Modified Highland Barley Regulates Lipid Metabolism and Liver Injury in High Fat and Cholesterol Diet ICR Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of HB, HB-I, HB-II, and HB-III Components
2.3. Animal Experiments and Design
2.4. Investigation of Serum Biochemical Indices Investigation
2.5. Histopathology Analysis of Liver and Adipose Tissue
2.6. Gut Microbiome Assessment
2.7. Nontargeted Metabolomics
2.8. Statistical Analysis
3. Results
3.1. Compositions Analysis of HB, HB-1, HB-2, and HB-3
3.2. Body Weight (BW), Body Weight Gain (BWG) and Feed Intake (FI)
3.3. Serum Lipid Parameters
3.4. Liver Damage Analysis
3.5. Adipose Histopathology Assessment
3.6. Gut Microbiota Assessment
3.7. Nontargeted Metabolomics Assessment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.T.; Hochfeld, W.E.; Myburgh, R.; Pepper, M.S. Adipocyte and adipogenesis. Eur. J. Cell Biol. 2013, 92, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y.; Hu, Y.; Wang, G. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism 2015, 64, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, Y.; Han, Y.; Zhao, J.; Han, F.; Song, G.; Jiang, P.; Miao, H. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats. J. Agric. Food Chem. 2018, 66, 6326–6335. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Pu, X.; Yang, J.; Du, J.; Yang, X.; Li, X.; Li, L.; Zhou, Y.; Yang, T. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings. Oxidative Med. Cell. Longev. 2018, 2018, 3232080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Zhong, S.; Tang, Y.; Chen, L. Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo. Food Chem. 2020, 310, 125979. [Google Scholar] [CrossRef]
- Knutsen, S.; Holtekjolen, A. Preparation and analysis of dietary fibre constituents in whole grain from hulled and hull-less barley. Food Chem. 2007, 102, 707–715. [Google Scholar] [CrossRef]
- Li, X.; Suo, J.; Huang, X.; Dai, H.; Bian, H.; Zhu, M.; Lin, W.; Han, N. Whole Grain Qingke Attenuates High-Fat Diet-Induced Obesity in Mice With Alterations in Gut Microbiota and Metabolite Profile. Front. Nutr. 2021, 8, 761727. [Google Scholar] [CrossRef]
- Jayachandran, M.; Chen, J.; Chung, S.S.M.; Xu, B. A critical review on the impacts of beta-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018, 61, 101–110. [Google Scholar] [CrossRef]
- Tomotake, H.; Kayashita, J.; Kato, N. Hypolipidemic activity of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum Gaertn.) buckwheat. J. Sci. Food Agric. 2015, 95, 1963–1967. [Google Scholar] [CrossRef]
- Deng, N.; He, Z.; Guo, R.; Zheng, B.; Li, T.; Liu, R.H. Highland Barley Whole Grain (Hordeum vulgare L.) Ameliorates Hyperlipidemia by Modulating Cecal Microbiota, miRNAs, and AMPK Pathways in Leptin Receptor-Deficient db/db Mice. J. Agric. Food Chem. 2020, 68, 11735–11746. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Miyoshi, T.; Yunoki, K.; Ito, H. Postprandial hyperlipidemia as a potential residual risk factor. J. Cardiol. 2016, 67, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Q.; Chen, G.; Wang, Z.; Chen, X.; Kan, J. Effects of different thermal processing methods on bioactive components, phenolic compounds, and antioxidant activities of Qingke (highland hull-less barley). Food Sci. Hum. Wellness 2023, 12, 119–129. [Google Scholar] [CrossRef]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef]
