Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fungal Isolate and In Vitro Cultivation
2.3. DNA Extraction, PCR Amplification, Purification, and Sequencing
2.4. Submerged Cultivation for Mycelial Biomass Obtaining
2.5. Preparation of Extracts
2.6. Determination of Glucans
2.7. Determination of Total Phenolic Content (TPC)
2.8. Determination of In Vitro Antioxidant Activity
2.8.1. DPPH• Radical Scavenging Assay
2.8.2. ABTS•+ Radical Scavenging Assay
2.8.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.8.4. Cupric Ion-Reducing Antioxidant Capacity (CUPRAC) Assay
2.9. Contractile Activity
2.9.1. Tissue Preparation
2.9.2. Measurement of Contraction in Smooth Muscle Strips
2.10. Statistical Analysis
3. Results and Discussion
3.1. Identification of the Fungal Isolate
3.2. Submerged Cultivation of P. ostreatus GA2M for Obtaining Biomass
3.3. Determination of Glucans
3.4. Determination of TPC and In Vitro Antioxidant Activity
3.5. Contractile Activity Determination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berger, R.G.; Bordewick, S.; Krahe, N.-K.; Ersoy, F. Mycelium vs. fruiting bodies of edible fungi—A comparison of metabolites. Microorganisms 2022, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, S.; Sangeetha, S.; Arulselvi, P.I. Effect of different agro-wastes on mass production of edible mushroom Pleurotus Ostreatus. Indian J. Appl. Res. 2011, 3, 33–35. [Google Scholar] [CrossRef]
- Gregori, A.; Švagelj, M.; Pohleven, J. Cultivation of Pleurotus spp. Food Technol. Biotechnol. 2007, 45, 238–249. [Google Scholar]
- Patel, Y.; Naraian, R.; Singh, V.K. Medicinal properties of Pleurotus species (Oyster mushroom): A review. World J. Fungal. Plant Biol. 2012, 3, 1–12. [Google Scholar]
- Karácsonyi, Š.; Kuniak, Ľ. Polysaccharides of Pleurotus ostreatus: Isolation and structure of pleuran, an alkali-insoluble β-d-glucan. Carbohydr. Polym. 1994, 24, 107–111. [Google Scholar] [CrossRef]
- Wolff, E.R.; Wisbeck, E.; Silveira, M.L.; Gern, R.M.; Pinho, M.S.; Furlan, S.A. Antimicrobial and antineoplasic activity of Pleurotus ostreatus. Appl. Biochem. Biotechnol. 2008, 151, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.; Jovin, E.; Malbasa, R.; Matavuly, M.; Popović, M. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother. Res. 2010, 24, 1473–1481. [Google Scholar] [CrossRef]
- Chorváthová, V.; Bobek, P.; Ginter, E.; Klvanová, J. Effect of the oyster fungus on glycaemia and cholesterolaemia in rats with insulin-dependent diabetes. Physiol. Res. 1993, 42, 175–179. [Google Scholar]
- Krishna, S.; Usha, P.T.A. Hypoglycaemic effect of a combination of Pleurotus ostreatus, Murraya koenigii and Aegle marmelos in diabetic rats. Indian J. Anim. Sci. 2009, 79, 986–987. [Google Scholar]
- Kajaba, I.; Simoncic, R.; Frecerova, K.; Belay, G. Clinical studies on the hypolipidemic and antioxidant effects of selected natural substances. Bratisl. Lek. Listy 2008, 109, 267–272. [Google Scholar]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [PubMed]
- Miyazawa, N.; Okazaki, M.; Ohga, S. Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J. Oleo Sci. 2008, 57, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, S.Y.; Takahashi, M.; Shen, Y.; Kaihou, S.; Tomiyama, T.; Yazawa, M.; Tamai, Y.; Sin, Y.; Kazusaka, A.; Terazawa, M.; et al. A phytochemical in the edible Tamogi-take mushroom (Pleurotus cornucopiae), D-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 2005, 69, 1603–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Tania, M. Nutritional and medicinal importance of Pleurotus Mushrooms: An Overview. Food Rev. Int. 2012, 28, 313–329. [Google Scholar] [CrossRef]
- Jiao, Y.; Kuang, H.; Wu, J.; Chen, Q. Polysaccharides from the edible mushroom Agaricus bitorquis (Quél.) Sacc. chaidam show anti-hypoxia activities in pulmonary artery smooth muscle cells. Int. J. Mol. Sci. 2019, 20, 637. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, M.J.; Lee, B.S.; Ryoo, R.; Kim, H.K.; Kim, K.H. Cumulative effects of constituents from the mushroom Calvatia nipponica on the contractility of penile corpus cavernosum smooth muscle. Mycobiology 2020, 48, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schachter, E.N.; Zuskin, E.; Goswami, S.; Castranova, V.; Arumugam, U.; Whitmer, M.; Siegel, P.; Chiarelli, A.; Fainberg, J. Pharmacological study of oyster mushroom (Pleurotus ostreatus) extract on isolated guinea pig trachea smooth muscle. Lung 2005, 183, 63–71. [Google Scholar] [CrossRef]
- Hafen, B.B.; Shook, M.; Burns, B. Anatomy, Smooth Muscle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hafen, B.B.; Burns, B. Physiology, Smooth Muscle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526125/ (accessed on 9 September 2022).
