A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polysaccharide Availability
2.2. Bacterial Strains Origin and Cell Culture
2.3. Determination of Antibacterial Activity
2.4. Determination of MIC and MBC
2.5. Meat Samples Preparation and Conditioning
2.6. Microbial Count Determination
2.7. Physicochemical Analysis
2.7.1. pH
2.7.2. Lipid Oxidation
2.7.3. Metmyoglobin (MetMb) Analysis
2.8. Sensory Profile
- Theoretical introduction to the principles of human physiology of sight, smell, and taste.
- Arrangement of preliminary training tests, mainly based on the utilization of model standard solutions, to collect information about the tasting capacity of each assessor (i.e., sensory acuity, odour and flavour memory, term use and recall, scoring consistency).
- To harmonize the assessment as well as to select the main descriptors to be used during experimental panel test, a preliminary consensus panel was carried out in the morning, in a well-ventilated quiet room and in a relaxed atmosphere to evaluate different meat samples at different storage times.
2.9. Statistical Analysis
3. Results and Discussion
3.1. Anti-Foodborne-Pathogen Activity of LmPS
3.2. LmPS Effect in Cold Storage Minced Beef Meat
3.2.1. Microbiological Determination
3.2.2. Physicochemical Analyses
3.3. Sensory Profile
3.4. Chemometric Approaches Underlying Lipid/Protein Oxidation and Microbial Growth
3.4.1. Principal Component Analysis (PCA)
3.4.2. Two-Way Hierarchical Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawat, S. Food Spoilage: Microorganisms and Their Prevention. Asian J. Plant Sci. Res. 2015, 5, 47–56. [Google Scholar]
- Alasnier, C.; Meynier, A.; Viau, M.; Gandemer, G. Hydrolytic and Oxidative Changes in the Lipids of Chicken Breast and Thigh Muscles During Refrigerated Storage. J. Food Sci. 2000, 65, 9–14. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef] [PubMed]
- den Braver-Sewradj, S.P.; van Spronsen, R.; Hessel, E.V.S. Substitution of Bisphenol A: A Review of the Carcinogenicity, Reproductive Toxicity, and Endocrine Disruption Potential of Alternative Substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Boye, A.; Akacha, B.; Dhifi, W.; Ben Saad, R.; Brini, F.; Mnif, W.; Kacaniova, M. Thiamine Demonstrates Bio-Preservative and Anti-Microbial Effects in Minced Beef Meat Storage and Lipopolysaccharide (LPS)-Stimulated RAW 264.7 Macrophages. Animals 2022, 12, 1646. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Švarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The Essential Oil of Tunisian Halophyte Lobularia Maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Saad, R.; Zouari, N.; Ben Romdhane, W.; Brini, F.; Ben Salah, R. Stress Associated Protein from Lobularia Maritima: Heterologous Expression, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Beef Meat. Int. J. Biol. Macromol. 2019, 132, 888–896. [Google Scholar] [CrossRef]
- Jindal, N.; Singh Khattar, J. Microbial Polysaccharides in Food Industry. In Biopolymers for Food Design; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–123. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Michalak, M.; Kukula-Koch, W.; Ben Saad, R.; ben Romdhane, W.; Zeljković, S.Ć.; Mnif, W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia Maritima. Biomolecules 2022, 12, 1583. [Google Scholar] [CrossRef]
- Guo, T.; Akan, O.D.; Luo, F.; Lin, Q. Dietary Polysaccharides Exert Biological Functions via Epigenetic Regulations: Advance and Prospectives. Crit. Rev. Food Sci. Nutr. 2023, 63, 114–124. [Google Scholar] [CrossRef]
- Anand, J.; Sathuvan, M.; Babu, G.V.; Sakthivel, M.; Palani, P.; Nagaraj, S. Bioactive Potential and Composition Analysis of Sulfated Polysaccharide from Acanthophora Spicifera (Vahl) Borgeson. Int. J. Biol. Macromol. 2018, 111, 1238–1244. [Google Scholar] [CrossRef]
- Geeta; Yadav, A.S. Antioxidant and Antimicrobial Profile of Chicken Sausages Prepared after Fermentation of Minced Chicken Meat with Lactobacillus Plantarum and with Additional Dextrose and Starch. LWT 2017, 77, 249–258. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Hfaiedh, M.; Ben Slima, S.; Romdhane, W.B.; Akacha, B.B.; Bouterra, M.T.; Dhifi, W.; Mnif, W.; Brini, F.; Ben Saad, R.; et al. Antioxidant and Hepatoprotective Effects of Novel Heteropolysaccharide Isolated from Lobularia Maritima on CCl4-Induced Liver Injury in Rats. Food Sci. Nutr. 2022, 10, 2271–2284. [Google Scholar] [CrossRef] [PubMed]
- ISO 7218:2007; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7218:ed-3:v1:en (accessed on 17 February 2022).