- Adom, K.; Sorrells, M.; Liu, R. Phytochemical Profiles and Antioxidant Activity of Wheat Varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Li, M.; Zhao, L.; Ji, C.; Ma, Q. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. J. Nutr. Biochem. 2018, 61, 91–100. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.F.; Zhu, W.L.; Liu, H.; Jia, X. Loureirin B protects against obesity via activation of adipose tissue omega3 PUFA-GPR120-UCP1 axis in mice. Biochem. Biophys. Res. Commun. 2022, 632, 139–149. [Google Scholar] [CrossRef]
- Zhao, F.; Guan, S.; Fu, Y.; Wang, K.; Liu, Z.; Ng, T.B. Lycium barbarum polysaccharide attenuates emotional injury of offspring elicited by prenatal chronic stress in rats via regulation of gut microbiota. Biomed. Pharmacother. 2021, 143, 112087. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Zhang, C.; Tu, Z.; Wang, L. Modified highland barley regulates lipid metabolism, liver inflammation and gut microbiota in high-fat/cholesterol diet mice as revealed by LC-MS based metabonomics. Food Funct. 2022, 13, 9119–9142. [Google Scholar] [CrossRef]
- Zang, Y.; Liu, J.; Zhai, A.; Wu, K.; Chuang, Y.; Ge, Y.; Wang, C. Effects of highland barley β-glucan on blood glucose and gut microbiota in HFD and STZ-induced diabetic C57BL/6 mice. Nutrition 2022, 103, 111882. [Google Scholar]
- Li, Y.; Li, T.; Liu, R.H. Bioactive compounds of highland barley and their health benefits. J. Cereal Sci. 2022, 103, 103366. [Google Scholar] [CrossRef]
- Maruo, T.; Sakamoto, M.; Ito, C.; Toda, T.; Benno, Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int. J. Syst. Evol. Microbiol. 2008, 58, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Li, Y.; Wang, J.; Li, P.; Duan, Y.; Dai, H.; An, Y.; Cheng, L.; Wang, T.; Wang, C.; et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed. Pharmacother. 2020, 124, 109873. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qin, C.; Li, Y.; Wu, Z.; Liu, L. Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Biosci. 2022, 50, 101946. [Google Scholar] [CrossRef]
- Gesteiro, E.; Megia, A.; Guadalupe-Grau, A.; Fernandez-Veledo, S.; Vendrell, J.; Gonzalez-Gross, M. Early identification of metabolic syndrome risk: A review of reviews and proposal for defining pre-metabolic syndrome status. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2557–2574. [Google Scholar] [CrossRef]
- Zhao, S.; Zhong, J.; Sun, C.; Zhang, J. Effects of aerobic exercise on TC, HDL-C, LDL-C and TG in patients with hyperlipidemia: A protocol of systematic review and meta-analysis. Medicine 2021, 100, e25103. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Wu, S.-C.; Ng, C.-C.; Shyu, Y.-T. Effect of Lactobacillus-fermented adlay-based milk on lipid metabolism of hamsters fed cholesterol-enriched diet. Food Res. Int. 2010, 43, 819–824. [Google Scholar] [CrossRef]
