Current Trends in the Production of Probiotic Formulations
Abstract
:1. Introduction
2. Drying Methods
2.1. Traditional Drying Methods
2.1.1. Spray Drying
2.1.2. Freeze Drying
2.1.3. Vacuum Drying
2.1.4. Fluidized Bed Drying
2.2. Novel Immobilization Methods
2.3. Auxiliary Methods
2.4. Factors Affecting the Viability of Probiotics during Drying
2.5. Prevention of Stress Factors
- The addition of protective substances;
- The proper selection of process parameters;
- The adaptation of cells to stress factors before drying.
Reduction [log cfu/g] | Microorganism | Growth Parameters | Cell Concentration before Drying [log cfu/g] | Cell Concentration after Drying [log cfu/g] | Drying Method | Reference |
---|---|---|---|---|---|---|
<1 | Lactiplantibacillus plantarum 299v | MRS broth, 37 °C | 10.3 | 11.3 | Freeze drying | [16] |
Pediococcus acidilactici HA-6111-2 | MRS broth, 37 °C | 10.5 | 11.2 | Freeze drying | [16] | |
<1 | Lactiplantibacillus plantarum 299v | MRS broth, 37 °C | 9.4 | 9.5 | Spray drying | [16] |
Pediococcus acidilactici HA-6111-2 | MRS broth, 37 °C | 9.0 | 9.4 | Spray drying | [16] | |
Lactobacillus kefir CIDCA 8348 | MRS broth, 30 °C | 8.8 | 8.2 | Spray drying | [45] | |
Lactobacillus plantarum CIDCA 83114 | MRS broth, 30 °C | 9.9 | 9.8 | Spray drying | [45] | |
Lactobacillus kefir CIDCA 8321 | MRS broth, 30 °C | 8.4 | 8.1 | Spray drying | [45] | |
Lactobacillus rhamnosus LGG | MRS broth, 37 °C | 11.0 | 10.2 | Spray drying | [46] | |
Lactobacillus casei AMBR2 | MRS broth, 37 °C | 11.0 | 10.3 | Spray drying | [46] | |
>1 | Lactobacillus acidophilus NCDC016 | MRS broth, 37 °C | 11.2 | 10.0 | Spray drying | [32] |
Escherichia Coli K12 | TSB, 30 °C | 10.7–10.9 | 7.9 | Spray drying | [31] | |
>1 | Lactobacillus reuteri DSM 20016 | MRS broth, 37 °C | 8.7–9.7 | 7.7 | Fluidized bed drying | [47] |
Reduction Post-Drying [log cfu/g] | Microorganism | Drying Method | Protective Substances | Cell Concentration before Drying [log cfu/g] | Cell Concentration after Drying [log cfu/g] | Survivability [%] | Reference |
---|---|---|---|---|---|---|---|
<1 | Bifidobacterium bifidum | Spray drying (double layered) | Gum arabic 9%, 1% β-cyclodextrin, 1% lecithin | 6.93 | 6.18 | 89.22 | [48] |
Bifidobacterium bifidum | Spray chilling (double layered) | Hydrogenated palm oil, 2% Tween 80 | 6.12 | 6.01 | 98.25 | [48] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Gelatin 10% | 9.95 | 9.06 | 91.55 | [49] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Whey protein concentrate 20% | 9.65 | 8.86 | 91.81 | [49] | |
Lactobacillus rhamnosus | Spray drying | Native rice starch 10% | 9.26 | 8.98 | 53.24 | [40] | |
Lactobacillus rhamnosus | Spray drying | Inulin 15% | 9.18 | 8.91 | 53.55 | [40] | |
<1 | Lactobacillus brevis WK12 | Freeze drying | Soy powder solution 10% | 11.30 | 11.26 | 90.00 | [50] |
