Compositional Changes in the Extra Virgin Olive Oil Used as a Medium for Cheese Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Oil Analysis
2.2.1. Determination of Quality Parameters and Moisture
2.2.2. Fatty Acid Methyl Esters Determination
2.2.3. Total Phenolic Content (TPC) and Radical-Scavenging Activity Determination
2.2.4. Extraction and HPLC-UV/Vis Analysis of Phenolic Compounds
2.3. Cheese Analysis
2.3.1. Basic Chemical Parameters
2.3.2. FAME Determination
2.3.3. Total Phenols Determination
2.4. Statistics
3. Results and Discussion
3.1. Quality Parameters
3.2. Fatty Acid Profile
3.3. Phenolic Compounds and Radical-Scavenging Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaforio, J.J.; Visioli, F.; Alarcón-de-la-Lastra, C.; Castañer, O.; Delgado-Rodríguez, M.; Fitó, M.; Hernández, A.F.; Huertas, J.R.; Martínez-González, M.A.; Menendez, J.A.; et al. Virgin olive oil and health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients 2018, 11, 2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive oil and prevention of chronic diseases: Summary of an International Conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ismail, K.; Al-Awamleh, S.A.; Saleh, M.; Al-Titi, H. Impacts of oil types and storage conditions on milk fat quality of strained yogurt immersed in oil. J. Am. Oil Chem. Soc. 2019, 96, 171–178. [Google Scholar] [CrossRef]
- Keceli, T.; Robinson, R.K.; Gordon, M.H. The role of olive oil in the preservation of yogurt cheese (Labneh Anbaris). Int. J. Dairy Technol. 1999, 52, 68–72. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Dobranić, V.; Filipović, I.; Zdolec, N. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life. Maced. Vet. Rev. 2016, 39, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Di Trana, A.; Di Rosa, A.R.; Addis, M.; Fiori, M.; Di Grigoli, A.; Morittu, V.M.; Spina, A.A.; Claps, S.; Chiofalo, V.; Licitra, G.; et al. The quality of five natural, historical Italian cheeses produced in different months: Gross composition, fat-soluble vitamins, fatty acids, total phenols, antioxidant capacity, and health index. Animals 2022, 12, 199. [Google Scholar] [CrossRef]
- Rako, A.; Tudor Kalit, M.; Kalit, S.; Soldo, B.; Ljubenkov, I. Nutritional characteristics of Croatian whey cheese (Bračka skuta) produced in different stages of lactation. LWT–Food Sci. Technol. 2018, 96, 657–662. [Google Scholar] [CrossRef]
- Blažić, M.; Pavić, K.; Zavadlav, S.; Marčac, N. The impact of traditional cheeses and whey on health. Croat. J. Food Sci. Technol. 2017, 9, 198–203. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Pripp, A.H.; Vreeker, R.; Van Duynhoven, J. Binding of olive oil phenolics to food proteins. J. Sci. Food Agric. 2005, 85, 354–362. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, D.; Sun, J.; Liu, X.; Jiang, L.; Guo, H.; Ren, F. Interaction of plant phenols with food macronutrients: Characterisation and nutritional-physiological consequences. Nutr. Res. Rev. 2014, 27, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, S.; Azimy, N.; Bazinet, L.; Couillard, C.; Britten, M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct. 2014, 5, 2621–2631. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2018, 34, 665–697. [Google Scholar] [CrossRef]
- Han, J.; Chang, Y.; Britten, M.; St-Gelais, D.; Champagne, C.P.; Fustier, P.; Lacroix, M. Interactions of phenolic compounds with milk proteins. Eur. Food Res. Technol. 2019, 245, 1881–1888. [Google Scholar] [CrossRef]
- Kanakis, C.D.; Hasni, I.; Bourassa, P.; Tarantilis, P.A.; Polissiou, M.G.; Tajmir-Riahi, H.A. Milk β-lactoglobulin complexes with tea polyphenols. Food Chem. 2011, 127, 1046–1055. [Google Scholar] [CrossRef]
- Caponio, F.; Gomes, T.; Summo, C. Assessment of the oxidative and hydrolytic degradation of oils used as liquid medium of in-oil preserved vegetables. J. Food Sci. 2003, 68, 147–151. [Google Scholar] [CrossRef]
- Sicari, V.; Leporini, M.; Romeo, R.; Poiana, M.; Tundis, R.; Loizzo, M.R. Shelf-life evaluation of “San Marzano” dried tomato slices preserved in extra virgin olive oil. Foods 2021, 10, 1706. [Google Scholar] [CrossRef]
- Lucci, P.; Bertoz, V.; Pacetti, D.; Moret, S.; Conte, L. Effect of the refining process on total hydroxytyrosol, tyrosol, and tocopherol contents of olive oil. Foods 2020, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Characteristics of olive oil and olive-residue oil and the relevant methods of analysis. Regulation EEC/2568/91 and later modifications. Off. J. Eur. Community 1991, L24, 1–83. Available online: http://data.europa.eu/eli/reg/1991/2568/oj (accessed on 12 May 2022).
