Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Lipid Content and Lipid Profile Analysis
2.2.1. Total Lipids Quantification
2.2.2. Lipid Profile Analysis
2.3. Acquisition of Near-Infrared Spectra
2.4. Data Analysis
3. Results and Discussion
3.1. Total Lipid Content and Lipid Profile of the Seeds
3.2. NIR Spectra
3.3. PCA Analysis
3.4. Discrimination Analysis
3.4.1. Using NIR Spectra
3.4.2. Using Lipid Profile Chemical Values
3.5. Quantification Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadri, N.; Khettal, B.; Aid, Y.; Kherfellah, S.; Sobhi, W.; Barragan-Montero, V. Some physicochemical characteristics of pinus (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds from North Algeria, their lipid profiles and volatile contents. Food Chem. 2015, 188, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Matthaus, B.; Li, P.W.; Ma, F.; Zhou, H.Y.; Jiang, J.; Ozcan, M.M. Is the Profile of Fatty Acids, Tocopherols, and Amino Acids Suitable to Differentiate Pinus armandii Suspicious to Be Responsible for the Pine Nut Syndrome from Other Pinus Species? Chem. Biodivers. 2018, 15, 14. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Hentati, B.; Besbes, S.; Blecker, C.; Deroanne, C.; Attia, H. Chemical composition and lipid fraction characteristics of aleppo pine (Pinus halepensis Mill.) seeds cultivated in Tunisia. Food Sci. Technol. Int. 2006, 12, 407–415. [Google Scholar] [CrossRef]
- Dhibi, M.; Mechri, B.; Brahmi, F.; Skhiri, F.; Alsaif, M.A.; Hammami, M. Fatty acid profiles, antioxidant compounds and antiradical properties of Pinus halepensis Mill. cones and seeds. J. Sci. Food Agric. 2012, 92, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Cheikh-Rouhou, S.; Besbes, S.; Blecker, C.; Deroanne, C.; Attia, H. Black Cumin (Nigella sativa L.) and Aleppo Pine (Pinus halepensis Mill.) Seed Oils: Stability During Thermal Oxidation at 60 C and 100 C. J. Food Compos. Anal. 2008, 19, 12–20. [Google Scholar]
- Su, X.Y.; Wang, Z.Y.; Liu, J.R. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds. Food Chem. 2009, 117, 681–686. [Google Scholar] [CrossRef]
- Bagci, E.; Karaagacli, Y. Fatty acid and tocochromanol patterns of turkish pines. Crac. Ser. Bot. 2004, 46, 95–100. [Google Scholar]
- Kadri, N.; Khettal, B.; Adjebli, A.; Cresteil, T.; Yahiaoui-Zaidi, R.; Barragan-Montero, V.; Montero, J.L. Antiangiogenic activity of neutral lipids, glycolipids, and phospholipids fractions of Pinus halepensis Mill. seeds. Ind. Crop. Prod. 2014, 54, 6–12. [Google Scholar] [CrossRef]
- Khouja, M.; Alves, R.C.; Melo, D.; Costa, A.S.G.; Nunes, M.A.; Khaldi, A.; Oliveira, M.B.P.P.; Messaoud, C. Morphological and Chemical Differentiation between Tunisian Populations of Pinus halepensis, Pinus brutia, and Pinus pinaster. Chem. Biodivers. 2021, 18, e2100071. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.H.; Goh, J.Y.; Tay, M.; Lau, H.F.; Li, S.F.Y. Characterization of oils and fats by H-1 NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration. Food Chem. 2013, 138, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Sedman, J.; Gao, L.; Garcia-Gonzalez, D.; Ehsan, S.; van de Voort, F.R. Determining nutritional labeling data for fats and oils by H-1 NMR. Eur. J. Lipid Sci. Technol. 2010, 112, 439–451. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pascoa, R.; Alves, R.C.; Costa, A.S.G.; Bessada, S.; Oliveira, M. Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: The case of monocultivar pomaces. Waste Manag. 2020, 103, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.-Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Ait-Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Pascoa, R.; Moreira, S.; Lopes, J.A.; Sousa, C. Citrus species and hybrids depicted by near- and mid-infrared spectroscopy. J. Sci. Food Agric. 2018, 98, 3953–3961. [Google Scholar] [CrossRef]