- Lin, L.Y.; Peng, C.C.; Yang, Y.L.; Peng, R.Y. Optimization of Bioactive Compounds in Buckwheat Sprouts and Their Effect on Blood Cholesterol in Hamsters. J. Agric. Food Chem. 2008, 56, 1216–1223. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chen, W.C.; Kuo, T.C.; Ho, C.T.; Kuo, C.H.; Tseng, Y.J.; Lu, K.H.; Lin, S.H.; Panyod, S.; Sheen, L.Y. Mass-Spectrometry-Based Serum Metabolomics of a C57BL/6J Mouse Model of High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease Development. J. Agric. Food Chem. 2015, 63, 7873–7884. [Google Scholar] [CrossRef]
- Song, H.; Shen, X.; Zhou, Y.; Zheng, X. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food Funct. 2021, 12, 10160–10170. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Phase Angle: A Possible Biomarker to Quantify Inflammation in Subjects with Obesity and 25(OH)D Deficiency. Nutrients 2019, 11, 1747. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, B.; Hu, Y.Z.; Wang, J.; Liu, J.M.; Qui, R.B.; Lv, S.W.; Wang, S. Correlation Analysis of Intestinal Redox State with the Gut Microbiota Reveals the Positive Intervention of Tea Polyphenols on Hyperlipidemia in High Fat Diet Fed Mice. J. Agric. Food Chem. 2019, 67, 7325–7335. [Google Scholar] [CrossRef]
- Kohjima, M.; Enjoji, M.; Higuchi, N.; Kato, M.; Kotoh, K.; Yoshimoto, T.; Fujino, T.; Yada, M.; Yada, R.; Harada, N.; et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int. J. Mol. Med. 2007, 20, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, W.; He, Z.; Zhu, H.; Liu, J.; Kwek, E.; Zhao, Y.; Ma, K.Y.; He, W.S.; Chen, Z.Y. Sea buckthorn seed oil reduces blood cholesterol and modulates gut microbiota. Food Funct. 2019, 10, 5669–5681. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021, 13, 3702. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Huang, D.; Xu, X.; Wu, X.; Liu, L.; Niu, W.; Lu, L.; Zhou, H. An elevated deoxycholic acid level induced by high-fat feeding damages intestinal stem cells by reducing the ileal IL-22. Biochem. Biophys. Res. Commun. 2021, 579, 153–160. [Google Scholar] [CrossRef]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef]
- Minaiyan, M.; Ghannadi, A.; Movahedian, A.; Hakim-Elahi, I. Effect of Hordeum vulgare L. (Barley) on blood glucose levels of normal and STZ-induced diabetic rats. Res. Pharm. Sci. 2014, 9, 173–178. [Google Scholar]
- Liu, Z.; Chen, Z.; Guo, H.; He, D.; Zhao, H.; Wang, Z.; Zhang, W.; Liao, L.; Zhang, C.; Ni, L. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016, 7, 4869–4879. [Google Scholar] [CrossRef]
- Truax, A.D.; Chen, L.; Tam, J.W.; Cheng, N.; Guo, H.; Koblansky, A.A.; Chou, W.-C.; Wilson, J.E.; Brickey, W.J.; Petrucelli, A.; et al. The Inhibitory Innate Immune Sensor NLRP12 Maintains a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host Microbe 2018, 24, 364–378.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, Y.; Minami, A.; Harada, N.; Sakamoto, S.; Niwa, Y.; Ohnaka, M. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am. J. Clin. Nutr. 2000, 71, 54–58. [Google Scholar] [CrossRef] [PubMed]