- ISO 662:1998; Animal and Vegetable Fats and Oils—Determination of Moisture and Volatile Matter Content. 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2009.
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. virgin olive oil phenols, volatiles and sensory quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef]
- ISO 1735:2008; Cheese and Processed Cheese Products–Determination of Fat Content–Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 8968-1:2014; Milk and Milk Products–Determination of Nitrogen Content–Part 1: Kjeldahl Principle and Crude Protein Calculation. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 12966-2:2011; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters-2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils–Gas Chromatography of Fatty Acid Methyl Esters-4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015.
- Pleadin, J.; Kvrgić, K.; Zrnčić, S.; Lešić, T.; Koprivnjak, O.; Vulić, A.; Džafić, N.; Oraić, D.; Krešić, G. Variations in nutritive composition of three shellfish species. Ital. J. Food Sci. 2019, 31, 716–730. [Google Scholar] [CrossRef]
- Lee, N.K.; Jeewanthi, R.K.C.; Park, E.H.; Paik, H.D. Short communication: Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci. 2016, 99, 83–88. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cerrato, A.; Aita, S.E.; Montone, C.M.; Piovesana, S.; Laganà, A.; Cavaliere, C. Degradation of the polar lipid and fatty acid molecular species in extra virgin olive oil during storage based on shotgun lipidomics. J. Chromatogr. A 2021, 1639, 461881. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Santos, V.; Mangericão, H.; Gordon, M.H. Effects of copper on the antioxidant activity of olive polyphenols in bulk oil and oil-in-water emulsions. J. Agric. Food Chem. 2006, 54, 3738–3743. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Esposto, S.; Selvaggini, R.; Taticchi, A.; Veneziani, G.; Sordini, B.; Servili, M. Quality evolution of extra-virgin olive oils according to their chemical composition during 22 months of storage under dark conditions. Food Chem. 2020, 311, 126044. [Google Scholar] [CrossRef] [PubMed]
- Fregapane, G.; Salvador, M.D. Oxidative stability and the role of minor and functional components of olive oil. In Olives and Olive Oil as Functional Foods, 1st ed.; Shahidi, F., Kiritsakis, A., Eds.; Wiley: New York, NY, USA, 2017; pp. 249–265. [Google Scholar]
- Gómez-Alonso, S.; Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem. 2007, 100, 36–42. [Google Scholar] [CrossRef]
- Klisović, D.; Novoselić, A.; Lukić, I.; Brkić Bubola, K. Extra virgin olive oil under simulated consumption conditions: Evaluation of quality, health, and flavour properties. J. Food Compos. 2022, 110, 104570. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Klisović, D.; Lukić, I.; Novoselić, A. Vegetable species significantly affects the phenolic composition and oxidative stability of extra virgin olive oil used for roasting. LWT Food Sci. Technol. 2020, 129. [Google Scholar] [CrossRef]