- ISO 4833:2003; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Microorganisms—Colony-Count Technique at 30 Degrees C. ISO. Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/45/34524.html (accessed on 12 October 2021).
- ISO 17410:2019; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Psychrotrophic Microorganisms. Available online: https://www.iso.org/obp/ui/#iso:std:iso:17410:ed-2:v1:en (accessed on 1 September 2022).
- ISO 21528-2:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Method. ISO. Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/45/34566.html (accessed on 1 September 2022).
- Eymard, S.; Carcouët, E.; Rochet, M.-J.; Dumay, J.; Chopin, C.; Genot, C. Development of Lipid Oxidation during Manufacturing of Horse Mackerel Surimi. J. Sci. Food Agric. 2005, 85, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, Z.; Gan, X.; Li, H. Interrelationship among Ferrous Myoglobin, Lipid and Protein Oxidations in Rabbit Meat during Refrigerated and Superchilled Storage. Meat Sci. 2018, 146, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Hemar, Y.; Perera, C.O.; Lewis, G.; Krissansen, G.W.; Buchanan, P.K. Antibacterial and Antioxidant Activities of Aqueous Extracts of Eight Edible Mushrooms. Bioact. Carbohydr. Diet. Fibre 2014, 3, 41–51. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, S.; Shen, S.; Zhang, L.; Yang, R.; Zhou, Y.; Ding, C. Extraction, Antioxidant and Antimicrobial Activities of Epimedium Acuminatum Franch. Polysaccharide. Carbohydr. Polym. 2013, 96, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wu, Z.; Huang, B.; Sun, L.; Ding, C.; Yuan, S.; Zhang, Z.; Chen, Y.; Hu, C.; Zhou, L.; et al. Extraction, Antioxidant and Antibacterial Activities of Broussonetia Papyrifera Fruits Polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef]
- He, F.; Yang, Y.; Yang, G.; Yu, L. Studies on Antibacterial Activity and Antibacterial Mechanism of a Novel Polysaccharide from Streptomyces Virginia H03. Food Control 2010, 21, 1257–1262. [Google Scholar] [CrossRef]
- Khalili, H.; Soltani, R.; Negahban, S.; Abdollahi, A.; Gholami, K. Reliability of Disk Diffusion Test Results for the Antimicrobial Susceptibility Testing of Nosocomial Gram-Positive Microorganisms: Is E-Test Method Better? Iran. J. Pharm. Res. 2012, 11, 559–563. [Google Scholar]
- Pankey, G.A.; Sabath, L.D. Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, Q.; Zhang, H.; Wang, J.; Fu, Q.; Qiao, H.; Wang, Q. Insight into Antibacterial Mechanism of Polysaccharides: A Review. LWT 2021, 150, 111929. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A Review of the Antibacterial Activity and Mechanisms of Plant Polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Rubini, D.; Varthan, P.V.; Jayasankari, S.; Vedahari, B.N.; Nithyanand, P. Suppressing the Phenotypic Virulence Factors of Uropathogenic Escherichia coli Using Marine Polysaccharide. Microb. Pathog. 2020, 141, 103973. [Google Scholar] [CrossRef]