Name | Method | Standard |
---|---|---|
β-glucan | Ultraviolet spectrophotometry method | Association of official analytical chemists, official methods of analysis (18th ed.) |
Total polysaccharides | Phenol–sulfate method | DB12/T 847-2018 |
Dietary fibers | Enzyme hydrolysis | GB 5009.88-2014 |
Total anthocyanins | pH-differential method | [14] |
Free phenols | Colorimetric method | [15] |
Bound phenols | Colorimetric method | [15] |
Moisture | Direct drying method | GB 5009.3-2016 |
Ash | Direct ignition method | GB 5009.4-2016 |
Protein | Kjeldahl method | GB 5009.5-2016 |
Fat | Soxhlet extraction method | GB 5009.6-2016 |
Total starch | Acid hydrolyzation | GB 5009.9-2016 |
Product | NCG | FG | HBG | HB-1 | HB-2 | HB-3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
gm% 19 | kcal% 20 | gm% 22.62 | kcal% 19.97 | gm% 22.62 | kcal% 19.97 | gm% 22.62 | kcal% 19.97 | gm% 22.62 | kcal% 19.97 | gm% 22.62 | kcal% 19.97 | |
Protein | ||||||||||||
Carbohydrate | 67 | 70 | 45.51 | 40.18 | 45.51 | 40.18 | 45.51 | 40.18 | 45.51 | 40.18 | 45.51 | 40.18 |
Fat | 4 | 10 | 20.06 | 39.85 | 20.06 | 39.85 | 20.06 | 39.85 | 20.06 | 39.85 | 20.06 | 39.85 |
Total | / | 100 | / | 100 | / | 100 | / | 100 | / | 100 | / | 100 |
kcal/gm | 3.85 | / | 4.53 | / | 4.53 | / | 4.53 | / | 4.53 | / | 4.53 | |
Ingredient | gm | kcal | gm | kcal | gm | kcal | gm | kcal | gm | kcal | gm | kcal |
Casein, 80 Mesh | 200 | 800 | 200 | 800 | 169 | 676 | 148 | 592 | 120 | 480 | 87 | 348 |
L-Cystine | 3 | 12 | 3 | 12 | 3 | 12 | 3 | 12 | 3 | 12 | 3 | 12 |
Corn Starch | 386.15 | 1544.6 | 212 | 848 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maltodextrin | 125 | 500 | 71 | 284 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sucrose | 200 | 800 | 124.41 | 497.64 | 124.41 | 497.64 | 124.41 | 497.64 | 124.41 | 497.64 | 124.41 | 497.64 |
Sample Fat | 0 | 0 | 0 | 0 | 6 | 54 | 11 | 99 | 12 | 108 | 28 | 252 |
Sample Protein | 0 | 0 | 0 | 0 | 31 | 124 | 52 | 208 | 80 | 320 | 113 | 452 |
Sample starch | 0 | 0 | 0 | 0 | 283 | 1132 | 283 | 1132 | 283 | 1132 | 283 | 1132 |
Cellulose | 50 | 0 | 50 | 0 | 50 | 0 | 50 | 0 | 50 | 0 | 50 | 0 |
Soybean Oil | 25 | 225 | 25 | 225 | 19 | 171 | 14 | 126 | 13 | 117 | 0 | 0 |
Lard | 20 | 180 | 155 | 1395 | 155 | 1395 | 155 | 1395 | 155 | 1395 | 152 | 1368 |
Mineral Mix S10020 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 |
Calcium Phosphate | 13 | 0 | 13 | 0 | 13 | 0 | 13 | 0 | 13 | 0 | 13 | 0 |
Calcium Carbonate | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 |
Potassium Citrate,1 H2O | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 |
Sodium Chloride | 2.59 | 0 | 2.59 | 0 | 2.59 | 0 | 2.59 | 0 | 2.59 | 0 | 2.59 | 0 |
Vitamin Mix V10001C | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 |
Choline Bitartrate | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
Cholesterol | 0 | 0 | 11.25 | 0 | 11.25 | 0 | 11.25 | 0 | 11.25 | 0 | 11.25 | 0 |