Lactococcus lactis WK11 | Freeze drying | Soy powder solution 10% | 11.30 | 11.27 | 94.00 | [50] | |
>1 | Bifidobacterium bifidum | Spray drying | Gum arabic 9%, 1% β-cyclodextrin | 10.12 | 7.57 | 74.81 | [48] |
Bifidobacterium bifidum | Spray chilling | Hydrogenated palm oil, 2% Tween 80 | 9.51 | 8.25 | 86.79 | [48] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Modified starch 20% | 9.65 | 8.64 | 89.53 | [49] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Maltodextrin 20% | 9.65 | 8.61 | 89.24 | [49] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Pea protein isolate 10% | 9.95 | 8.55 | 86.52 | [49] | |
Saccharomyces cerevisiae var. boulardii | Spray drying | Gum Arabic 20% | 9.65 | 8.17 | 84.69 | [49] |
Microorganism | Preparation Method and Matrix | Storage Conditions | Initial Cell Concentration [log cfu/g] | Cell Concentration after Storage [log cfu/g] | Monitored Parameters | Reference |
---|---|---|---|---|---|---|
Bacillus coagulans | Fluid-bed-dried apple snacks | 90 days at 25 °C | 7.89 | 6.78 | viable cell counts, water activity and moisture content, enzyme activity, total phenolic content, antioxidant capacity, vitamin E concentration | [29] |
Lactiplantibacillus plantarum 299v | Spray drying in orange juice | 12 months, 25 °C, aw = 0.03 hermetic glass flasks with silica gel | 7.90 | 6.30 | viable cell counts, water activity | [51] |
Pediococcus acidilactici HA-6111-2 | Spray drying in orange juice | 12 months, 25 °C, aw = 0.03 hermetic glass flasks with silica gel | 8.70 | 8.00 | viable cell counts, water activity | [51] |
Lactiplantibacillus plantarum Lp 115-400b | coconut water oatmeal with inulin (1 g/100 mL) | 4 °C, 49 days | 7.06 (9.12 at day 7) | 7.23 | viable cell counts, pH, lactic acid content, rheological parameters | [52] |
Lactiplantibacillus plantarum Lp 115-400b | coconut water oatmeal | 4 °C, 49 days | 6.99 (9.01 at day 7) | 6.41 | viable cell counts, pH, lactic acid content, rheological parameters | [52] |
3. New Trends in the Drying and Application of Probiotics
3.1. Various Application Methods
3.2. Controlled Release
3.3. Probiotics in Food Matrices
4. Assessment of Strain Suitability and Viability
4.1. Microbiological Analysis
- Sample preparation: This depends on the matrix (frozen, dried, liquid, or free cells).
- Dilution: This includes the prior homogenization or rehydration and the use of a dilution medium containing peptone, NaCl, or phosphate salts, as well as the addition of antioxidants for oxygen-sensitive strains.
- Plating: This is performed with a strain-specific plating medium.
- Incubation: This takes into consideration the optimum temperature (mostly 37 °C as many probiotics naturally inhabit the gastrointestinal tract) and the aerobic/anaerobic conditions preferred by the specific strain.