- Wang, L.; Sun, D.W.; Pu, H.B.; Cheng, J.H. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Crit. Rev. Food Sci. Nutr. 2017, 57, 1524–1538. [Google Scholar] [CrossRef]
- Afseth, N.K.; Segtnan, V.H.; Marquardt, B.J.; Wold, J.P. Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system. Appl. Spectrosc. 2005, 59, 1324–1332. [Google Scholar] [CrossRef]
- Li, H.B.; Jiang, D.P.; Cao, J.; Zhang, D.Y. Near-Infrared Spectroscopy Coupled Chemometric Algorithms for Rapid Origin Identification and Lipid Content Detection of Pinus Koraiensis Seeds. Sensors 2020, 20, 4905. [Google Scholar] [CrossRef]
- Tigabu, M.; Daneshvar, A.; Ren, J.J.; Wu, P.F.; Ma, X.Q.; Oden, P.C. Multivariate Discriminant Analysis of Single Seed Near Infrared Spectra for Sorting Dead-Filled and Viable Seeds of Three Pine Species: Does One Model Fit All Species? Forests 2019, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Lestander, T.A.; Geladi, P. NIR spectroscopic measurement of moisture content in Scots pine seeds. Analyst 2003, 128, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lestander, T.A.; Geladi, P. NIR spectral information used to predict water content of pine seeds from multivariate calibration. Can. J. For. Res. 2005, 35, 1139–1148. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Arlington VA, USA, 2012. [Google Scholar]
- Alves, R.C.; Casal, S.; Oliveira, M. Determination of Vitamin E in Coffee Beans by HPLC Using a Micro-extraction Method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. Interpreting PCR and PLS solutions. In A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publiscations: Chichester, UK, 2004; Volume 1, pp. 39–54. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression-A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemometr. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR Spectroscopy to Agricultural Products, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Ovcharova, T.; Zlatanov, M.; Dimitrova, R. Chemical composition of seeds of four Bulgarian grape varieties. Cienc. E Tec. Vitivinic. 2016, 31, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Galtier, O.; Dupuy, N.; Le Dreau, Y.; Ollivier, D.; Pinatec, C.; Kister, J.; Artaud, J. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal. Chim. Acta 2007, 595, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Mossoba, M.M.; Azizian, H.; Tyburczy, C.; Kramer, J.K.G.; Delmonte, P.; Kia, A.R.F.; Rader, J.I. Rapid FT-NIR Analysis of Edible Oils for Total SFA, MUFA, PUFA, and Trans FA with Comparison to GC. J. Am. Oil Chem. Soc. 2013, 90, 757–770. [Google Scholar] [CrossRef]
- Sato, T.; Kawano, S.; Iwamoto, M. Near-infrared spectral patterns of fatty-acid analysis from fats and oils. J. Am. Oil Chem. Soc. 1991, 68, 827–833. [Google Scholar] [CrossRef]
- Holman, R.T.; Edmondson, P.R. Near-infrared spectra of fatty acids and some related susbtances. Anal. Chem. 1956, 28, 1533–1538. [Google Scholar] [CrossRef]
- Goffman, F.D.; Böhme, T. Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J. Agric. Food Chem. 2001, 49, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.E. Chemical principles of near-infrared technology. Near-Infrared Technol. Agric. Food Ind. 2001, 2, 19–37. [Google Scholar]
Geographical and Ecological Characteristics | Harvest Site | |||||||
---|---|---|---|---|---|---|---|---|
Dar Chichou | Kasserine | Beja | Sousse | Amdoun | Korbous | Henchir Naam | Mjez El Beb | |
Latitude (N) | 36°96′ | 35°15′ | 36°42′ | 35°49′ | 36°82′ | 36°50′ | 36°13′ | 36°38′ |
Longitude (E) | 10°98′ | 8°45′ | 9°10′ | 10°38′ | 9°05′ | 10°35′ | 9°10′ | 9°36′ |
Altitude (m) | 39 | 707 | 248 | 25 | 448 | 180 | 450 | 51 |
Pluviometry (mm) | 504 | 216 | 508 | 354 | 650 | 474 | 509 | 508 |
Temperature (°C) | 18.5 | 17.5 | 19.5 | 19.4 | 18 | 18.6 | 19 | 19.6 |