FD&C Yellow Dye # 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FD&C Red Dye # 40 | 0 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 |
FD&C Blue Dye # 1 | 0.1 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 | 0.05 | 0 |
Total | 1054.84 | 4065.60 | 897.35 | 4065.64 | 897.35 | 4065.64 | 897.35 | 4065.64 | 897.35 | 4065.64 | 897.35 | 4065.64 |
Week | NCG | FG | HBG | HB-1 | HB-2 | HB-3 | p-Value | |
---|---|---|---|---|---|---|---|---|
Body Weight (BW, gr) | 1 | 38.33 ± 2.45 | 38.29 ± 5.64 | 39.27 ± 3.21 | 38.47 ± 2.11 | 39.81 ± 1.23 | 39.57 ± 3.11 | |
2 | 39.37 ± 4.32 | 42.91 ± 3.21 | 42.14 ± 2.33 | 40.07 ± 3.44 | 42.24 ± 3.21 | 40.81 ± 2.11 | ||
3 | 39.68 ± 1.11 | 45.13 ± 1.23 | 46.55 ± 2.66 | 41.83 ± 5.55 | 43.50 ± 4.55 | 43.66 ± 3.12 | ||
4 | 40.04 ± 2.22 | 47.90 ± 3.22 | 50.84 ± 1.11 | 42.89 ± 6.66 | 44.08 ± 1.11 | 46.02 ± 2.12 | ||
5 | 40.52 ± 3.45 | 49.07 ± 1.22 | 51.77 ± 1.33 | 44.45 ± 7.44 | 47.78 ± 1.12 | 47.27 ± 1.24 | ||
6 | 41.26 ± 2.43 | 53.07 ± 5.67 | 52.55 ± 1.33 | 46.96 ± 3.21 | 48.86 ± 2.12 | 49.34 ± 1.44 | ||
7 | 41.97 ± 3.56 | 55.87 ± 4.32 | 53.9 ± 1.55 | 48.21 ± 2.45 | 50.24 ± 3.00 | 51.85 ± 5.13 | ||
8 | 42.26 ± 4.33 | 58.19 ± 0.97 | 57.49 ± 1.20 | 49.65 ± 2.78 | 52.30 ± 4.52 | 53.38 ± 3.12 | ||
9 | 43.89 ± 3.1 | 60.36 ± 4.30 | 58.50 ± 3.30 | 51.05 ± 4.65 | 53.77± 3.21 | 54.42 ± 3.21 | ||
10 | 45.11 ± 1.98 | 62.59 ± 2.11 | 61.00 ± 5.40 | 53.37 ± 3.65 | 54.50 ± 5.62 | 57.63 ± 1.22 | ||
11 | 47.45 ± 0.43 | 64.64 ± 5.40 | 63.2 ± 3.40 | 56.59 ± 4.13 | 57.01 ± 2.11 | 60.28 ± 4.55 | ||
BWG | 9.12 ± 2.12 e | 26.35 ± 3.20 a | 23.93 ± 3.21 b | 18.12 ± 2.13 d | 17.20 ± 1.34 d | 20.71 ± 1.21 c | 0.034 | |
FI | 5.41 ± 0.45 a | 4.16 ± 0.32 b | 4.13 ± 0.12 b | 4.11 ± 0.34 b | 4.14 ± 0.11 b | 4.11 ± 0.45 b | 0.029 |
NCG | FG | HBG | HB-1 | HB-2 | HB-3 | p-Value | |
---|---|---|---|---|---|---|---|
TG | 0.91 ± 0.14 d | 1.79 ± 0.43 a | 1.42 ± 0.30 abc | 1.16 ± 0.04 bcd | 1.46 ± 0.02 ab | 1.01 ± 0.17 cd | 0.032 |
TC | 3.67 ± 0.27 d | 7.637 ± 0.61 a | 6.59 ± 0.42 b | 5.14 ± 0.17 c | 6.66 ± 0.24 b | 5.72 ± 0.29 c | 0.021 |
HDL-C | 6.35 ± 0.22 a | 4.31 ± 0.09 c | 5.32 ± 0.12 b | 3.63 ± 0.14 d | 4.99 ± 0.29 b | 4.47 ± 0.21 c | 0.031 |
LDL-C | 0.47 ± 0.03 d | 1.68 ± 0.25 a | 0.76 ± 0.02 c | 0.75 ± 0.03 c | 0.66 ± 0.01 cd | 1.13 ± 0.21 b | 0.022 |
ALT | 75.40 ± 3.26 c | 110.99 ± 5.39 a | 76.38 ± 2.74 c | 80.74 ± 0.81 c | 75.21 ± 3.21 c | 94.23 ± 3.87 b | 0.032 |
AST | 138.71 ± 7.58 d | 246.22 ± 28.06 ab | 195.37 ± 4.88 c | 108.01 ± 1.80 e | 268.27 ±12.42 a | 228.27 ± 12.74 b | 0.025 |
Groups | Name | VIP | Fold Change | log2(FC) | p-Value | FDR |
---|---|---|---|---|---|---|
NCG vs. FG | Deoxycholic acid | 1.562 | 78,755,000 | 26.231 | 0.007 | 0.122 |
Myclobutanil | 1.860 | 162,580 | 17.311 | 0.007 | 0.092 | |
4-Hydroxyestradiol | 1.469 | 518.540 | 9.018 | 0.037 | 0.156 | |
Dicyclomine | 1.486 | 82.590 | 6.368 | 0.012 | 0.092 | |
2-Phenylacetamide | 1.760 | 60.707 | 5.924 | 0.012 | 0.122 | |
2-Methoxyestrone | 1.443 | 59.446 | 5.894 | 0.012 | 0.092 | |
11-Dehydro-thromboxane B2 | 1.464 | 53.880 | 5.752 | 0.012 | 0.122 | |