4.2. Flow Cytometry
4.3. Gene Expression and Proteomic Analysis
Method | Key Applications | Reference |
---|---|---|
Plate counting | viable cell enumeration | [65] |
Flow cytometry | cell integrity, membrane damage (live/dead staining) | [46,67] |
Scanning electron microscopy | cell morphology, surface characteristics | [46,68] |
Laser diffraction | particle size | [46] |
Two-dimensional gel electrophoresis (2-DE) | protein pattern analysis (proteins involved in biofilm formation, quorum sensing, volatile compounds production, stress response) | [68] |
Mass spectrometry | peptide mass fingerprinting | [68] |
Bioinformatics | protein identification, prediction of protein interaction, subcellular localization | [68] |
RT-qPCR | gene expression | [69] |
5. Future Challenges and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Prog. 2007, 23, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Niamah, A.K.; Gddoa Al-Sahlany, S.T.; Ibrahim, S.A.; Verma, D.K.; Thakur, M.; Singh, S.; Patel, A.R.; Aguilar, C.N.; Utama, G.L. Electro-Hydrodynamic Processing for Encapsulation of Probiotics: A Review on Recent Trends, Technological Development, Challenges and Future Prospect. Food Biosci. 2021, 44, 101458. [Google Scholar] [CrossRef]
- Gill, H.; Prasad, J. Probiotics, Immunomodulation, and Health Benefits. In Bioactive Components of Milk; Advances in Experimental Medicine and Biology Series; Springer: New York, NY, USA, 2008; Volume 606, pp. 423–454. [Google Scholar] [CrossRef]
- Jokicevic, K.; Kiekens, S.; Byl, E.; De Boeck, I.; Cauwenberghs, E.; Lebeer, S.; Kiekens, F. Probiotic Nasal Spray Development by Spray Drying. Eur. J. Pharm. Biopharm. 2021, 159, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Blanchet-Réthoré, S.; Bourdès, V.; Mercenier, A.; Haddar, C.H.; Verhoeven, P.O.; Andres, P. Effect of a Lotion Containing the Heat-Treated Probiotic Strain Lactobacillus Johnsonii NCC 533 on Staphylococcus Aureus Colonization in Atopic Dermatitis. Clin. Cosmet. Investig. Dermatol. 2017, 10, 249–257. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Cruxen, C.E.; Hoffmann, J.F.; Zandoná, G.P.; Fiorentini, Â.M.; Rombaldi, C.V.; Chaves, F.C. Probiotic Butiá (Butia Odorata) Ice Cream: Development, Characterization, Stability of Bioactive Compounds, and Viability of Bifidobacterium Lactis during Storage. LWT 2017, 75, 379–385. [Google Scholar] [CrossRef]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important Step towards the Development of Novel Pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef]
- dos Santos, R.C.S.; Finkler, L.; Finkler, C.L.L. Microencapsulation of Lactobacillus Casei by Spray Drying. J. Microencapsul. 2014, 31, 759–767. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef]
- Arepally, D.; Reddy, R.S.; Goswami, T.K. Studies on Survivability, Storage Stability of Encapsulated Spray Dried Probiotic Powder. Curr. Res. Food Sci. 2020, 3, 235–242. [Google Scholar] [CrossRef]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray Drying and Storage of Probiotic-enriched Almond Milk: Probiotic Survival and Physicochemical Properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef]
- Golman, B.; Julklang, W. Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying. Int. J. Chem. Mol. Eng. 2013, 7, 5. [Google Scholar]
- Huang, S.; Vignolles, M.-L.; Chen, X.D.; Le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review. Trends Food Sci. Technol. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Rajam, R.; Anandharamakrishnan, C. Spray Freeze Drying Method for Microencapsulation of Lactobacillus Plantarum. J. Food Eng. 2015, 166, 95–103. [Google Scholar] [CrossRef]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/Freeze Drying—A Review. World J. Pharm. Res. 2015, 4, 29. [Google Scholar]