Parameter | Minimum Value | Maximum Value | Parameter | Minimum Value | Maximum Value |
---|---|---|---|---|---|
Total fat | 13.6 | 33.7 | C20:0 | 0.470 | 0.639 |
C14:0 | 0.0406 | 0.0796 | C20:1n9 | 0.634 | 1.02 |
C16:0 | 5.20 | 5.64 | C20:2 | 0.385 | 0.889 |
C16:1 | 0.0552 | 0.0895 | C22:0 | 0.215 | 0.319 |
C17:0 | 0.0607 | 0.0770 | C24:0 | 0.480 | 0.0848 |
C18:0 | 3.10 | 4.08 | SFA | 9.54 | 10.3 |
C18 1n9c | 21.7 | 27.1 | MUFA | 22.8 | 27.9 |
C18:2n6c | 60.6 | 64.8 | PUFA | 61.0 | 66.2 |
C18:3n3 | 0.81 | 1.58 | Vitamin E | 125 | 260 |
Real Pine Seeds Species | Predicted Pine Seeds Species | ||
---|---|---|---|
Aleppo | Maritime | Brutia | |
Aleppo | 93.3% (14/15) | 0% (0/15) | 6.7% (1/15) |
Maritime | 0% (0/2) | 100% (2/2) | 0% (0/2) |
Brutia | 0% (0/2) | 0% (0/2) | 100% (2/2) |
Real Pine Seeds Species | Predicted Pine Seeds Species | ||
---|---|---|---|
Aleppo | Maritime | Brutia | |
Aleppo | 93.3% (14/15) | 0% (0/15) | 6.7% (1/15) |
Maritime | 0% (0/2) | 10.5% (2/2) | 0% (0/2) |
Brutia | 0% (0/2) | 0% (0/2) | 10.5% (2/2) |
Parameter | LV | Best Spectral Region | Best Pre-Processing Technique(s) | RMSEC | RMSECV | RMSEP | R2C | R2P | RER |
---|---|---|---|---|---|---|---|---|---|
Total fat | 5 | R1 + R3 | SG(15,2,1) + SNV | 1.54 | 2.19 | 1.70 | 0.92 | 0.91 | 11.8 |
C14:0 | 1 | R1 + R3 | SNV | 0.013 | 0.014 | 0.011 | 0.08 | 0.12 | 3.7 |
C16:0 | 2 | R1 + R3 | none | 0.14 | 0.15 | 0.11 | 0.10 | 0.03 | 3.9 |
C16:1 | 2 | R3 + R5 | SG(15,2,2) + SNV | 0.0054 | 0.0064 | 0.0049 | 0.57 | 0.63 | 6.3 |
C17:0 | 2 | R3 | SG(15,2,1) + SNV | 0.0034 | 0.0038 | 0.0031 | 0.49 | 0.35 | 5.2 |
C18:0 | 6 | R1 + R2 + R3 | SG(15,2,0) + SNV | 0.093 | 0.12 | 0.10 | 0.81 | 0.80 | 9.4 |
C18:1n9c | 2 | R3 + R5 | SG(15,2,2) + SNV | 0.58 | 0.68 | 0.59 | 0.77 | 0.75 | 9.2 |
C18:2n6c | 6 | R3 | SG(15,2,1) + SNV | 0.57 | 0.75 | 0.66 | 0.70 | 0.59 | 6.5 |
C18:3n3 | 5 | R3 | SNV | 0.059 | 0.077 | 0.085 | 0.90 | 0.82 | 9.1 |
C20:0 | 4 | R5 | SNV | 0.014 | 0.025 | 0.016 | 0.88 | 0.84 | 10.7 |
C20:1n9 | 5 | R1 + R3 | SNV | 0.026 | 0.032 | 0.027 | 0.95 | 0.92 | 14.5 |
C20:2 | 6 | R2 + R3 | SG(15,2,1) + SNV | 0.034 | 0.048 | 0.035 | 0.94 | 0.90 | 12.9 |
C22:0 | 4 | R2 + R3 | SNV | 0.011 | 0.015 | 0.013 | 0.74 | 0.73 | 7.7 |
C24:0 | 4 | R1 | SNV | 0.0052 | 0.0063 | 0.0061 | 0.43 | 0.37 | 6.0 |
Saturated fatty acids | 4 | R1 + R3 | SNV | 0.10 | 0.13 | 0.12 | 0.76 | 0.73 | 6.6 |
Monounsaturated fatty acids | 3 | R3 + R4 + R5 | SG(15,2,2) + SNV | 0.54 | 0.67 | 0.55 | 0.75 | 0.86 | 9.4 |
Polyunsaturated fatty acids | 5 | R5 | SG(15,2,1) | 0.43 | 0.76 | 0.68 | 0.89 | 0.66 | 6.9 |
Vitamin E | 2 | R3 | SG(15,2,2) + SNV | 17.7 | 19.7 | 19.5 | 0.78 | 0.76 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khouja, M.; Páscoa, R.N.M.J.; Melo, D.; Costa, A.S.G.; Nunes, M.A.; Khaldi, A.; Messaoud, C.; Oliveira, M.B.P.P.; Alves, R.C. Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study. Foods 2022, 11, 3939. https://doi.org/10.3390/foods11233939
Khouja M, Páscoa RNMJ, Melo D, Costa ASG, Nunes MA, Khaldi A, Messaoud C, Oliveira MBPP, Alves RC. Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study. Foods. 2022; 11(23):3939. https://doi.org/10.3390/foods11233939
Chicago/Turabian StyleKhouja, Mariem, Ricardo N. M. J. Páscoa, Diana Melo, Anabela S. G. Costa, M. Antónia Nunes, Abdelhamid Khaldi, Chokri Messaoud, M. Beatriz P. P. Oliveira, and Rita C. Alves. 2022. "Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study" Foods 11, no. 23: 3939. https://doi.org/10.3390/foods11233939
APA StyleKhouja, M., Páscoa, R. N. M. J., Melo, D., Costa, A. S. G., Nunes, M. A., Khaldi, A., Messaoud, C., Oliveira, M. B. P. P., & Alves, R. C. (2022). Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study. Foods, 11(23), 3939. https://doi.org/10.3390/foods11233939