- Xie, T.; Liao, Z.; Lei, H.; Fang, X.; Wang, J.; Zhong, Q. Antibacterial Activity of Food-Grade Chitosan against Vibrio Parahaemolyticus Biofilms. Microb. Pathog. 2017, 110, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Vunduk, J.; Wan-Mohtar, W.A.A.Q.I.; Mohamad, S.A.; Abd Halim, N.H.; Mohd Dzomir, A.Z.; Žižak, Ž.; Klaus, A. Polysaccharides of Pleurotus Flabellatus Strain Mynuk Produced by Submerged Fermentation as a Promising Novel Tool against Adhesion and Biofilm Formation of Foodborne Pathogens. LWT 2019, 112, 108221. [Google Scholar] [CrossRef]
- Vishwakarma, J.; Vavilala, S.L. Evaluating the Antibacterial and Antibiofilm Potential of Sulphated Polysaccharides Extracted from Green Algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 2019, 127, 1004–1017. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Q.; Wang, X.; Li, R.; Qiao, H.; Ma, P.; Sun, Q.; Zhang, H. Antibacterial Activity of Xanthan-Oligosaccharide against Staphylococcus aureus via Targeting Biofilm and Cell Membrane. Int. J. Biol. Macromol. 2020, 153, 539–544. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S.; Kim, S.H. Released Exopolysaccharide (r-EPS) Produced from Probiotic Bacteria Reduce Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7. Biochem. Biophys. Res. Commun. 2009, 379, 324–329. [Google Scholar] [CrossRef]
- Liu, X.; Guan, Y.; Yang, D.; Li, Z.; Yao, K. Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl. Polym. Sci. 2001, 79, 1324–1335. [Google Scholar] [CrossRef]
- Arpornmaeklong, P.; Pripatnanont, P.; Suwatwirote, N. Properties of Chitosan–Collagen Sponges and Osteogenic Differentiation of Rat-Bone-Marrow Stromal Cells. Int. J. Oral Maxillofac. Surg. 2008, 37, 357–366. [Google Scholar] [CrossRef]
- Garcia, L.G.S.; de Melo Guedes, G.M.; Fonseca, X.M.Q.C.; Pereira-Neto, W.A.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; de Aguiar Cordeiro, R.; Rocha, M.F.G.; Vieira, R.S.; Brilhante, R.S.N. Antifungal Activity of Different Molecular Weight Chitosans against Planktonic Cells and Biofilm of Sporothrix Brasiliensis. Int. J. Biol. Macromol. 2020, 143, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Tantala, J.; Thumanu, K.; Rachtanapun, C. An Assessment of Antibacterial Mode of Action of Chitosan on Listeria Innocua Cells Using Real-Time HATR-FTIR Spectroscopy. Int. J. Biol. Macromol. 2019, 135, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tao, L.; Ru, Y.; Weng, S.; Chen, Z.; Wang, J.; Guo, L.; Lin, Z.; Pan, W.; Qiu, B. Antibacterial Mechanism of Tetrastigma Hemsleyanum Diels et Gilg’s Polysaccharides by Metabolomics Based on HPLC/MS. Int. J. Biol. Macromol. 2019, 140, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.-T.; Zheng, W.; Han, X.-X.; Jiang, Y.-H.; Hu, P.-L.; Tang, Z.-X.; Shi, L.-E. The Antibacterial Activity and Antibacterial Mechanism of a Polysaccharide from Cordyceps Cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, J.; Li, W.; Li, R.; Wang, X.; Qiao, H.; Sun, Q.; Zhang, H. Antibacterial Mechanism of the Polysaccharide Produced by Chaetomium Globosum CGMCC 6882 against Staphylococcus Aureus. Int. J. Biol. Macromol. 2020, 159, 231–235. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Ghotaslou, R.; Kordi, S.; Khoramdel, A.; Aeenfar, A.; Kahjough, S.T.; Akbarzadeh, A. Antibacterial and Antifungal Effects of Chitosan Nanoparticles on Tissue Conditioners of Complete Dentures. Int. J. Biol. Macromol. 2018, 118, 881–885. [Google Scholar] [CrossRef]
