Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid, Strains, Material, and Reagent
2.2. The Design of Mutations
2.3. Site-Directed Mutagenesis
2.4. Protein Expression and Purification
2.5. Determination of Melting Temperatures
2.6. Measurement of Disulfide Bond Numbers
2.7. Enzymatic Characterization of the WT and M5D Mutant
2.8. MD Simulations of the WT and M5D Mutant
2.9. Immobilization of the WT and M5D Mutant
2.10. The Synthesis of DAGs with Immobilized WT and M5D Mutant
2.11. Reusability Study of Immobilized WT and M5D Mutant
2.12. Statistical Analysis
3. Results and Discussion
3.1. Screening and Analyzing Diverse Mechanisms of Stabilizing Mutations
3.2. The Combination of Stabilizing Mutations
3.3. MD Simulations
3.4. The Synthesis of DAGs with the Immobilized M5D Mutant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, W.J.; Zhang, Z.; Lai, O.M.; Tan, C.P.; Wang, Y. Diacylglycerol in food industry: Synthesis methods, functionalities, health benefits, potential risks and drawbacks. Trends Food Sci. Technol. 2020, 97, 114–125. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Tang, T.K.; Phuah, E.T.; Tan, C.P.; Wang, Y.; Li, Y.; Cheong, L.Z.; Lai, O.M. Production, safety, health effects and applications of diacylglycerol functional oil in food systems: A review. Crit. Rev. Food Sci. 2020, 60, 2509–2525. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Tokimitsu, I. Digestion and absorption of diacylglycerol. In Diacylglycerol Oil; Katsuragi, Y., Yasukawa, T., Matsuo, N., Flickinger, B.D., Toimitsu, I., Matlok, M.G., Eds.; American Oil Chemists’ Society: Champaign, IL, USA, 2004; pp. 30–45. [Google Scholar]
- Shemesh, T.; Luini, A.; Malhotra, V.; Burger, K.N.; Kozlov, M.M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: A theoretical model. Biophys. J. 2003, 85, 3813–3827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, S.K.; Tan, C.P.; Long, K.; Yusoff, M.; Affandi, S.; Lai, O.M. Diacylglycerol oil—Properties, processes and products: A review. Food Bioprocess Technol. 2008, 1, 223–233. [Google Scholar] [CrossRef]
- Matos, L.M.; Leal, I.C.; de Souza, R.O. Diacylglycerol synthesis by lipase-catalyzed partial hydrolysis of palm oil under microwave irradiation and continuous flow conditions. J. Mol. Catal. B-Enzym. 2011, 72, 36–39. [Google Scholar] [CrossRef]
- Lan, D.; Popowicz, G.M.; Pavlidis, I.V.; Zhou, P.; Bornscheuer, U.T.; Wang, Y. Conversion of a mono-and diacylglycerol lipase into a triacylglycerol lipase by protein engineering. ChemBioChem 2015, 16, 1431–1434. [Google Scholar] [CrossRef]
- Liu, N.; Li, D.; Wang, W.; Hollmann, F.; Xu, L.; Ma, Y.; Yang, B.; Bai, W.; Sun, X.; Wang, Y. Production and immobilization of lipase PCL and its application in synthesis of α-linolenic acid-rich diacylglycerol. J. Food Biochem. 2018, 42, e12574. [Google Scholar] [CrossRef] [Green Version]
- Lan, D.; Zhao, G.; Holzmann, N.; Yuan, S.; Wang, J.; Wang, Y. Structure-guided rational design of a mono-and diacylglycerol lipase from Aspergillus oryzae: A single residue mutant increases the hydrolysis ability. J. Agric. Food Chem. 2021, 69, 5344–5352. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Qin, X.; Lan, D.; Yang, B.; Wang, Y. Immobilization of lipase SMG1 and its application in synthesis of partial glycerides. Eur. J. Lipid Sci. Technol. 2014, 116, 1063–1069. [Google Scholar] [CrossRef]
- Meng, Q.; Capra, N.; Palacio, C.M.; Lanfranchi, E.; Otzen, M.; Van Schie, L.Z.; Rozeboom, H.J.; Thunnissen, A.M.W.; Wijma, H.J.; Janssen, D.B. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal. 2020, 10, 2915–2928. [Google Scholar] [CrossRef]
