The Effect of Cow Breed and Wild Garlic Leaves (Allium ursinum L.) on the Sensory Quality, Volatile Compounds, and Physical Properties of Unripened Soft Rennet-Curd Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition, Acidity, and Water Activity Evaluation
2.3. Sensory Quality Assessment
2.4. Volatile Compound Analysis
2.5. Analysis of Physical Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition, Acidity, and Water Activity of Cheese
3.2. Sensory Quality of Cheese
3.3. Volatile Compounds in Cheese
3.4. Physical Properties of Cheese
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pluta-Kubica, A.; Jamróz, E.; Kawecka, A.; Juszczak, L.; Krzyściak, P. Active Edible Furcellaran/Whey Protein Films with Yerba Mate and White Tea Extracts: Preparation, Characterization and Its Application to Fresh Soft Rennet-Curd Cheese. Int. J. Biol. Macromol. 2020, 155, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Tarakci, Z.; Temiz, H.; Aykut, U.; Turhan, S. Influence of Wild Garlic on Color, Free Fatty Acids, and Chemical and Sensory Properties of Herby Pickled Cheese. Int. J. Food Prop. 2011, 14, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Gębczyński, P.; Bernaś, E.; Słupski, J. Usage of Wild-Growing Plants as Foodstuff. In Cultural Heritage—Possibilities for Land-centered Societal Development; Hernik, J., Walczycka, M., Sankowski, E., Harris, B.J., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 269–283. ISBN 9783030580919. [Google Scholar]
- Sobolewska, D.; Podolak, I.; Makowska-Wąs, J. Allium ursinum: Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marchi, M.; Bittante, G.; Dal Zotto, R.; Dalvit, C.; Cassandro, M. Effect of Holstein Friesian and Brown Swiss Breeds on Quality of Milk and Cheese. J. Dairy Sci. 2008, 91, 4092–4102. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. The Effects of Silage Feeding on Some Sensory and Health Attributes of Cow’s Milk: A Review. Food Chem. 2011, 125, 307–317. [Google Scholar] [CrossRef]
- Domagała, J.; Pluta-Kubica, A.; Sady, M.; Bonczar, G.; Duda, I.; Pustkowiak, H. Comparison of the Composition and Quality Properties of Fromage Frais-Type Cheese Manufactured from the Milk of Selected Cow Breeds. Ann. Anim. Sci. 2020, 20, 661–676. [Google Scholar] [CrossRef]
- Hurtaud, C.; Peyraud, J.L.; Michel, G.; Berthelot, D.; Delaby, L. Winter Feeding Systems and Dairy Cow Breed Have an Impact on Milk Composition and Flavour of Two Protected Designation of Origin French Cheeses. Animal 2009, 3, 1327–1338. [Google Scholar] [CrossRef] [Green Version]
- ISO 5534:2004; Cheese and Processed Cheese—Determination of the Total Solids Content. International Organization for Standardization: Geneva, Switzerland, 2004.
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Dairy Products: Arlington, VA, USA, 2007; Chapter 33. [Google Scholar]
- ISO 3433:2008; Cheese–Determination of Fat Content–Van Gulik Method. International Organization for Standardization: Geneva, Switzerland, 2008; p. 3433.
- ISO 18787:2017; Foodstuffs—Determination of Water Activity. International Organization for Standardization: Geneva, Switzerland, 2017.