- Mendil, D. Mineral and trace metal levels in some cheese collected from Turkey. Food Chem. 2006, 96, 532–537. [Google Scholar] [CrossRef]
- Kostadinovic-Velickovska, S.; Mitrev, S. Characterization of fatty acid profile, polyphenolic content and antioxidant activity of cold pressed and refined edible oils from Macedonia. J. Food Chem. Nutr. 2013, 1, 16–21. [Google Scholar]
- Lozano-Castellón, J.; Rinaldi de Alvarenga, J.F.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci. Technol. 2022, 123, 28–36. [Google Scholar] [CrossRef]
- Maleky, F. Oil migration through fats-quantification and its relationship to structure. In Structure-Function Analysis of Edible Fats, 2nd ed.; Marangoni, A.G., Ed.; AOCS Press, Elsevier Inc.: Urbana, IL, USA, 2018; pp. 241–266. [Google Scholar]
- Caipo, L.; Sandoval, A.; Sepúlveda, B.; Fuentes, E.; Valenzuela, R.; Metherel, A.H.; Romero, N. Effect of storage conditions on the quality of Arbequina extra virgin olive oil and the impact on the composition of flavor-related compounds (phenols and volatiles). Foods 2021, 10, 2161. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Welt, B.A.; Goodrich-Schneider, R.; Sims, C.A.; Baker, G.L.; Marshall, M.R. Influence of headspace oxygen on quality and shelf life of extra virgin olive oil during storage. Food Packag. Shelf Life 2020, 23, 100433. [Google Scholar] [CrossRef]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil. Food Control 2010, 21, 412–418. [Google Scholar] [CrossRef]
- Brenes, M.; García, A.; García, P.; Garrido, A. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J. Agric. Food Chem. 2001, 49, 5609–5614. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, K.; Fritsche, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W. Reactivity of various compound classes towards the Folin-Ciocalteu reagent. AIP Conf. Proc. 2010, 1229, 16–22. [Google Scholar] [CrossRef]
- Ha, E.; Zemel, M.B. Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people (review). J. Nutr. Biochem. 2003, 14, 251–258. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- De Toffoli, A.; Monteleone, E.; Bucalossi, G.; Veneziani, G.; Fia, G.; Servili, M.; Zanoni, B.; Pagliarini, E.; Gallina Toschi, T.; Dinnella, C. Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition. Food Res. Int. 2019, 119, 236–243. [Google Scholar] [CrossRef]