Clomipramine | 1.851 | 51.619 | 5.690 | 0.012 | 0.092 | |
Juvenile hormone III acid | 1.881 | 49.980 | 5.643 | 0.012 | 0.092 | |
N1,N8-Bis(4-coumaroyl)spermidine | 1.632 | 33.495 | 5.066 | 0.012 | 0.092 | |
HBG vs. FG | Deoxycholic acid | 1.131 | 58,735,000 | 25.808 | 0.007 | 0.311 |
Myclobutanil | 1.407 | 1,837,300 | 20.809 | 0.007 | 0.375 | |
3-Hydroxyflavone | 1.743 | 66.308 | 6.051 | 0.012 | 0.311 | |
Secoisolariciresinol | 1.816 | 13.186 | 3.721 | 0.037 | 0.399 | |
1,7-Dimethyluric acid | 1.772 | 13.185 | 3.721 | 0.012 | 0.375 | |
Melibiitol | 1.382 | 11.373 | 3.508 | 0.012 | 0.311 | |
1,2-Bis-O-sinapoyl-beta-D-glucose | 2.001 | 11.184 | 3.483 | 0.012 | 0.311 | |
trans-Zeatin-7-beta-D-glucoside | 1.974 | 10.722 | 3.423 | 0.022 | 0.419 | |
Retinoyl b-glucuronide | 1.943 | 9.608 | 3.264 | 0.022 | 0.419 | |
Cellopentaose | 1.909 | 9.392 | 3.231 | 0.012 | 0.311 | |
HB-1 vs. FG | Deoxycholic acid | 1.567 | 6,289,600,000 | 32.550 | 0.007 | 0.195 |
Myclobutanil | 2.263 | 157,820 | 17.268 | 0.007 | 0.165 | |
3-Epiecdysone | 1.466 | 103.160 | 6.689 | 0.012 | 0.165 | |
2-Phenylacetamide | 1.350 | 48.642 | 5.604 | 0.022 | 0.229 | |
Fluvoxamine | 1.786 | 38.425 | 5.264 | 0.012 | 0.165 | |
Dicyclomine | 1.937 | 34.795 | 5.121 | 0.012 | 0.165 | |
Chenodeoxycholic acid | 2.175 | 23.294 | 4.542 | 0.012 | 0.195 | |
Sotalol | 2.096 | 21.958 | 4.457 | 0.012 | 0.195 | |
N(6)-Methyllysine | 2.200 | 18.581 | 4.216 | 0.012 | 0.165 | |
Pseudouridine | 1.355 | 17.791 | 4.153 | 0.022 | 0.229 | |
HB-2 vs. FG | Myclobutanil | 1.673 | 10,872,000 | 23.374 | 0.007 | 0.134 |
3-Hydroxyflavone | 1.743 | 70.949 | 6.149 | 0.012 | 0.150 | |
4-Hydroxyproline | 1.902 | 35.697 | 5.158 | 0.012 | 0.134 | |
4-Hydroxyestradiol | 1.068 | 27.270 | 4.769 | 0.012 | 0.134 | |
Hydrogen phosphate | 2.084 | 20.279 | 4.342 | 0.012 | 0.134 | |
LY 294002 | 1.332 | 13.496 | 3.755 | 0.022 | 0.160 | |
3,4-Dihydroxybenzeneacetic acid | 1.374 | 13.489 | 3.754 | 0.037 | 0.212 | |
13S-hydroxyoctadecadienoic acid | 1.783 | 12.782 | 3.676 | 0.012 | 0.134 | |
Isopropylparaben | 1.254 | 12.155 | 3.604 | 0.012 | 0.150 | |
scyllo-Inositol | 1.615 | 10.990 | 3.458 | 0.012 | 0.150 | |
HB-3 vs. FG | Deoxycholic acid | 1.299 | 2,480,000,000 | 31.207 | 0.007 | 0.162 |
Myclobutanil | 1.880 | 666,500 | 19.346 | 0.007 | 0.109 | |
3,4-Dihydroxybenzeneacetic acid | 1.697 | 262.320 | 8.035 | 0.012 | 0.162 | |
2-Phenylacetamide | 1.945 | 112.430 | 6.813 | 0.012 | 0.162 | |
Lipoxin B4 | 1.841 | 68.537 | 6.099 | 0.012 | 0.162 | |
N1,N8-Bis(4-coumaroyl)spermidine | 1.713 | 43.511 | 5.443 | 0.012 | 0.109 | |
Homogentisate | 1.937 | 41.340 | 5.370 | 0.012 | 0.162 | |
5-Dehydroavenasterol | 1.598 | 28.466 | 4.831 | 0.012 | 0.109 | |
5-KETE | 2.091 | 26.182 | 4.711 | 0.012 | 0.162 | |
11-Dehydro-thromboxane B2 | 2.225 | 22.065 | 4.464 | 0.012 | 0.162 |
Groups | Name | Total | Hits | Impact | Compounds |
---|---|---|---|---|---|
NCG vs. FG | Arachidonic acid metabolism | 75 | 15 | 0.13613 | C00427; C00584; C05950; C05961; C05964; C06315; C14717; C14732; C14748; C14749; C14773; C14774; C14775; C14794; C14810 |