- Shi, N.; Chen, S.Y. Smooth muscle cell differentiation: Model systems, regulatory mechanisms, and vascular diseases. J. Cell Physiol. 2016, 231, 777–787. [Google Scholar] [CrossRef]
- Mohrdieck, C.; Wanner, A.; Roos, W.; Roth, A.; Sackmann, E.; Spatz, J.P.; Arzt, E. A theoretical description of elastic pillar substrates in biophysical experiments. Chem. Phys. Chem. 2005, 6, 1492–1498. [Google Scholar] [CrossRef]
- Deshpande, V.S.; McMeeking, R.M.; Evans, A.G. A bio-chemo-mechanical model for cell contractility. Proc. Natl. Acad. Sci. USA 2006, 103, 14015–14020. [Google Scholar] [CrossRef] [Green Version]
- Stefanova, P.; Taseva, M.; Georgieva, T.; Gotcheva, V.; Angelov, A. A modified CTAB method for DNA extraction from soybean and meat products. Biotechnol. Biotechnol. Equip. 2013, 27, 3803–3810. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: www.ncbi.nlm.nih.gov (accessed on 10 September 2022).
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.; Brazkova, M.; Mihaylova, D.; Slavov, A.; Petkova, N.; Blazheva, D.; Deseva, I.; Gotova, I.; Dimitrov, Z.; Krastanov, A. Bioactivity of biomass and crude exopolysaccharides obtained by controlled submerged cultivation of medicinal mushroom Trametes versicolor. J. Fungi 2022, 8, 738. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M. Pleurotus ostreatus. 2017. Available online: http://www.mushroomexpert.com/pleurotus_ostreatus.html (accessed on 16 September 2022).
- Vamanu, E. Biological activities of polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J. Biomed. Biotechnol. 2012, 2012, 565974. [Google Scholar] [CrossRef] [Green Version]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, J.; Modick, H.; Busch, E.; von Rekowski, R.W.; Altenbach, H.-J.; Mölleken, H. A new colorimetric method to quantify β-1,3-1,6-glucans in comparison with total β-1,3-glucans in edible mushrooms. Food Chem. 2011, 127, 791–796. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J.; Ortiz-Castellanos, L. Cell wall glucans of fungi. A review. Cell Surf. 2019, 5, 100022. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spĕváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Devi, K.S.; Behera, B.; Mishra, D.; Maiti, T.K. Immune augmentation and Dalton’s Lymphoma tumor inhibition by glucans/glycans isolated from the mycelia and fruit body of Pleurotus ostreatus. Int. Immunopharmacol. 2015, 25, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mau, J.L.; Lin, H.C.; Chen, C.C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 2002, 50, 6072–6077. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, T.; Thomas, P.A.; Geraldine, P. In vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. Food Sci. Emerg. Technol. 2009, 10, 228–234. [Google Scholar] [CrossRef]
- Wong, J.Y.; Chye, F.Y. Antioxidant properties of selected tropical wild edible mushrooms. J. Food Compost. Anal. 2009, 22, 269–277. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Varshney, V.K.; Harsh, N.S.K.; Kumar, M. Antioxidant capacity and total phenolics content of the fruiting bodies and submerged cultured mycelia of sixteen higher basidiomycetes mushrooms from India. Int. J. Med. Mushrooms 2015, 17, 933–941. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Szewczyk, A.; Galanty, A.; Gdula-Argasińska, J.; Muszyńska, B. Chemical composition and biological activity of extracts from fruiting bodies and mycelial cultures of Fomitopsis betulina. Mol. Biol. Rep. 2018, 45, 2535–2544. [Google Scholar] [CrossRef] [Green Version]
- Sulistiany, H.; Sudirman, L.I.; Dharmaputra, O.S. Production of Fruiting body and antioxidant activity of wild Pleurotus. HAYATI J. Biosci. 2016, 23, 191–195. [Google Scholar] [CrossRef]
