadi, Eman M. Alasmari, Hamed A. Ghramh, Khalid Ali Khan, Mohammed Elimam Ahamed Mohammed, Mohammed Sager Alotaibi, Mogbel Ahmed Abdalla El-Niweiri, Abdulrahman Hamdi Assiri, and Maha M. Khayyat. 2022. "Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology" Foods 11, no. 23: 3920. https://doi.org/10.3390/foods11233920
APA StyleAl-Shehri, B. M., Haddadi, T., M. Alasmari, E., Ghramh, H. A., Khan, K. A., Mohammed, M. E. A., Sager Alotaibi, M., El-Niweiri, M. A. A., Hamdi Assiri, A., & Khayyat, M. M. (2022). Effect of Storage Time and Floral Origin on the Physicochemical Properties of Beeswax and the Possibility of Using It as a Phase Changing Material in the Thermal Storage Energy Technology. Foods, 11(23), 3920. https://doi.org/10.3390/foods11233920