- Barbosa, J.; Borges, S.; Amorim, M.; Pereira, M.J.; Oliveira, A.; Pintado, M.E.; Teixeira, P. Comparison of Spray Drying, Freeze Drying and Convective Hot Air Drying for the Production of a Probiotic Orange Powder. J. Funct. Foods 2015, 17, 340–351. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Mujumdar, A.S.; Lim, R.-X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying: Comparison of Banana Cubes Dried by Different Drying Method. J. Sci. Food Agric. 2014, 94, 1827–1834. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Bhandari, B.; Yu, D. A Novel Combination of LF-NMR and NIR to Intelligent Control in Pulse-Spouted Microwave Freeze Drying of Blueberry. LWT 2021, 137, 110455. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of Micro-Organisms by Drying; A Review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X.D. Towards a Maximal Cell Survival in Convective Thermal Drying Processes. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar] [CrossRef]
- Sánchez-Portilla, Z.; Melgoza-Contreras, L.M.; Reynoso-Camacho, R.; Pérez-Carreón, J.I.; Gutiérrez-Nava, A. Incorporation of Bifidobacterium Sp. into Powder Products through a Fluidized Bed Process for Enteric Targeted Release. J. Dairy Sci. 2020, 103, 11129–11137. [Google Scholar] [CrossRef]
- Strasser, S.; Neureiter, M.; Geppl, M.; Braun, R.; Danner, H. Influence of Lyophilization, Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Stummer, S.; Toegel, S.; Rabenreither, M.-C.; Unger, F.M.; Wirth, M.; Viernstein, H.; Salar-Behzadi, S. Fluidized-Bed Drying as a Feasible Method for Dehydration of Enterococcus Faecium M74. J. Food Eng. 2012, 111, 156–165. [Google Scholar] [CrossRef]
- Jacobsen, N.M.Y.; Caglayan, I.; Caglayan, A.; Bar-Shalom, D.; Müllertz, A. Achieving Delayed Release of Freeze-Dried Probiotic Strains by Extrusion, Spheronization and Fluid Bed Coating—Evaluated Using a Three-Step in Vitro Model. Int. J. Pharm. 2020, 591, 120022. [Google Scholar] [CrossRef] [PubMed]
- Wirunpan, M.; Savedboworn, W.; Wanchaitanawong, P. Survival and Shelf Life of Lactobacillus Lactis 1464 in Shrimp Feed Pellet after Fluidized Bed Drying. Agric. Nat. Resour. 2016, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of Electrospun Nanofibers That Enable High Loading and Long-Term Viability of Probiotics. Eur. J. Pharm. Biopharm. 2019, 136, 108–119. [Google Scholar] [CrossRef]
- Yoha, K.S.; Anukiruthika, T.; Anila, W.; Moses, J.A.; Anandharamakrishnan, C. 3D Printing of Encapsulated Probiotics: Effect of Different Post-Processing Methods on the Stability of Lactiplantibacillus Plantarum (NCIM 2083) under Static in Vitro Digestion Conditions and during Storage. LWT 2021, 146, 111461. [Google Scholar] [CrossRef]
- Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. 3D Printing of Egg Yolk and White with Rice Flour Blends. J. Food Eng. 2020, 265, 109691. [Google Scholar] [CrossRef]
- Galvão, A.M.M.T.; Rodrigues, S.; Fernandes, F.A.N. Probiotic Dried Apple Snacks: Development of Probiotic Coating and Shelf-life Studies. J. Food Process. Preserv. 2020, 44, e14974. [Google Scholar] [CrossRef]
- Santivarangkna, C.; Kulozik, U.; Foerst, P. Inactivation Mechanisms of Lactic Acid Starter Cultures Preserved by Drying Processes. J. Appl. Microbiol. 2008, 105, 1–13. [Google Scholar] [CrossRef]