- Gawęcka, J.; Jędryka, T. Rozdział 5. Metody Punktowe. In Analiza Sensoryczna: Wybrane Metody i Przykłady Zastosowań; Wydawnictwo Akademii Ekonomicznej w Poznaniu: Poznań, Poland, 2001; pp. 57–76. ISBN 838876019X. [Google Scholar]
- Baryłko-Pikielna, N.; Matuszewska, I. Rozdział 10. Metody Sensorycznej Analizy Opisowej. In Sensoryczne Badania Żywności. Podstawy-Metody-Zastosowania; Wydawnictwo Naukowe PTTŻ: Kraków, Poland, 2014; pp. 181–226. ISBN 978-83-935421-3-0. [Google Scholar]
- Štefániková, J.; Ducková, V.; Miškeje, M.; Kacániová, M.; Canigová, M. The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese. Foods 2020, 9, 1195. [Google Scholar] [CrossRef]
- Štefániková, J.; Nagyová, V.; Hynšt, M.; Vietoris, V.; Martišová, P.; Nagyová, Ľ. Application of Electronic Nose for Determination of Slovak Cheese Authentication Based on Aroma Profile. Potravin. Slovak J. Food Sci. 2019, 13, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Sádecká, J.; Kolek, E.; Pangallo, D.; Valík, L.; Kuchta, T. Principal Volatile Odorants and Dynamics of Their Formation during the Production of May Bryndza Cheese. Food Chem. 2014, 150, 301–306. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Liszka, K.; Tabaszewska, M.; Domagała, J. Probiotic Yoghurts with Sea Buckthorn, Elderberry, and Sloe Fruit Purees. Molecules 2021, 26, 2345. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, P.; Beltrán, M.C.; Molina, A.; Escriche, I.; Molina, M.P. Characteristics of Ripened Tronchón Cheese from Raw Goat Milk Containing Legally Admissible Amounts of Antibiotics. J. Dairy Sci. 2019, 102, 2941–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipczak-Fiutak, M.; Pluta-Kubica, A.; Domagała, J.; Duda, I.; Migdał, W. Nutritional Value and Organoleptic Assessment of Traditionally Smoked Cheeses Made from Goat, Sheep and Cow’s Milk. PLoS ONE 2021, 16, e0254431. [Google Scholar] [CrossRef] [PubMed]
- Gliguem, H.; Ben Hassine, D.; Ben Haj Said, L.; Ben Tekaya, I.; Rahmani, R.; Bellagha, S. Supplementation of Double Cream Cheese with Allium Roseum: Effects on Quality Improvement and Shelf-Life Extension. Foods 2021, 10, 1276. [Google Scholar] [CrossRef]
- Güler, Z. Profiles of Organic Acid and Volatile Compounds in Acid-Type Cheeses Containing Herbs and Spices (Surk Cheese). Int. J. Food Prop. 2014, 17, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- The Good Scents Company Information System [WWW Document], n.d. Available online: Http://Www.Thegoodscentscompany.Com/ (accessed on 14 March 2022).
- Pluta-Kubica, A.; Domagała, J.; Gąsior, R.; Wojtycza, K.; Witczak, M. Characterisation of the Profile of Volatiles of Polish Emmental Cheese. Int. Dairy J. 2021, 116, 104954. [Google Scholar] [CrossRef]
- Pillonel, L.; Ampuero, S.; Tabacchi, R.; Bosset, J.O. Analytical Methods for the Determination of the Geographic Origin of Emmental Cheese: Volatile Compounds by GC/MS-FID and Electronic Nose. Eur. Food Res. Technol. 2003, 216, 179–183. [Google Scholar] [CrossRef]
- Frank, D.C.; Owen, C.M.; Patterson, J. Solid Phase Microextraction (SPME) Combined with Gas-Chromatography and Olfactometry-Mass Spectrometry for Characterization of Cheese Aroma Compounds. LWT-Food Sci. Technol. 2004, 37, 139–154. [Google Scholar] [CrossRef]