- Nayak, J.; Pal, P. Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind. Eng. Chem. Res. 2013, 52, 2977–2984. [Google Scholar] [CrossRef]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Juliano, F.F.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Using extra virgin olive oil to cook vegetables enhances polyphenol and carotenoid extractability: A Study applying the sofrito technique. Molecules 2019, 24, 1555. [Google Scholar] [CrossRef] [Green Version]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Gordon, M.H. Effects of ph and ferric ions on the antioxidant activity of olive polyphenols in oil-in-water emulsions. J. Am. Oil Chem. Soc. 2002, 79, 571–576. [Google Scholar] [CrossRef]
- Ramírez-Anaya, J.D.P.; Samaniego-Sánchez, C.; Castañeda-Saucedo, M.C.; Villalón-Mir, M.; De La Serrana, H.L.G. Phenols and the antioxidant capacity of mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438. [Google Scholar] [CrossRef] [PubMed]
Time (Months) | Samples | FFA (% of Oleic Acid) | PV (meq O2/kg) | K232 | K268 | ∆K | Moisture Content (%) | |
---|---|---|---|---|---|---|---|---|
EVOO | 0 | EVOO | 0.17 ± 0.01 B | 5.6 ± 0.1 B | 1.80 ± 0.04 B | 0.13 ± 0.00 A | 0.00 ± 0.00 | 0.09 ± 0.00 B |
1 | EVOO | 0.18 ± 0.00 Bb | 8.0 ± 0.1 Aa | 1.86 ± 0.02 Bb | 0.12 ± 0.00 Ab | 0.00 ± 0.00 | 0.10 ± 0.01 Bb | |
EVOO + C1 | 0.22 ± 0.00 b | 6.5 ± 0.1 bc | 1.84 ± 0.05 b | 0.12 ± 0.01 b | 0.00 ± 0.00 | 0.15 ± 0.00 b | ||
EVOO + C2 | 0.32 ± 0.03 a | 6.4 ± 0.2 c | 2.08 ± 0.03 a | 0.14 ± 0.01 a | 0.00 ± 0.00 | 0.14 ± 0.00 b | ||
EVOO + C3 | 0.27 ± 0.06 ab | 6.9 ± 0.2 b | 1.63 ± 0.01 c | 0.10 ± 0.00 c | 0.00 ± 0.00 | 0.61 ± 0.22 a | ||
2 | EVOO | 0.20 ± 0.01 Ac | 7.9 ± 0.1 Aa | 2.10 ± 0.11 Ac | 0.12 ± 0.00 Ab | 0.00 ± 0.00 | 0.13 ± 0.00 Ab | |
EVOO + C1 | 0.31 ± 0.01 bc | 6.5 ± 0.1 c | 3.37 ± 0.17 b | 0.12 ± 0.01 b | 0.00 ± 0.00 | 0.15 ± 0.00 b | ||
EVOO + C2 | 0.33 ± 0.03 b | 6.1 ± 0.2 d | 4.32 ± 0.14 a | 0.14 ± 0.01 a | 0.00 ± 0.00 | 0.15 ± 0.00 b | ||
EVOO + C3 | 0.57 ± 0.08 a | 7.0 ± 0.2 b | 3.30 ± 0.20 b | 0.10 ± 0.00 c | 0.00 ± 0.00 | 0.91 ± 0.05 a | ||
EVOO * | ≤0.80 | ≤20.0 | ≤2.50 | ≤0.22 | ≤0.01 | / | ||
RAF | 0 | RAF | 0.08 ± 0.01 | 1.0 ± 0.1 B | 2.26 ± 0.02 B | 0.85 ± 0.00 | 0.10 ± 0.00 | 0.06 ± 0.02 |
1 | RAF | 0.08 ± 0.01 c | 1.6 ± 0.1 Aa | 2.19 ± 0.07 Bb | 0.85 ± 0.01 | 0.10 ± 0.00 | 0.06 ± 0.01 d | |
RAF + C1 | 0.18 ± 0.01 b | 0.8 ± 0.0 c | 2.51 ± 0.16 ab | 0.84 ± 0.00 | 0.12 ± 0.01 | 0.13 ± 0.02 b | ||
RAF + C2 | 0.28 ± 0.01 a | 0.7 ± 0.1 c | 2.58 ± 0.20 a | 0.85 ± 0.01 | 0.11 ± 0.03 | 0.14 ± 0.02 b | ||
RAF + C3 | 0.17 ± 0.00 b | 1.1 ± 0.0 b | 2.35 ± 0.04 ab | 0.85 ± 0.01 | 0.11 ± 0.00 | 0.19 ± 0.02 a | ||
2 | RAF | 0.08 ± 0.00 c | 1.5 ± 0.1 Aa | 2.61 ± 0.19 Ac | 0.85 ± 0.01 | 0.10 ± 0.00 | 0.07 ± 0.02 c | |
RAF + C1 | 0.24 ± 0.01 b | 0.8 ± 0.1 bc | 4.62 ± 0.18 a | 0.84 ± 0.00 | 0.13 ± 0.04 | 0.13 ± 0.01 b | ||
RAF + C2 | 0.34 ± 0.01 a | 0.8 ± 0.1 c | 4.01 ± 0.15 b | 0.84 ± 0.01 | 0.11 ± 0.00 | 0.13 ± 0.00 b | ||
RAF + C3 | 0.27 ± 0.04 b | 1.0 ± 0.1 b | 4.37 ± 0.17 ab | 0.85 ± 0.00 | 0.11 ± 0.00 | 0.22 ± 0.03 a | ||