- Arabnejad, H.; Dal Lago, M.; Jekel, P.A.; Floor, R.J.; Thunnissen, A.M.W.; Terwisscha van Scheltinga, A.C.; Wijma, H.J.; Janssen, D.B. A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Eng. Des. Sel. 2017, 30, 175–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Wijma, H.J.; Song, L.; Rozeboom, H.J.; Poloni, C.; Tian, Y.; Arif, M.I.; Nuijens, T.; Quaedflieg, P.J.; Szymanski, W.; et al. Versatile peptide C-terminal functionalization via a computationally engineered peptide amidase. ACS Catal. 2016, 6, 5405–5414. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Romero, I.; Ariza, A.; Wilson, K.S.; Skjøt, M.; Vind, J.; De Maria, L.; Skov, L.K.; Sanchez-Ruiz, J.M. Mechanism of protein kinetic stabilization by engineered disulfide crosslinks. PLoS ONE 2013, 8, e70013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, D.B.; Dombkowski, A.A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform. 2013, 14, 346. [Google Scholar] [CrossRef] [Green Version]
- Hazes, B.; Dijkstra, B.W. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. Des. Sel. 1988, 2, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Pellequer, J.L.; Chen, S.W.W. Multi-template approach to modeling engineered disulfide bonds. Proteins 2006, 65, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Sowdhamini, R.; Srinivasan, N.; Shoichet, B.; Santi, D.V.; Ramakrishnan, C.; Balaram, P. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng. Des. Sel. 1989, 3, 95–103. [Google Scholar] [CrossRef]
- Li, G.; Fang, X.; Su, F.; Chen, Y.; Xu, L.; Yan, Y. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds. Appl. Environ. Microb. 2018, 84, e02129-17. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wu, W.; Deng, Z.; Zhang, S.; Guan, W. Improved thermostability of lipase Lip2 from Yarrowia lipolytica through disulfide bond design for preparation of medium-long-medium structured lipids. LWT 2022, 166, 113786. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Luo, X.; Li, J.; Reed, S.A.; Xiao, H.; Young, T.S.; Schultz, P.G. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 2016, 113, 5910–5915. [Google Scholar] [CrossRef]
- Xu, T.; Liu, L.; Hou, S.; Xu, J.; Yang, B.; Wang, Y.; Liu, J. Crystal structure of a mono-and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. J. Struct. Biol. 2012, 178, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Xu, Y.; Wang, W.; Qin, X.; Ning, Z.; Wang, Y.; Yang, B. Production of diacylglycerol-mixture of regioisomers with high purity by two-step enzymatic reactions combined with molecular distillation. J. Am. Oil Chem. Soc. 2014, 91, 251–259. [Google Scholar] [CrossRef]
- Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol. 2002, 320, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, E.H.; Leaver-Fay, A.; Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 2011, 79, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Xiong, P.; Chen, Q.; Liu, H. Computational protein design under a given backbone structure with the ABACUS statistical energy function. In Computational Protein Design; Humana Press: New York, NY, USA, 2017; pp. 217–226. [Google Scholar]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Simpson, R.J. Proteins and Proteomics: A Laboratory Manual; CSHL Press: New York, NY, USA, 2003. [Google Scholar]
- Wang, W.F.; Li, T.; Qin, X.L.; Ning, Z.X.; Yang, B.; Wang, Y.H. Production of lipase SMG1 and its application in synthesizing diacylglyecrol. J. Mol. Catal. B Enzym. 2012, 77, 87–91. [Google Scholar] [CrossRef]
- Long, D.; Li, D.W.; Walter, K.F.; Griesinger, C.; Brüschweiler, R. Toward a predictive understanding of slow methyl group dynamics in proteins. Biophys. J. 2011, 101, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, W.; Li, X.; Durrani, R.; Yang, B.; Wang, Y. Preparation of highly pure n-3 PUFA-enriched triacylglycerols by two-step enzymatic reactions combined with molecular Distillation. J. Am. Oil Chem. Soc. 2017, 94, 225–233. [Google Scholar] [CrossRef]
- Wang, K.; Luo, H.; Tian, J.; Turunen, O.; Huang, H.; Shi, P.; Hua, H.; Wang, C.; Wang, S.; Yao, B. Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl. Environ. Microb. 2014, 80, 2158–2165. [Google Scholar] [CrossRef] [Green Version]