- Marilley, L.; Casey, M.G. Flavours of Cheese Products: Metabolic Pathways, Analytical Tools and Identification of Producing Strains. Int. J. Food Microbiol. 2004, 90, 139–159. [Google Scholar] [CrossRef]
- Endrizzi, I.; Fabris, A.; Biasioli, F.; Aprea, E.; Franciosi, E.; Poznanski, E.; Cavazza, A.; Gasperi, F. The Effect of Milk Collection and Storage Conditions on the Final Quality of Trentingrana Cheese: Sensory and Instrumental Evaluation. Int. Dairy J. 2012, 23, 105–114. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- Mordenti, A.L.; Brogna, N.; Formigoni, A. REVIEW: The Link between Feeding Dairy Cows and Parmigiano-Reggiano Cheese Production Area. Prof. Anim. Sci. 2017, 33, 520–529. [Google Scholar] [CrossRef]
- Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Conte, F. Solid-Phase Microextraction and Gas Chromatography Mass Spectrometry Analysis of Dairy Product Volatiles for the Determination of Shelf-Life. Int. Dairy J. 2008, 18, 819–825. [Google Scholar] [CrossRef]
- Henneberry, S.; Wilkinson, M.G.; Kilcawley, K.N.; Kelly, P.M.; Guinee, T.P. Interactive Effects of Salt and Fat Reduction on Composition, Rheology and Functional Properties of Mozzarella-Style Cheese. Dairy Sci. Technol. 2015, 95, 613–638. [Google Scholar] [CrossRef]
Feature | Storage Time (Weeks) | Milk Source | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HF | RP | |||||||
N | H | N | H | S | A | T | ||
Water content (%) | 0 | 53.5 ± 1.3 | 47.2 ± 1.9 | 58.2 ± 2.3 | 51.5 ± 3.0 | NS | *** | NS |
2 | 56.3 ± 1.3 | 47.1 ± 10.1 | 57.4 ± 1.8 | 48.5 ± 3.7 | ||||
pH | 0 | 4.5 ± 0.2 | 4.6 ± 0.2 | 4.7 ± 0.1 | 4.5 ± 0.0 | NS | NS | NS |
2 | 4.8 ± 0.6 | 4.4 ± 0.2 | 4.5 ± 0.1 | 4.6 ± 0.1 | ||||
Water activity | 0 | 0.95 ± 0.03 | 0.94 ± 0.02 | 0.92 ± 0.00 | 0.93 ± 0.02 | NS | NS | NS |
2 | 0.94 ± 0.02 | 0.94 ± 0.02 | 0.95 ± 0.03 | 0.95 ± 0.03 | ||||
Fat content (%) | 0 | 24.8 ± 2.1 | 26.4 ± 2.5 | 24.1 ± 1.8 | 21.1 ± 0.9 | *** | NS | ne |
Protein content (%) | 0 | 18.8 ± 1.6 | 23.4 ± 1.9 | 18.5 ± 2.3 | 21.2 ± 1.5 | NS | *** | ne |
Ash content (%) | 0 | 2.32 ± 0.27 | 2.63 ± 0.31 | 2.23 ± 0.05 | 2.57 ± 0.23 | NS | * | ne |
NaCl content (%) | 0 | 0.6 ± 0.2 | 0.7 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.2 | * | NS | ne |
Feature | Milk Source | p-Value | ||||
---|---|---|---|---|---|---|
HF | RP | |||||
N | H | N | H | S | A | |
Sensory quality of cheeses on a five-point scale | ||||||
Color | 4.91 ± 0.20 | 4.81 ± 0.36 | 4.63 ± 0.62 | 4.66 ± 0.60 | NS | NS |
Appearance | 4.56 ± 0.54 | 4.69 ± 0.48 | 4.41 ± 0.61 | 4.34 ± 0.57 | NS | NS |
Texture | 4.53 ± 0.62 | 4.63 ± 0.43 | 4.38 ± 0.56 | 4.31 ± 0.44 | NS | NS |
Taste | 4.59 ± 0.46 | 4.66 ± 0.44 | 4.53 ± 0.62 | 4.66 ± 0.44 | NS | NS |
Smell | 4.75 ± 0.37 | 4.84 ± 0.35 | 4.41 ± 0.61 | 4.53 ± 0.59 | * | NS |
Overall quality | 4.66 ± 0.27 | 4.73 ± 0.23 | 4.47 ± 0.43 | 4.51 ± 0.33 | * | NS |
Discriminant intensity of cheese taste and smell | ||||||
Milky taste | 3.25 ± 1.39 | 2.47 ± 1.77 | 3.19 ± 1.11 | 2.06 ± 1.06 | NS | *** |
Sour taste | 2.81 ± 1.11 | 2.09 ± 1.10 | 3.25 ± 1.00 | 2.31 ± 0.95 | NS | *** |
Herbal taste | 0.00 ± 0.00 | 4.19 ± 0.68 | 0.00 ± 0.00 | 4.06 ± 0.93 | NS | *** |
Bitter taste | 0.47 ± 0.88 | 0.75 ± 0.68 | 0.63 ± 1.02 | 1.00 ± 1.03 | NS | NS |
Piquant taste | 0.31 ± 0.60 | 2.22 ± 1.48 | 0.50 ± 0.89 | 1.94 ± 1.53 | NS | *** |
Salty taste | 2.94 ± 0.98 | 2.69 ± 0.95 | 2.56 ± 0.96 | 2.56 ± 0.89 | NS | NS |