RAF * | ≤0.30 | ≤5.0 | / | ≤1.10 | ≤0.16 | / |
Time (Months) | Moisture Content (%) | Total Fat (g/100 g) | SFA (g/100 g) | MUFA (g/100 g) | PUFA (g/100 g) | Total Carbohydrates (g/100 g) | Total Proteins (g/100 g) | Salt (g/100 g) | Total Phenols (mg GAE/kg) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0 | 44.4 ± 0.5 B | 30.2 ± 0.3 Bby | 20.6 ± 0.2 Bax | 7.37 ± 0.31 Acz | 0.80 ± 0.00 Bby | <0.2 B | 23.1 ± 0.2 Ba | 1.83 ± 0.12 Ax | 415 ± 3 Bcz | |
EVOO | 1 | 45.3 ± 0.7 | 29.8 ± 0.44 b | 18.7 ± 0.2 b | 8.33 ± 0.25 b | 1.10 ± 0.10 a | <0.5 | 23.0 ± 0.1 a | 1.48 ± 0.36 | 623 ± 5 a | |
2 | 44.6 ± 0.4 | 31.6 ± 0.1 a | 18.9 ± 0.0 b | 9.77 ± 0.06 a | 1.20 ± 0.00 a | <0.5 | 22.3 ± 0.3 b | 1.55 ± 0.09 | 611 ± 4 b | ||
RAF | 1 | 45.1 ± 0.2 | 30.4 ± 0.2 y | 19.2 ± 0.2 y | 8.40 ± 0.00 y | 1.20 ± 0.00 x | <0.5 | 22.8 ± 0.2 | 1.41 ± 0.16 y | 493 ± 4 x | |
2 | 44.9 ± 0.6 | 31.2 ± 0.01 x | 19.0 ± 0.3 y | 9.17 ± 0.31 x | 1.23 ± 0.06 x | <0.5 | 22.7 ± 0.4 | 1.20 ± 0.19 y | 482 ± 3 y | ||
C2 | 0 | 36.4 ± 2.0 C | 32.2 ± 0.7 Ay | 21.7 ± 0.4 Aax | 7.80 ± 0.20 Ccx | 1.00 ± 0.10 Abz | <0.2 Bby | 29.2 ± 0.7 Ax | 1.80 ± 0.16 A | 934 ± 3 Aax | |
EVOO | 1 | 35.9 ± 0.4 | 32.5 ± 0.6 | 19.7 ± 0.3 b | 9.70 ± 0.17 b | 1.30 ± 0.00 a | 0.64 ± 0.09 a | 28.4 ± 0.6 | 1.95 ± 0.28 | 948 ± 10 a | |
2 | 35.2 ± 0.3 | 33.4 ± 0.1 | 19.4 ± 0.3 b | 10.7 ± 0.3 a | 1.43 ± 0.06 a | 0.59 ± 0.03 a | 28.1 ± 0.1 | 2.08 ± 0.33 | 652 ± 5 b | ||
RAF | 1 | 35.8 ± 0.3 | 32.7 ± 0.1 y | 19.8 ± 0.1 y | 9.70 ± 0.10 y | 1.50 ± 0.00 y | 0.74 ± 0.05 x | 28.1 ± 0.2 y | 1.85 ± 0.26 | 904 ± 3 y | |
2 | 34.6 ± 0.4 | 33.9 ± 0.2 x | 19.2 ± 0.5 y | 11.1 ± 0.4 x | 1.73 ± 0.12 x | 0.57 ± 0.02 x | 28.5 ± 0.1 xy | 1.82 ± 0.43 | 580 ± 4 z | ||
C3 | 0 | 74.4 ± 0.1 Aax | 8.33 ± 0.32 Cby | 5.60 ± 0.26 Cb | 2.03 ± 0.06 Bby | 0.30 ± 0.00 Cby | 2.99 ± 0.08 Aax | 10.7 ± 0.0 Cb | 0.55 ± 0.05 Ba | 140 ± 4 Cby | |
EVOO | 1 | 73.7 ± 0.7 a | 9.80 ± 0.79 a | 5.83 ± 0.21 ab | 3.00 ± 0.44 a | 0.47 ± 0.06 a | 2.84 ± 0.07 ab | 10.4 ± 0.1 c | 0.42 ± 0.03 b | 150 ± 4 b | |
2 | 72.4 ± 0.2 b | 10.3 ± 0.1 a | 6.30 ± 0.10 a | 3.03 ± 0.15 a | 0.40 ± 0.00 a | 2.79 ± 0.04 b | 11.2 ± 0.2 a | 0.47 ± 0.03 ab | 193 ± 6 a | ||
RAF | 1 | 74.2 ± 0.2 y | 8.80 ± 0.17 xy | 5.60 ± 0.00 | 2.37 ± 0.12 x | 0.33 ± 0.06 xy | 2.88 ± 0.03 x | 10.8 ± 0.2 | 0.45 ± 0.06 | 162 ± 6 x | |
2 | 73.9 ± 0.1 z | 9.27 ± 0.06 x | 5.90 ± 0.10 | 2.50 ± 0.10 x | 0.40 ± 0.00 x | 2.75 ± 0.03 y | 10.8 ± 0.1 | 0.55 ± 0.14 | 155 ± 8 xy |
Time (Months) | 0 | 1 | 2 | EVOO * | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Samples | EVOO | EVOO | EVOO + C1 | EVOO + C2 | EVOO + C3 | EVOO | EVOO + C1 | EVOO + C2 | EVOO + C3 | |
Myristic (C 14:0) | 0.01 ± 0.00 | 0.01 ± 0.00 c | 0.53 ± 0.04 b | 0.86 ± 0.02 a | 0.01 ± 0.00 c | 0.01 ± 0.00 c | 0.65 ± 0.01 b | 1.03 ± 0.00 a | 0.02 ± 0.00 c | ≤0.03 |