- Pispan, S.; Hewitt, C.J.; Stapley, A.G.F. Comparison of Cell Survival Rates of E. Coli K12 and L. Acidophilus Undergoing Spray Drying. Food Bioprod. Process. 2013, 91, 362–369. [Google Scholar] [CrossRef]
- Arepally, D.; Goswami, T.K. Effect of Inlet Air Temperature and Gum Arabic Concentration on Encapsulation of Probiotics by Spray Drying. LWT 2019, 99, 583–593. [Google Scholar] [CrossRef]
- Perdana, J.; Fox, M.B.; Siwei, C.; Boom, R.M.; Schutyser, M.A.I. Interactions between Formulation and Spray Drying Conditions Related to Survival of Lactobacillus Plantarum WCFS1. Food Res. Int. 2014, 56, 9–17. [Google Scholar] [CrossRef]
- Perdana, J.; Fox, M.B.; Schutyser, M.A.I.; Boom, R.M. Mimicking Spray Drying by Drying of Single Droplets Deposited on a Flat Surface. Food Bioprocess Technol. 2013, 6, 964–977. [Google Scholar] [CrossRef] [Green Version]
- Ghandi, A.; Powell, I.B.; Chen, X.D.; Adhikari, B. The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus Lactis during Spray Drying. Dry. Technol. 2012, 30, 1649–1657. [Google Scholar] [CrossRef]
- Bauer, S.A.W.; Kulozik, U.; Foerst, P. Drying Kinetics and Survival of Bacteria Suspensions of L. paracasei F19 in Low-Temperature Vacuum Drying. Dry. Technol. 2013, 31, 1497–1503. [Google Scholar] [CrossRef]
- Hernández, A.; Larsson, C.U.; Sawicki, R.; van Niel, E.W.J.; Roos, S.; Håkansson, S. Impact of the Fermentation Parameters PH and Temperature on Stress Resilience of Lactobacillus Reuteri DSM 17938. AMB Express 2019, 9, 66. [Google Scholar] [CrossRef]
- Nag, A.; Das, S. Improving Ambient Temperature Stability of Probiotics with Stress Adaptation and Fluidized Bed Drying. J. Funct. Foods 2013, 5, 170–177. [Google Scholar] [CrossRef]
- Ananta, E.; Volkert, M.; Knorr, D. Cellular Injuries and Storage Stability of Spray-Dried Lactobacillus Rhamnosus GG. Int. Dairy J. 2005, 15, 399–409. [Google Scholar] [CrossRef]
- Avila-Reyes, S.V.; Garcia-Suarez, F.J.; Jiménez, M.T.; San Martín-Gonzalez, M.F.; Bello-Perez, L.A. Protection of L. Rhamnosus by Spray-Drying Using Two Prebiotics Colloids to Enhance the Viability. Carbohydr. Polym. 2014, 102, 423–430. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, G. Effect of Protective Agents, Freezing Temperature, Rehydration Media on Viability of Malolactic Bacteria Subjected to Freeze-Drying. J. Appl. Microbiol. 2005, 99, 333–338. [Google Scholar] [CrossRef]
- Tymczyszyn, E.E.; Díaz, R.; Pataro, A.; Sandonato, N.; Gómez-Zavaglia, A.; Disalvo, E.A. Critical Water Activity for the Preservation of Lactobacillus Bulgaricus by Vacuum Drying. Int. J. Food Microbiol. 2008, 128, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Kulozik, U.; Foerst, P. Effect of Carbohydrates on the Survival of Lactobacillus helveticus during Vacuum Drying. Lett. Appl. Microbiol. 2006, 42, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Naumann, D.; Kulozik, U.; Foerst, P. Protective Effects of Sorbitol during the Vacuum Drying of Lactobacillus Helveticus: An FT-IR Study. Ann. Microbiol. 2010, 60, 235–242. [Google Scholar] [CrossRef]
- Golowczyc, M.A.; Silva, J.; Teixeira, P.; De Antoni, G.L.; Abraham, A.G. Cellular Injuries of Spray-Dried Lactobacillus Spp. Isolated from Kefir and Their Impact on Probiotic Properties. Int. J. Food Microbiol. 2011, 144, 556–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokicevic, K.; Broeckx, G.; Vandenheuvel, D.; Boeck, I.D.; Allonsius, C.N.; Lebeer, S.; Kiekens, F. Processing of Potential Upper Respiratory Tract Probiotics by Spray Drying. Dry. Technol. 2020, 39, 2179–2193. [Google Scholar] [CrossRef]