Pleasant taste | 4.44 ± 0.73 | 4.47 ± 0.56 | 4.25 ± 0.77 | 4.19 ± 0.66 | NS | NS |
Milky smell | 3.25 ± 1.34 | 1.94 ± 1.69 | 3.31 ± 1.01 | 1.94 ± 1.18 | NS | *** |
Sour smell | 2.50 ± 1.21 | 2.16 ± 1.21 | 2.81 ± 1.38 | 1.81 ± 1.11 | NS | * |
Herbal smell | 0.00 ± 0.00 | 4.41 ± 0.71 | 0.00 ± 0.00 | 4.25 ± 1.18 | NS | *** |
Pleasant smell | 4.53 ± 0.62 | 4.44 ± 0.81 | 4.19 ± 0.83 | 4.44 ± 0.73 | NS | NS |
Compounds | Determination Method | Sensory Descriptors 1 | HF N | HF H | RP N | RP H | |
---|---|---|---|---|---|---|---|
Alcohols | 2-propanol | e-nose | alcoholic, ethereal | + | + | + | + |
2-methyl-propanol | e-nose | alcoholic, bitter, chemical, glue, leek, licorice, solvent | + | + | + | + | |
2,3-butanediol | HS–SPME GC/MS | fruity, onion | + | ||||
3-heptanol | e-nose | green, herbaceous | + | + | |||
Aldehydes | acetaldehyde | e-nose | ethereal, fresh, fruity, pungent | + | + | + | + |
propanal | e-nose | ethereal, plastic, pungent, solvent | + | + | + | + | |
2-methyl propanal | e-nose | burnt, fruity, green, malty, pungent, spicy, toasted | + | + | + | + | |
3-methyl butanal | e-nose | almond, fruity, green, herbaceous, malty, toasted | + | ||||
benzaldehyde | HS–SPME GC/MS | almond, burnt sugar, fruity, woody | + | + | |||
Ketones | 2,3-butanedione | e-nose and HS–SPME GC/MS | butter, caramelized, creamy, fruity, pineapple, spirit | +/+ | +/+ | +/+ | +/+ |
3-hydroxy-2-butanone | HS–SPME GC/MS | sweet buttery creamy, dairy, milky, fatty | + | + | + | + | |
Esters | ethyl acetate | e-nose | acidic, caramelized, fruity, pineapple, solvent, butter, ethereal, orange, pungent, sweet | + | + | + | |
ethyl acrylate | e-nose | fruity | + | + | + | + | |
ethyl isobutyrate | e-nose | fruity, rubber, strawberry, sweet | + | + | + | ||
ethyl propanoate | e-nose | acetone, fruity, solvent | + | + | + | + | |
isoamyl acetate | e-nose | banana, fresh, fruity, pear, sweet | + | + | |||
α-terpineol acetate | HS–SPME GC/MS | - | + | + | |||
Free fatty acids | 2-methyl propanoic acid | e-nose | acidic, butter, cheese, fatty, phenolic, rancid, sweaty | + | + | + | + |
3-methyl butanoic acid | e-nose | acidic, cheese, rancid, sweaty | + | + | |||
acetic acid | e-nose and HS–SPME GC/MS | acidic, pungent, sour, vinegar | + | +/+ | +/+ | +/+ | |
propanoic acid | e-nose | acidic, pungent, rancid, soy | + | ||||
butanoic acid | e-nose and HS–SPME GC/MS | butter, cheese, rancid, sweaty | +/+ | +/+ | +/+ | +/+ | |
hexanoic acid | HS–SPME GC/MS | cheese, fatty, goat, pungent, rancid, sweaty | + | + | + | + | |
heptanoic acid | HS–SPME GC/MS | cheese, fatty, rancid, sour-sweat | + | ||||
octanoic acid | HS–SPME GC/MS | cheese, fatty, fatty acid, fresh, mossy, sweaty | + | + | + | + | |
Sulfur compounds | allyl (E)-1-propenyl disulfide | HS–SPME GC/MS | sulfurous, alliaceous | + | + | ||
diallyl disulfide | HS–SPME GC/MS | alliaceous, onion, garlic, metallic | + | + | |||
allyl methyl disulfide | HS–SPME GC/MS | alliaceous, onion, garlic, green onion | + | + | |||
Terpenes | D-limonene | HS–SPME GC/MS | citrus, fruity, minty, orange, peely | + | + | + | |
α-pinene | e-nose | pine, terpenic | + | + | |||
Furans | dihydro-2,2-dimethyl-5-phenyl-3(2H)-furanone | HS–SPME GC/MS | - | + | + | + | |
Pyrazines | 2,3-dimethyl pyrazine | e-nose | baked, cocoa, coffee, nutty, caramelized, meaty, peanut, butter | + | + | ||