ABC transporters | 138 | 13 | 0.094203 | C00121; C00181; C00255; C00315; C00330; C00378; C00492; C00719; C00881; C01279; C01762; C03557; C05512 | |
Steroid hormone biosynthesis | 99 | 11 | 0.1342 | C00187; C00468; C00674; C00762; C03681; C03772; C05299; C05490; C05497; C05501; C13713 | |
Arginine and proline metabolism | 78 | 9 | 0.11029 | C00315; C00334; C00431; C02565; C03440; C03564; C03771; C04498; C10497 | |
Tryptophan metabolism | 83 | 8 | 0.12387 | C00954; C00978; C01717; C02693; C02937; C05635; C08313; C10164 | |
Serotonergic synapse | 42 | 7 | 0.12903 | C00427; C00584; C05635; C05964; C14773; C14774; C14775 | |
Glycine, serine and threonine metabolism | 50 | 7 | 0.13665 | C00097; C00109; C00258; C00263; C00719; C01005; C06231 | |
Purine metabolism | 95 | 7 | 0.1016 | C00147; C00330; C00385; C00802; C01762; C04051; C05512 | |
Cysteine and methionine metabolism | 63 | 6 | 0.18538 | C00097; C00109; C00263; C00606; C01005; C03145 | |
Caffeine metabolism | 22 | 5 | 0.20588 | C00385; C01762; C07130; C16361; C16362 | |
HBG vs. FG | ABC transporters | 138 | 11 | 0.07971 | C00137; C00159; C00185; C00212; C00245; C00492; C00719; C01083; C01762; C01835; C03619 |
Galactose metabolism | 46 | 6 | 0.055556 | C00137; C00159; C00492; C01613; C01697; C05399 | |
Steroid hormone biosynthesis | 99 | 5 | 0.038961 | C00674; C02140; C02538; C05497; C18040 | |
Phenylalanine metabolism | 60 | 4 | 0.071429 | C00042; C00601; C00642; C11457 | |
Pyrimidine metabolism | 65 | 4 | 0.092079 | C00106; C00337; C02170; C21028 | |
Biosynthesis of unsaturated fatty acids | 74 | 4 | 0.052083 | C06427; C08323; C16525; C16526 | |
Bile secretion | 97 | 4 | 0.036697 | C00504; C02538; C04483; C05466 | |
Caffeine metabolism | 22 | 3 | 0.11765 | C00385; C01762; C16356 | |
cAMP signaling pathway | 25 | 3 | 0.11111 | C00042; C00212; C01089 | |
Linoleic acid metabolism | 28 | 3 | 0.078947 | C14825; C14828; C14829 | |
HB-1 vs. FG | Arachidonic acid metabolism | 75 | 14 | 0.29319 | C00219; C00427; C05951; C05957; C05964; C06315; C14717; C14732; C14748; C14749; C14774; C14794; C14807; C14810 |
ABC transporters | 138 | 9 | 0.065217 | C00245; C00255; C00299; C00315; C00378; C00719; C00881; C01279; C05512 | |
Serotonergic synapse | 42 | 6 | 0.22581 | C00219; C00427; C05635; C05957; C05964; C14774 | |
Bile secretion | 97 | 6 | 0.055046 | C00315; C00695; C02528; C04483; C05122; C05466 | |
Primary bile acid biosynthesis | 47 | 5 | 0.15122 | C00245; C00695; C02528; C05122; C05466 | |
Neuroactive ligand-receptor interaction | 52 | 5 | 0.096154 | C00245; C00388; C00788; C05951; C13856 | |
Tryptophan metabolism | 83 | 5 | 0.10574 | C00978; C01717; C05635; C05831; C10164 | |
Taurine and hypotaurine metabolism | 22 | 4 | 0.26471 | C00227; C00245; C05122; C05844 | |
Lysine degradation | 50 | 4 | 0.071429 | C00431; C00449; C04020; C05161 | |
Steroid biosynthesis | 58 | 4 | 0.067164 | C01189; C01789; C05441; C05442 | |
HB-2 vs.HB-2 vs.FG | ABC transporters | 138 | 14 | 0.10145 | C00009; C00059; C00064; C00121; C00123; C00135; C00140; C00243; C00299; C00315; C00719; C01157; C01762; C05349 |