- Schell, D.; Beermann, C. Fluidized Bed Microencapsulation of Lactobacillus reuteri with Sweet Whey and Shellac for Improved Acid Resistance and In-Vitro Gastro-Intestinal Survival. Food Res. Int. 2014, 62, 308–314. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and Double Layered Microencapsulation of Probiotics by Spray Drying and Spray Chilling. LWT Food Sci. Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Arslan, S.; Erbas, M.; Tontul, I.; Topuz, A. Microencapsulation of Probiotic Saccharomyces Cerevisiae Var. Boulardii with Different Wall Materials by Spray Drying. LWT Food Sci. Technol. 2015, 63, 685–690. [Google Scholar] [CrossRef]
- Gwak, H.J.; Lee, J.-H.; Kim, T.-W.; Choi, H.-J.; Jang, J.-Y.; Lee, S.I.; Park, H.W. Protective Effect of Soy Powder and Microencapsulation on Freeze-Dried Lactobacillus Brevis WK12 and Lactococcus Lactis WK11 during Storage. Food Sci. Biotechnol. 2015, 24, 2155–2160. [Google Scholar] [CrossRef]
- Barbosa, J.; Borges, S.; Teixeira, P. Effect of Different Conditions of Growth and Storage on the Cell Counts of Two Lactic Acid Bacteria after Spray Drying in Orange Juice. Beverages 2016, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Dharmasena, M.; Barron, F.; Fraser, A.; Jiang, X. Refrigerated Shelf Life of a Coconut Water-Oatmeal Mix and the Viability of Lactobacillus Plantarum Lp 115-400B. Foods 2015, 4, 328–337. [Google Scholar] [CrossRef]
- Lopes, E.G.; Moreira, D.A.; Gullón, P.; Gullón, B.; Cardelle-Cobas, A.; Tavaria, F.K. Topical Application of Probiotics in Skin: Adhesion, Antimicrobial and Antibiofilm in Vitro Assays. J. Appl. Microbiol. 2017, 122, 450–461. [Google Scholar] [CrossRef]
- Huang, X.; Gänzle, M.; Zhang, H.; Zhao, M.; Fang, Y.; Nishinari, K. Microencapsulation of Probiotic Lactobacilli with Shellac as Moisture Barrier and to Allow Controlled Release. J. Sci. Food Agric. 2021, 101, 726–734. [Google Scholar] [CrossRef]
- Wang, A.; Lin, J.; Zhong, Q. Enteric Rice Protein-Shellac Composite Coating to Enhance the Viability of Probiotic Lactobacillus Salivarius NRRL B-30514. Food Hydrocoll. 2021, 113, 106469. [Google Scholar] [CrossRef]
- Deng, Z.; Li, J.; Song, R.; Zhou, B.; Li, B.; Liang, H. Carboxymethylpachymaran/Alginate Gel Entrapping of Natural Pollen Capsules for the Encapsulation, Protection and Delivery of Probiotics with Enhanced Viability. Food Hydrocoll. 2021, 120, 106855. [Google Scholar] [CrossRef]
- Yan, W.; Jia, X.; Zhang, Q.; Chen, H.; Zhu, Q.; Yin, L. Interpenetrating Polymer Network Hydrogels of Soy Protein Isolate and Sugar Beet Pectin as a Potential Carrier for Probiotics. Food Hydrocoll. 2021, 113, 106453. [Google Scholar] [CrossRef]
- Behera, S.S.; Panda, S.K. Ethnic and Industrial Probiotic Foods and Beverages: Efficacy and Acceptance. Curr. Opin. Food Sci. 2020, 32, 29–36. [Google Scholar] [CrossRef]
- Min, M.; Bunt, C.R.; Mason, S.L.; Hussain, M.A. Non-Dairy Probiotic Food Products: An Emerging Group of Functional Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 2626–2641. [Google Scholar] [CrossRef]
- Islam, M.Z.; Masum, A.K.M.; Harun-ur-Rashid, M. Milk Chocolate Matrix as a Carrier of Novel Lactobacillus Acidophilus LDMB-01: Physicochemical Analysis, Probiotic Storage Stability and in Vitro Gastrointestinal Digestion. J. Agric. Food Res. 2022, 7, 100263. [Google Scholar] [CrossRef]