- Vesentini, D.; Steward, D.; Singh, A.P.; Ball, R.; Daniel, G.; Franich, R. Chitosan-Mediated Changes in Cell Wall Composition, Morphology and Ultrastructure in Two Wood-Inhabiting Fungi. Mycol. Res. 2007, 111, 875–890. [Google Scholar] [CrossRef]
- Lou, M.-M.; Zhu, B.; Muhammad, I.; Li, B.; Xie, G.-L.; Wang, Y.-L.; Li, H.-Y.; Sun, G.-C. Antibacterial Activity and Mechanism of Action of Chitosan Solutions against Apricot Fruit Rot Pathogen Burkholderia Seminalis. Carbohydr. Res. 2011, 346, 1294–1301. [Google Scholar] [CrossRef]
- Choi, B.-K.; Kim, K.-Y.; Yoo, Y.-J.; Oh, S.-J.; Choi, J.-H.; Kim, C.-Y. In Vitro Antimicrobial Activity of a Chitooligosaccharide Mixture against Actinobacillus Actinomycetemcomitans and Streptococcus Mutans. Int. J. Antimicrob. Agents 2001, 18, 553–557. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial Activity of a Polysaccharide Produced from Chaetomium Globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376–382. [Google Scholar] [CrossRef]
- Mahdhi, A.; Leban, N.; Chakroun, I.; Chaouch, M.A.; Hafsa, J.; Fdhila, K.; Mahdouani, K.; Majdoub, H. Extracellular Polysaccharide Derived from Potential Probiotic Strain with Antioxidant and Antibacterial Activities as a Prebiotic Agent to Control Pathogenic Bacterial Biofilm Formation. Microb. Pathog. 2017, 109, 214–220. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Bouaziz, F.; Belghith, L.; Zouari-Ellouzi, S.; Chaari, F.; Haddar, A.; Chaabouni, S.E.; Ghorbel, R. Polysaccharide from Garlic Straw: Extraction, Structural Data, Biological Properties and Application to Beef Meat Preservation. RSC Adv. 2015, 5, 6728–6741. [Google Scholar] [CrossRef]
- Determination of Temperature Dependent Growth Parameters in Psychrotrophic Pathogen Bacteria and Tentative Use of Mean Kinetic Temperature for the Microbiological Control of Food—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290036/ (accessed on 2 September 2022).
- Roberts, R.F.; Torrey, G.S. Inhibition of Psychrotrophic Bacterial Growth in Refrigerated Milk by Addition of Carbon Dioxide. J. Dairy Sci. 1988, 71, 52–60. [Google Scholar] [CrossRef]
- Juszczuk-Kubiak, E.; Dekowska, A.; Sokołowska, B.; Połaska, M.; Lendzion, K. Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach. Processes 2021, 9, 803. [Google Scholar] [CrossRef]
- Zhang, H.; van der Wielen, N.; van der Hee, B.; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Ben Saad, R.; Trabelsi, I.; Ben Romdhane, W.; Brini, F.; Ben Salah, R. A Novel Triticum Durum Annexin 12 Protein: Expression, Purification and Biological Activities against Listeria Monocytogenes Growth in Meat under Refrigeration. Microb. Pathog. 2020, 143, 104143. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ahn, D.U. Lipid Oxidation and Its Implications to Meat Quality and Human Health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
Acronym | Experimental Conditions | |
---|---|---|
Lot 1 | Control | untreated control |
Lot 2 | BHT | supplemented with 0.01% BHT |
Lot 3 | [1LmPS] | supplemented with LmPS at 0.15% (v/w) |
Lot 4 | [2LmPS] | supplemented with LmPS at 0.3% (v/w) |
Lot 5 | [3LmPS] | supplemented with LmPS at 0.6% (v/w) |
Bacteria Strains | LmPS | 1/2 | STR | |
---|---|---|---|---|