- Carvajal, A.; Koehnlein, E.; Soares, A.; Eler, G.; Nakashima, A.; Bracht, A.; Peralta, R. Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties. LWT Food Sci. Technol. 2012, 46, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, S.; Gopal, J.; Muthu, M. Antioxidant activity of mushroom extracts/polysaccharides—Their antiviral properties and plausible antiCOVID-19 properties. Antioxidants 2021, 10, 1899. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Kujawowicz, K.; Witkowska, A.M. Beta-Glucans from fungi: Biological and health-promoting potential in the COVID-19 pandemic era. Nutrients 2021, 13, 3960. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, K.; Hori, C.; Matsuoka, H.; Iga-rashi, K.; Samejima, M. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. J. Sci. Food Agric. 2019, 99, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Boskou, D. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar]
- Moskaug, J.O.; Carlsen, H.; Myhrstad, M.C.W.; Blomhoff, R. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 2005, 81, 277S–283S. [Google Scholar] [CrossRef] [Green Version]
- Forman, H.J.; Torres, M.; Fukuto, J. Redox signaling. Mol. Cell Biochem. 2002, 234–235, 49–62. [Google Scholar] [CrossRef]
- Singdevsachan, S.K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull. 2012, 87, 144–153. [Google Scholar] [CrossRef]
- Karaki, H.; Weiss, G.B. Calcium channels in smooth muscle. Gastroenterology 1984, 87, 960–970. [Google Scholar] [CrossRef]
- Yu, J.; Bose, R. Calcium channels in smooth muscle. Gastroenterology 1991, 100, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Little, H.J. L-type calcium channel blockers: A potential novel therapeutic approach to drug dependence. Pharmacol. Rev. 2021, 73, 127–154. [Google Scholar] [CrossRef] [PubMed]
Fruiting Body | Mycelial Biomass | ||||
---|---|---|---|---|---|
Total glucans | α-glucans | β-glucans | Total glucans | α-glucans | β-glucans |
35.84 ± 4.16 | 4.18 ± 0.59 | 31.66 ± 3.98 | 12.28 ± 1.24 | 0.282 ± 0.047 | 12.04 ± 1.85 |
Sample | TPC | CUPRAC | FRAP | ABTS | DPPH | |
---|---|---|---|---|---|---|
Water extract | Mycelial biomass | 3.20 ± 0.04 | 16.63 ± 0.29 | 11.08 ± 0.07 | under LOQ * | under LOQ |
Fruiting body | 5.68 ± 0.15 | 24.30 ± 0.44 | 12.02 ± 0.30 | 11.36 ± 0.57 | 3.50 ± 0.73 | |
Ethanol extract | Mycelial biomass | 0.21 ± 0.01 | 11.01 ± 0.62 | 3.27 ± 0.06 | under LOQ | under LOQ |
Fruiting body | 2.01 ± 0.02 | 22.51 ± 0.30 | 7.22 ± 0.05 | 7.51 ± 1.04 | 2.89 ± 0.07 | |
Methanol extract | Mycelial biomass | 1.08 ± 0.06 | 16.41 ± 0.80 | 2.08 ± 0.07 | under LOQ | under LOQ |
Fruiting body | 1.81 ± 0.02 | 19.22 ± 0.91 | 3.33 ± 0.07 | 10.26 ± 0.36 | 2.21 ± 0.05 |
Tonic Activity of Water Extract of Fruiting Body 100 μM | ||||
---|---|---|---|---|
Initial Reaction, mN | Applied Blocker | Resultant Reaction, mN | n | p |
1.38 ± 0.09 | 0.5 μM nifedipine | 0 * | 9 | 0.002 |
1.35 ± 0.15 | 0.3 μM verapamil | 0.52 ± 0.02 * | 12 | 0.003 |
1.42 ± 0.05 | 1 μM atropine | 0.27 ± 0.05 * | 12 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brazkova, M.; Angelova, G.; Mihaylova, D.; Stefanova, P.; Pencheva, M.; Gledacheva, V.; Stefanova, I.; Krastanov, A. Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity. Foods 2022, 11, 3983. https://doi.org/10.3390/foods11243983
Brazkova M, Angelova G, Mihaylova D, Stefanova P, Pencheva M, Gledacheva V, Stefanova I, Krastanov A. Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity. Foods. 2022; 11(24):3983. https://doi.org/10.3390/foods11243983
Chicago/Turabian StyleBrazkova, Mariya, Galena Angelova, Dasha Mihaylova, Petya Stefanova, Mina Pencheva, Vera Gledacheva, Iliyana Stefanova, and Albert Krastanov. 2022. "Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity" Foods 11, no. 24: 3983. https://doi.org/10.3390/foods11243983
APA StyleBrazkova, M., Angelova, G., Mihaylova, D., Stefanova, P., Pencheva, M., Gledacheva, V., Stefanova, I., & Krastanov, A. (2022). Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity. Foods, 11(24), 3983. https://doi.org/10.3390/foods11243983