Palmitic (C 16:0) | 14.9 ± 0.2 A | 14.6 ± 0.3 ABb | 16.4 ± 0.7 a | 16.0 ± 0.1 a | 14.5 ± 0.3 b | 14.1 ± 0.0 Bc | 15.3± 0.0 b | 15.6 ± 0.0 a | 14.0 ± 0.1 c | 7.50–20.00 |
Palmitoleic (C 16:1) | 1.25 ± 0.02 | 1.26 ± 0.02 b | 1.42 ± 0.06 a | 1.38 ± 0.01 a | 1.25 ± 0.03 b | 1.21 ± 0.00 | 1.31 ± 0.01 | 1.32 ± 0.00 | 1.20 ± 0.01 | 0.30–3.50 |
Heptadecanoic (C 17:0) | 0.04 ± 0.00 | 0.05 ± 0.00 b | 0.06 ± 0.00 a | 0.07 ± 0.01 a | 0.05 ± 0.00 b | 0.04 ± 0.00 b | 0.07 ± 0.00 a | 0.08 ± 0.00 a | 0.04 ± 0.00 b | ≤0.40 |
Heptadecenoic (C 17:1) | 0.09 ± 0.00 | 0.08 ± 0.01 | 0.10 ± 0.00 | 0.11 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.11 ± 0.00 | 0.12 ± 0.01 | 0.09 ± 0.02 | ≤0.60 |
Stearic (C 18:0) | 1.89 ± 0.01 A | 1.84 ± 0.01 Bc | 2.04 ± 0.03 b | 2.27 ± 0.01 a | 1.86 ± 0.02 c | 1.86 ± 0.00 ABc | 2.26 ± 0.00 b | 2.49 ± 0.00 a | 1.88 ± 0.02 c | 0.50–5.00 |
Oleic (C 18:1) | 73.4 ± 0.2 B | 73.7 ± 0.3 ABa | 71.3 ± 0.7 b | 70.9 ± 0.3 b | 73.8 ± 0.3 a | 74.1 ± 0.0 Aa | 72.0 ± 0.0 c | 71.1 ± 0.0 b | 74.2 ± 0.1 a | 55.0–85.0 |
Linoleic (C 18:2) | 6.72 ± 0.01 B | 6.76 ± 0.01 A | 6.57 ± 0.04 | 6.71 ± 0.29 | 6.76 ± 0.02 | 6.77 ± 0.00 Aa | 6.59 ± 0.01 b | 6.50 ± 0.00 c | 6.78 ± 0.01 a | 2.50–21.00 |
Linolenic (C18:3) | 0.83 ± 0.01 | 0.83 ± 0.00 | 0.82 ± 0.01 | 0.84 ± 0.01 | 0.85 ± 0.04 | 0.82 ± 0.00 | 0.83 ± 0.01 | 0.83 ± 0.00 | 0.83 ± 0.01 | ≤1.00 |
Arachidic (C 20:0) | 0.34 ± 0.01 | 0.33 ± 0.01 a | 0.29 ± 0.02 b | 0.31 ± 0.01 ab | 0.34 ± 0.01 a | 0.35 ± 0.00 | 0.34 ± 0.01 | 0.34 ± 0.00 | 0.35 ± 0.01 | ≤0.60 |
Eicosenoic (C 20:1) | 0.36 ± 0.00 B | 0.36 ± 0.02 B | 0.32 ± 0.02 | 0.33 ± 0.00 | 0.34 ± 0.03 | 0.39 ± 0.00 Aa | 0.36 ± 0.00 b | 0.37 ± 0.01 b | 0.38 ± 0.00 b | ≤0.40 |
Behenic (C 22:0) | 0.10 ± 0.00 | 0.10 ± 0.01 | 0.08 ± 0.01 | 0.09 ± 0.02 | 0.11 ± 0.01 | 0.11 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.01 | 0.11 ± 0.00 | ≤0.20 |
Eicosenoic acid (C 22:1) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
Lignoceric (C 24:0) | 0.05 ± 0.01 | 0.05 ± 0.00 | 0.03 ± 0.01 | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | ≤0.20 |
C18:1t | 0.01 ± 0.00 | 0.01 ± 0.00 c | 0.06 ± 0.00 b | 0.11 ± 0.00 a | 0.02 ± 0.01 c | 0.01 ± 0.00 c | 0.07 ± 0.00 b | 0.09 ± 0.00 a | 0.01 ± 0.00 c | ≤0.05 |
C18:2t + C18:3t | 0.02 ± 0.00 | 0.02 ± 0.00 b | 0.02 ± 0.01 b | 0.04 ± 0.00 a | 0.01 ± 0.01 b | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.04 ± 0.00 | 0.02 ± 0.00 | ≤0.05 |
∑SFA | 17.4 ± 0.2 A | 17.0 ± 0.24 ABb | 19.4 ± 0.7 a | 19.6 ± 0.1 a | 16.9 ± 0.3 b | 16.6 ± 0.0 Bc | 18.8 ± 0.0 b | 19.7 ± 0.0 a | 16.5 ± 0.07 c | |
∑MUFA | 75.1 ± 0.2 B | 75.4 ± 0.2 ABa | 73.2 ± 0.6 b | 72.7 ± 0.3 b | 75.5 ± 0.2 a | 75.8 ± 0.0 Aa | 73.7 ± 0.0 b | 72.9 ± 0.0 c | 75.9 ± 0.1 a | |
∑PUFA | 7.56 ± 0.02 | 7.59 ± 0.00 | 7.38 ± 0.05 | 7.56 ± 0.28 | 7.62 ± 0.05 | 7.59 ± 0.01 a | 7.42 ± 0.01 b | 7.33 ± 0.00 c | 7.61 ± 0.01 a | |