Tyrosine metabolism | 78 | 11 | 0.2 | C00042; C00146; C00355; C01161; C01384; C03765; C04043; C05576; C05580; C05582; C06199 | |
Tryptophan metabolism | 83 | 10 | 0.20242 | C00108; C00632; C00780; C00955; C01598; C02693; C05643; C05831; C08313; C10164 | |
Nicotinate and nicotinamide metabolism | 55 | 7 | 0.28837 | C00042; C00153; C00253; C01384; C03150; C05380; C15987 | |
Steroid hormone biosynthesis | 99 | 7 | 0.056277 | C00523; C02140; C05301; C05471; C05497; C05501; C18040 | |
Central carbon metabolism in cancer | 37 | 6 | 0.13208 | C00042; C00064; C00123; C00135; C00152; C00158 | |
Protein digestion and absorption | 47 | 6 | 0.12766 | C00064; C00123; C00135; C00146; C00152; C18319 | |
Arachidonic acid metabolism | 75 | 6 | 0.04712 | C00639; C00696; C04853; C05957; C06315; C14717 | |
Arginine and proline metabolism | 78 | 6 | 0.061275 | C00315; C00431; C01157; C02565; C03296; C03771 | |
Alanine, aspartate and glutamate metabolism | 28 | 5 | 0.085227 | C00042; C00064; C00152; C00158; C12270 | |
HB-3 vs.FG | Arachidonic acid metabolism | 75 | 12 | 0.10471 | C00584; C02165; C05949; C05952; C05961; C05964; C06315; C14732; C14748; C14769; C14774; C14775 |
ABC transporters | 138 | 11 | 0.07971 | C00009; C00059; C00140; C00212; C00315; C00492; C00881; C01157; C01279; C01762; C05349 | |
Tyrosine metabolism | 78 | 10 | 0.084 | C00146; C00232; C00544; C00642; C01161; C01384; C03765; C05594; C06199; C10447 | |
Steroid hormone biosynthesis | 99 | 9 | 0.13853 | C00187; C00523; C00535; C01176; C02140; C05138; C05301; C05471; C05490 | |
Neuroactive ligand-receptor interaction | 52 | 7 | 0.13462 | C00212; C00388; C00584; C01516; C01598; C02165; C05952 | |
Steroid biosynthesis | 58 | 7 | 0.14179 | C00187; C01189; C01673; C01789; C05441; C15783; C15808 | |
Arginine and proline metabolism | 78 | 7 | 0.07598 | C00315; C00431; C01157; C02565; C02946; C03296; C03564 | |
Tryptophan metabolism | 83 | 7 | 0.081571 | C00632; C00954; C01598; C02693; C05643; C05831; C10164 | |
Ovarian steroidogenesis | 24 | 6 | 0.27273 | C00187; C00535; C01176; C05138; C05301; C14769 | |
Serotonergic synapse | 42 | 6 | 0.096774 | C00584; C02165; C05964; C14769; C14774; C14775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, L. Modified Highland Barley Regulates Lipid Metabolism and Liver Injury in High Fat and Cholesterol Diet ICR Mice. Foods 2022, 11, 4067. https://doi.org/10.3390/foods11244067
Zhou J, Wu L. Modified Highland Barley Regulates Lipid Metabolism and Liver Injury in High Fat and Cholesterol Diet ICR Mice. Foods. 2022; 11(24):4067. https://doi.org/10.3390/foods11244067
Chicago/Turabian StyleZhou, Jinfeng, and Leiyan Wu. 2022. "Modified Highland Barley Regulates Lipid Metabolism and Liver Injury in High Fat and Cholesterol Diet ICR Mice" Foods 11, no. 24: 4067. https://doi.org/10.3390/foods11244067
APA StyleZhou, J., & Wu, L. (2022). Modified Highland Barley Regulates Lipid Metabolism and Liver Injury in High Fat and Cholesterol Diet ICR Mice. Foods, 11(24), 4067. https://doi.org/10.3390/foods11244067