G+ | Staphylococcus aureus ATCC 25,923 | 21.5 ± 0.5 | 16.5 ± 0.5 | 13.5 ± 0.3 |
Listeria monocytogenes ATCC 1911 | 31.5 ± 0.1 | 27.5 ± 0.5 | 27.0 ± 1.1 | |
G− | Escherichia coli ATCC 25,922 | 29.5 ± 0.3 | 26.0 ± 1.2 | 27.5 ± 0.3 |
Salmonella enterica ATCC 43,972 | 31.0 ± 0.3 | 27.0 ± 0.3 | 26.2 ± 0.8 |
Bacterial Strain | MIC (µg/mL) | MBC (µg/mL) | MBC/MIC | Antibacterial Activity | |
---|---|---|---|---|---|
G+ | Staphylococcus aureus ATCC 25,923 | 120 ± 0.01 | 150 ± 0.8 | 1 | Bacteriostatic |
Listeria monocytogenes ATCC 1911 | 150 ± 0.04 | 400 ± 0.05 | 2 | Bacteriostatic | |
G− | Escherichia coli ATCC 25,922 | 170 ± 0.05 | 400 ± 0.02 | 2 | Bacteriostatic |
Salmonella enterica ATCC 43,972 | 150 ± 0.04 | 200 ± 0.01 | 1 | Bacteriostatic |
Days of Storage at 4 °C | |||||
---|---|---|---|---|---|
0 | 3 | 7 | 10 | 14 | |
APC | |||||
Control | 2.0 ± 0.03 aA | 3.5 ± 0.23 dB | 4.9 ± 0.07 eC | 6.6 ± 0.33 dD | 8.0 ± 0.08 dE |
BHT | 2.1 ± 0.11 aA | 3.2 ± 0.03 cA | 4.7 ± 0.49 dB | 6.1 ± 0.29 dC | 6.9 ± 0.07 cD |
1LmPS | 2.1 ± 0.01 aA | 3.2 ± 0.11 cB | 4.4 ± 0.35 cB | 6.2 ± 0.42 cC | 6.6 ± 0.38 cD |
2LmPS | 2.1 ± 0.04 aA | 3.2 ± 0.08 bB | 4.0 ± 0.31 bC | 5.1 ± 0.31 bC | 5.9 ± 0.28 bC |
3LmPS | 2.0 ± 0.04 aA | 2.8 ± 0.53 aB | 3.5 ± 0.07 aB | 4.1 ± 0.07 aC | 4.7 ± 0.42 aD |
PTC | |||||
Control | 2.0 ± 0.02 aA | 2.9 ± 0.6 dB | 3.8 ± 0.67 cC | 5.2 ± 1.40 cD | 6.4 ± 0.24 cE |
BHT | 2.0 ± 0.23 aA | 2.7 ± 0.63 cB | 3.3 ± 0.14 cC | 4.7 ± 0.67 dCD | 6.0 ± 0.44 dD |
1LmPS | 2.0 ± 0.01 aA | 2.1 ± 0.02 bB | 3.2 ± 0.59 bBC | 4.7 ± 0.51 dC | 5.3 ± 0.55 bD |
2LmPS | 2.0 ± 0.54 aA | 2.1 ± 0.16 aA | 3.0 ± 0.25 aB | 3.7 ± 0.18 bC | 4.5 ± 0.21 aD |
3LmPS | 2.0 ± 0.05 aA | 2.0 ± 0.2 aAB | 2.6 ± 0.29 abB | 3.2 ± 0.25 aC | 4.1 ± 0.02 aC |
Enterobacteriaceae count | |||||
Control | <1 aA | 2.3 ± 0.02 bB | 2.6 ± 0.05 eB | 3.1 ± 0.66 cC | 3.5 ± 0.17 cC |
BHT | <1 aA | 2.1 ± 0.06 bB | 2.0 ± 0.14 dB | 2.5 ± 0.15 bC | 2.7 ± 0.15 bC |
1LmPS | <1 aA | 2.0 ± 0.04 bB | 1.8 ± 0.18 cB | 2.2 ± 0.02 bC | 2.4 ± 0.27 aC |
2LmPS | <1 aA | 1.9 ± 0.19 bB | 1.6 ± 0.14 bAB | 2.1 ± 0.05 aB | 2.3 ± 0.05 aB |
3LmPS | <1 aA | <1.0 aA | 1.2 ± 0.14 aA | 1.7 ± 0.14 aAB | 1.8 ± 0.29 aB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akacha, B.B.; Najar, B.; Venturi, F.; Quartacci, M.F.; Saad, R.B.; Brini, F.; Mnif, W.; Kačániová, M.; Ben Hsouna, A. A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L. Foods 2022, 11, 3935. https://doi.org/10.3390/foods11233935
Akacha BB, Najar B, Venturi F, Quartacci MF, Saad RB, Brini F, Mnif W, Kačániová M, Ben Hsouna A. A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L. Foods. 2022; 11(23):3935. https://doi.org/10.3390/foods11233935
Chicago/Turabian StyleAkacha, Boutheina Ben, Basma Najar, Francesca Venturi, Mike Frank Quartacci, Rania Ben Saad, Faiçal Brini, Wissem Mnif, Miroslava Kačániová, and Anis Ben Hsouna. 2022. "A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L." Foods 11, no. 23: 3935. https://doi.org/10.3390/foods11233935
APA StyleAkacha, B. B., Najar, B., Venturi, F., Quartacci, M. F., Saad, R. B., Brini, F., Mnif, W., Kačániová, M., & Ben Hsouna, A. (2022). A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L. Foods, 11(23), 3935. https://doi.org/10.3390/foods11233935