(∑MUFA + ∑PUFA)/SFA | 4.76 ± 0.06 B | 4.90 ± 0.08 ABa | 4.16 ± 0.18 b | 4.09 ± 0.04 b | 4.92 ± 0.10 a | 5.04 ± 0.00 Aa | 4.33 ± 0.01 b | 4.08 ± 0.00 c | 5.06 ± 0.03 a |
Time (Months) | 0 | 1 | 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Samples | EVOO | EVOO | EVOO + C1 | EVOO + C2 | EVOO + C3 | EVOO | EVOO + C1 | EVOO + C2 | EVOO + C3 |
Tyrosol | 2.56 ± 0.01 B | 3.09 ± 0.10 Aa | 0.32 ± 0.06 b | 0.45 ± 0.05 b | 0.35 ± 0.02 b | 3.38 ± 0.28 Aa | 0.37 ± 0.06 b | 0.37 ± 0.05 b | 0.78 ± 0.22 b |
Hydroxytyrosol | 4.20 ± 0.05 B | 4.46 ± 0.20 Ba | 0.04 ± 0.02 b | 0.10 ± 0.03 b | 0.30 ± 0.10 b | 5.45 ± 0.40 Aa | 0.16 ± 0.12 c | 0.14 ± 0.04 c | 0.87 ± 0.28 b |
Hydroxytyrosol acetate | 0.58 ± 0.02 A | 0.49 ± 0.01 Bab | 0.24 ± 0.06 b | 0.30 ± 0.22 b | 0.81 ± 0.11 a | 0.50 ± 0.02 Bc | 0.94 ± 0.06 b | 0.94 ± 0.10 b | 1.69 ± 0.05 a |
Vanillin | 0.31 ± 0.01 | 0.31 ± 0.01 a | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.05 ± 0.01 c | 0.29 ± 0.03 a | 0.07 ± 0.01 b | 0.05 ± 0.01 b | 0.03 ± 0.01 b |
Simple phenols | 7.65 ± 0.03 B | 8.34 ± 0.31 Ba | 0.67 ± 0.13 c | 0.91 ± 0.26 bc | 1.50 ± 0.21 b | 9.62 ± 0.73 Aa | 1.54 ± 0.14 c | 1.50 ± 0.19 c | 3.38 ± 0.50 b |
p-Coumaric acid | 0.22 ± 0.00 | 0.21 ± 0.00 a | 0.04 ± 0.00 b | 0.04 ± 0.01 b | 0.03 ± 0.00 b | 0.21 ± 0.01 a | 0.02 ± 0.01 b | 0.01 ± 0.00 b | 0.03 ± 0.01 b |
Vanillic acid | 0.15 ± 0.00 | 0.14 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.15 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Phenolic acids | 0.36 ± 0.01 | 0.36 ± 0.01 a | 0.04 ± 0.00 b | 0.04 ± 0.01 b | 0.03 ± 0.00 b | 0.35 ± 0.01 a | 0.02 ± 0.01 b | 0.01 ± 0.00 b | 0.03 ± 0.01 b |
Luteolin | 2.96 ± 0.12 | 2.82 ± 0.18 a | 0.12 ± 0.05 c | 0.14 ± 0.03 c | 0.58 ± 0.21 b | 2.38 ± 0.41 a | 0.20 ± 0.05 b | 0.15 ± 0.03 b | 0.62 ± 0.17 b |
Apigenin | 0.60 ± 0.03 | 0.58 ± 0.08 a | 0.16 ± 0.01 b | 0.14 ± 0.03 b | 0.17 ± 0.07 b | 0.47 ± 0.06 a | 0.13 ± 0.00 b | 0.11 ± 0.02 b | 0.16 ± 0.04 b |
Flavonoids | 3.56 ± 0.15 | 3.40 ± 0.25 a | 0.27 ± 0.06 b | 0.29 ± 0.05 b | 0.75 ± 0.27 b | 2.85 ± 0.47 a | 0.34 ± 0.05 b | 0.26 ± 0.05 b | 0.79 ± 0.20 b |
Pinoresinol | 8.30 ± 0.10 | 8.99 ± 0.56 a | 2.65 ± 0.18 b | 2.67 ± 0.37 b | 2.31 ± 0.34 b | 8.48 ± 1.10 a | 2.43 ± 0.08 b | 2.43 ± 0.35 b | 2.98 ± 0.51 b |
Acetoxypinoresinol * | 6.51 ± 0.24 | 6.46 ± 0.34 a | 0.95 ± 0.10 b | 1.07 ± 0.14 b | 1.24 ± 0.36 b | 6.23 ± 0.81 a | 0.87 ± 0.04 b | 0.90 ± 0.14 b | 1.66 ± 0.46 b |
Lignans | 14.8 ± 0.3 | 15.5 ± 0.9 a | 3.60 ± 0.28 b | 3.73 ± 0.50 b | 3.55 ± 0.70 b | 14.7 ± 1.9 a | 3.30 ± 0.10 b | 3.33 ± 0.49 b | 4.64 ± 0.96 b |
Oleuropein + ligstroside aglycones I & II * | 18.0 ± 0.6 A | 14.8 ± 0.8 Ba | 1.15 ± 0.29 c | 1.13 ± 0.12 c | 2.45 ± 0.18 b | 11.9 ± 1.7 Ba | 1.42 ± 0.50 b | 1.15 ± 0.05 b | 2.17 ± 0.32 b |