- de Souza Correia Cozentino, I.; Veloso de Paula, A.; Augusto Ribeiro, C.; Duran Alonso, J.; Grimaldi, R.; Luccas, V.; Taranto, M.P.; Cardoso Umbelino Cavallini, D. Development of a Potentially Functional Chocolate Spread Containing Probiotics and Structured Triglycerides. LWT 2022, 154, 112746. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Impact of Encapsulating Probiotics with Cocoa Powder on the Viability of Probiotics during Chocolate Processing, Storage, and in Vitro Gastrointestinal Digestion. J. Food Sci. 2021, 86, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Massounga Bora, A.F.; Li, X.; Zhu, Y.; Du, L. Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. Probiotics Antimicrob. Proteins 2019, 11, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Rosolen, M.D.; Bordini, F.W.; de Quardos da Luz, G.; Diaz, P.S.; Conceição, F.R.; Fiorentini, Â.M.; da Silva, W.P.; Pieniz, S. Survival of Microencapsulated Lactococcus Lactis Subsp. Lactis R7 Applied in Different Food Matrices. Appl. Biochem. Biotechnol. 2022, 194, 2135–2150. [Google Scholar] [CrossRef] [PubMed]
- Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the Viability Assessment of Probiotics as Concentrated Cultures and in Food Matrices. Int. J. Food Microbiol. 2011, 149, 185–193. [Google Scholar] [CrossRef]
- Fiore, W.; Arioli, S.; Guglielmetti, S. The Neglected Microbial Components of Commercial Probiotic Formulations. Microorganisms 2020, 8, 1177. [Google Scholar] [CrossRef]
- Bensch, G.; Rüger, M.; Wassermann, M.; Weinholz, S.; Reichl, U.; Cordes, C. Flow Cytometric Viability Assessment of Lactic Acid Bacteria Starter Cultures Produced by Fluidized Bed Drying. Appl. Microbiol. Biotechnol. 2014, 98, 4897–4909. [Google Scholar] [CrossRef]
- Yang, K.; Liu, M.; Wang, J.; Hassan, H.; Zhang, J.; Qi, Y.; Wei, X.; Fan, M.; Zhang, G. Surface Characteristics and Proteomic Analysis Insights on the Response of Oenococcus Oeni SD-2a to Freeze-Drying Stress. Food Chem. 2018, 264, 377–385. [Google Scholar] [CrossRef]
- Yan, M.; Han, J.; Xu, X.; Liu, L.; Gao, C.; Zheng, H.; Chen, Y.; Tao, Y.; Zhou, H.; Li, Y.; et al. Gsy, a Novel Glucansucrase from Leuconostoc mesenteroides, Mediates the Formation of Cell Aggregates in Response to Oxidative Stress. Sci. Rep. 2016, 6, 38122. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Invernici, M.M.; Furlaneto, F.A.C.; Messora, M.R. Effectiveness of Multi-Strain Versus Single-Strain Probiotics: Current Status and Recommendations for the Future. J. Clin. Gastroenterol. 2018, 52, S35–S40. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of Probiotics and Nutraceuticals: Applications in Functional Food Industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Gonzalez, E.G.; Lamas, A.; Mondragon, A.d.C.; Regal, P.; Miranda, J.M. Probiotics as a Possible Strategy for the Prevention and Treatment of Allergies. A Narrative Review. Foods 2021, 10, 701. [Google Scholar] [CrossRef]
- Akatsu, H. Exploring the Effect of Probiotics, Prebiotics, and Postbiotics in Strengthening Immune Activity in the Elderly. Vaccines 2021, 9, 136. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiepś, J.; Dembczyński, R. Current Trends in the Production of Probiotic Formulations. Foods 2022, 11, 2330. https://doi.org/10.3390/foods11152330
Kiepś J, Dembczyński R. Current Trends in the Production of Probiotic Formulations. Foods. 2022; 11(15):2330. https://doi.org/10.3390/foods11152330
Chicago/Turabian StyleKiepś, Jakub, and Radosław Dembczyński. 2022. "Current Trends in the Production of Probiotic Formulations" Foods 11, no. 15: 2330. https://doi.org/10.3390/foods11152330
APA StyleKiepś, J., & Dembczyński, R. (2022). Current Trends in the Production of Probiotic Formulations. Foods, 11(15), 2330. https://doi.org/10.3390/foods11152330