Hydrocarbons | 6-methyl-octadecane | HS–SPME GC/MS | - | + | + | ||
Oxime | methoxy-phenyl-oxime | HS–SPME GC/MS | - | + | + | + | + |
Feature | Storage Duration (Weeks) | Milk Source | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HF | RP | |||||||
N | H | N | H | S | A | T | ||
Color parameters | ||||||||
L* | 0 | 85.43 ± 3.04 | 74.10 ± 5.23 | 83.46 ± 2.59 | 73.92 ± 6.32 | NS | *** | NS |
2 | 83.68 ± 1.79 | 73.78 ± 7.53 | 84.38 ± 2.05 | 73.82 ± 5.17 | ||||
a* | 0 | −0.26 ± 0.45 | −2.19 ± 0.67 | 0.63 ± 0.20 | −1.06 ± 0.63 | *** | *** | NS |
2 | −0.09 ± 0.40 | −1.79 ± 0.77 | 0.67 ± 0.15 | −1.00 ± 0.44 | ||||
b* | 0 | 11.78 ± 2.44 | 13.23 ± 2.38 | 14.71 ± 1.61 | 15.34 ± 1.66 | *** | *** | *** |
2 | 12.91 ± 1.59 | 14.59 ± 2.02 | 15.06 ± 1.53 | 15.99 ± 1.25 | ||||
h | 0 | 91.72 ± 2.45 | 100.07 ± 4.35 | 87.64 ± 0.64 | 94.07 ± 2.53 | *** | *** | ** |
2 | 90.58 ± 1.86 | 97.38 ± 3.85 | 87.55 ± 0.54 | 93.62 ± 1.57 | ||||
C* | 0 | 11.79 ± 2.42 | 13.44 ± 2.25 | 14.71 ± 1.61 | 15.39 ± 1.63 | *** | *** | *** |
2 | 12.91 ± 1.59 | 14.73 ± 1.94 | 15.07 ± 1.53 | 16.03 ± 1.23 | ||||
Textural parameters | ||||||||
Hardness (kG) | 0 | 2.18 ± 0.21 | 3.51 ± 0.50 | 3.06 ± 0.71 | 4.40 ± 0.58 | *** | *** | NS |
2 | 2.14 ± 0.37 | 2.96 ± 0.47 | 3.07 ± 0.44 | 4.08 ± 0.39 | ||||
Adhesiveness (|kG × s|) | 0 | 0.12 ± 0.05 | 0.07 ± 0.05 | 0.13 ± 0.08 | 0.12 ± 0.08 | *** | *** | NS |
2 | 0.12 ± 0.03 | 0.11 ± 0.06 | 0.21 ± 0.10 | 0.13 ± 0.06 | ||||
Springiness (-) | 0 | 0.79 ± 0.06 | 0.61 ± 0.04 | 0.65 ± 0.16 | 0.59 ± 0.12 | NS | *** | * |
2 | 0.64 ± 0.08 | 0.55 ± 0.05 | 0.71 ± 0.07 | 0.53 ± 0.05 | ||||
Cohesiveness (-) | 0 | 0.23 ± 0.03 | 0.21 ± 0.02 | 0.24 ± 0.12 | 0.25 ± 0.12 | NS | NS | *** |
2 | 0.19 ± 0.02 | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.16 ± 0.04 | ||||
Chewiness (kG) | 0 | 0.40 ± 0.05 | 0.44 ± 0.09 | 0.44 ± 0.14 | 0.60 ± 0.13 | *** | * | *** |
2 | 0.25 ± 0.07 | 0.28 ± 0.06 | 0.38 ± 0.07 | 0.34 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta-Kubica, A.; Najgebauer-Lejko, D.; Domagała, J.; Štefániková, J.; Golian, J. The Effect of Cow Breed and Wild Garlic Leaves (Allium ursinum L.) on the Sensory Quality, Volatile Compounds, and Physical Properties of Unripened Soft Rennet-Curd Cheese. Foods 2022, 11, 3948. https://doi.org/10.3390/foods11243948
Pluta-Kubica A, Najgebauer-Lejko D, Domagała J, Štefániková J, Golian J. The Effect of Cow Breed and Wild Garlic Leaves (Allium ursinum L.) on the Sensory Quality, Volatile Compounds, and Physical Properties of Unripened Soft Rennet-Curd Cheese. Foods. 2022; 11(24):3948. https://doi.org/10.3390/foods11243948
Chicago/Turabian StylePluta-Kubica, Agnieszka, Dorota Najgebauer-Lejko, Jacek Domagała, Jana Štefániková, and Jozef Golian. 2022. "The Effect of Cow Breed and Wild Garlic Leaves (Allium ursinum L.) on the Sensory Quality, Volatile Compounds, and Physical Properties of Unripened Soft Rennet-Curd Cheese" Foods 11, no. 24: 3948. https://doi.org/10.3390/foods11243948
APA StylePluta-Kubica, A., Najgebauer-Lejko, D., Domagała, J., Štefániková, J., & Golian, J. (2022). The Effect of Cow Breed and Wild Garlic Leaves (Allium ursinum L.) on the Sensory Quality, Volatile Compounds, and Physical Properties of Unripened Soft Rennet-Curd Cheese. Foods, 11(24), 3948. https://doi.org/10.3390/foods11243948