Ligstroside aglycon (isomer II) * | 12.3 ± 0.9 | 14.4 ± 1.1 a | 0.59 ± 0.24 b | 0.74 ± 0.24 b | 2.08 ± 0.67 b | 11.37 ± 2.39 a | 0.75 ± 0.20 b | 0.46 ± 0.16 b | 2.63 ± 0.98 b |
Oleocanthal (p-HPEA-EDA) * | 85.4 ± 2.7 A | 73.1 ± 4.5 ABa | 7.31 ± 0.83 b | 7.44 ± 0.98 b | 12.2 ± 2.0 b | 61.4 ± 9.9 Ba | 4.87 ± 1.47 b | 3.64 ± 0.14 b | 10.9 ± 4.3 b |
Oleuropein aglycone (isomer I) * | 34.7 ± 0.7 | 30.2 ± 1.4 a | 5.23 ± 0.15 c | 4.59 ± 0.49 c | 10.6 ± 1.9 b | 32.7 ± 3.6 a | 8.31 ± 0.39 b | 7.44 ± 0.24 b | 9.48 ± 2.01 b |
Oleuropein aglycone (isomer II) * | 23.7 ± 0.4 A | 21.4 ± 1.2 ABa | 3.33 ± 0.19 b | 3.23 ± 0.57 b | 3.90 ± 1.29 b | 19.0 ± 2.2 Ba | 3.05 ± 0.08 b | 2.87 ± 0.52 b | 5.35 ± 1.77 b |
Oleuropein aglycone (isomer III) * | 4.56 ± 0.40 | 4.48 ± 0.43 a | 0.41 ± 0.09 b | 0.42 ± 0.10 b | 1.04 ± 0.24 b | 3.73 ± 1.12 a | 0.35 ± 0.04 b | 0.22 ± 0.06 b | 1.06 ± 0.51 b |
Oleacein (3,4-DHPEA-EDA) * | 154 ± 6 A | 125 ± 4 Ba | 5.29 ± 0.57 c | 3.82 ± 0.78 c | 14.2 ± 4.8 b | 107 ± 17 Ba | 4.38 ± 2.66 b | 2.52 ± 0.20 b | 13.7 ± 7.5 b |
Secoiridoids | 333 ± 10 A | 283 ± 13 ABa | 23.4 ± 2.1 c | 21.4 ± 3.0 c | 46.5 ± 10.9 b | 248 ± 37 Ba | 23.2 ± 5.3 b | 18.3 ± 1.21 b | 45.2 ± 17.3 b |
Total identified phenolic content (mg/kg) | 359 ± 10 A | 311 ± 14 ABa | 27.9 ± 2.5 bc | 26.4 ± 3.4 c | 52.3 ± 12.1 b | 275 ± 40 Ba | 28.3 ± 5.5 b | 23.4 ± 1.9 b | 54.0 ± 19.0 b |
Total phenolic content (mg GAE/kg) | 257 ± 26 | 262 ± 8 a | 28.6 ± 3.1 c | 28.2 ± 12.8 c | 170 ± 12 b | 275 ± 12 a | 6.78 ± 5.62 c | 35.7 ± 12.1 c | 120 ± 23 b |
Radical-scavenging activity (mmol T.E./kg) | 6.31 ± 0.03 | 6.15 ± 0.83 a | 0.21 ± 0.05 c | 0.19 ± 0.03 c | 1.28 ± 0.11 b | 5.82 ± 0.06 a | 0.13 ± 0.08 c | 0.02 ± 0.02 c | 1.35 ± 0.44 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klisović, D.; Koprivnjak, O.; Novoselić, A.; Pleadin, J.; Lešić, T.; Brkić Bubola, K. Compositional Changes in the Extra Virgin Olive Oil Used as a Medium for Cheese Preservation. Foods 2022, 11, 2329. https://doi.org/10.3390/foods11152329
Klisović D, Koprivnjak O, Novoselić A, Pleadin J, Lešić T, Brkić Bubola K. Compositional Changes in the Extra Virgin Olive Oil Used as a Medium for Cheese Preservation. Foods. 2022; 11(15):2329. https://doi.org/10.3390/foods11152329
Chicago/Turabian StyleKlisović, Dora, Olivera Koprivnjak, Anja Novoselić, Jelka Pleadin, Tina Lešić, and Karolina Brkić Bubola. 2022. "Compositional Changes in the Extra Virgin Olive Oil Used as a Medium for Cheese Preservation" Foods 11, no. 15: 2329. https://doi.org/10.3390/foods11152329
APA StyleKlisović, D., Koprivnjak, O., Novoselić, A., Pleadin, J., Lešić, T., & Brkić Bubola, K. (2022). Compositional Changes in the Extra Virgin Olive Oil Used as a Medium for Cheese Preservation. Foods, 11(15), 2329. https://doi.org/10.3390/foods11152329