- Zondlo, N.J. Aromatic–proline interactions: Electronically tunable CH/π interactions. Acc. Chem. Res. 2013, 46, 1039–1049. [Google Scholar] [CrossRef]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; et al. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombkowski, A.A.; Sultana, K.Z.; Craig, D.B. Protein disulfide engineering. FEBS Lett. 2014, 588, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Lonhienne, T.; Gerday, C.; Feller, G. Psychrophilic enzymes: Revisiting the thermodynamic parameters of activation may explain local flexibility. BBA Protein Struct. Mol. 2000, 1543, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Torres, R.; Fernández-Lorente, G.; Ortiz, C.; Fuentes, M.; Hidalgo, A.; López-Gallego, F.; Abian, O.; Palomo, J.M.; Betancor, L.; et al. Epoxy-amino groups: A new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 2003, 4, 772–777. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Huang, H.; Li, G.; Wang, Y. Enzymatic production of highly unsaturated monoacyglycerols and diacylglycerols and their emulsifying effects on the storage stability of a palm oil based shortening system. J. Am. Oil Chem. Soc. 2017, 94, 1175–1188. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Wang, W.; Durrani, R.; Yang, B.; Wang, Y. Immobilization of SMG1 lipase onto a novel epoxy resin: Characterization and its application in synthesis of partial glycerides. J. Mol. Catal. B Enzym. 2016, 133, 154–160. [Google Scholar] [CrossRef]
- Watanabe, T.; Shimizu, M.; Sugiura, M.; Sato, M.; Kohori, J.; Yamada, N.; Nakanishi, K. Optimization of reaction conditions for the production of DAG using immobilized 1,3-regiospecific lipase Lipozyme RM IM. J. Am. Oil Chem. Soc. 2003, 80, 7. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Zhu, Q.; Song, J.; Li, S.; Liu, X. Improved performance of immobilized laccase on Fe3O4@ C-Cu2+ nanoparticles and its application for biodegradation of dyes. J. Hazard. Mater. 2020, 399, 123088. [Google Scholar] [CrossRef]
Mutation | Origin | Predicted Improvement | ΔTm (°C) a |
---|---|---|---|
Q34P | Rosetta_ddg, ABACUS | Reduction in the conformational entropy | +2.5 |
A37P | FoldX, Rosetta_ddg | Reduction in the conformational entropy | +1.0 |
Y40W | Rosetta_ddg | Hydrophobic interactions | +1.0 |
M176I | ABACUS | Buried hydrophobic interactions | +1.0 |
M176V | ABACUS | Buried hydrophobic interactions | +1.0 |
G177A | Rosetta_ddg | Buried hydrophobic interactions + unfolding entropy | +2.0 |
T195L | ABACUS | Buried hydrophobic interactions | +2.0 |
T195I | ABACUS | Buried hydrophobic interactions | +1.5 |
T195F | ABACUS | Buried hydrophobic interactions + Filling the buried cavity | +2.0 |
R274P | ABACUS | Unfolding entropy | +1.0 |
D279K | Rosetta_ddg | Optimized surface charge + Decreased repulsive electrostatic interactions | +1.5 |
M294R | ABACUS | New salt-bridge interaction with D279 | +1.0 |
Mutant | ∆Tm (°C) a |
---|---|
G28C-P206C | +9.0 |
M59C-T74C | +1.5 |
G67C-V301C | +1.5 |
S69C-S89C | +1.0 |
I249C-A257C | +1.5 |
H287C-H304C | +1.0 |
Enzyme | Tm (°C) | Topt (°C) | t1/2 (min) a | Specific Activity (U/mg) b |
---|---|---|---|---|
WT | 50.0 | 25 | 1.2 ± 0.2 | 87.1 ± 1.1 |
M5D | 64.0 | 30 | 1386.3 ± 53.3 | 347.8 ± 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, Y.; Cui, R.; Wang, F.; Lan, D. Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols. Foods 2022, 11, 4069. https://doi.org/10.3390/foods11244069
Li L, Wang Y, Cui R, Wang F, Lan D. Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols. Foods. 2022; 11(24):4069. https://doi.org/10.3390/foods11244069
Chicago/Turabian StyleLi, Lilang, Yonghua Wang, Ruiguo Cui, Fanghua Wang, and Dongming Lan. 2022. "Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols" Foods 11, no. 24: 4069. https://doi.org/10.3390/foods11244069
APA StyleLi, L., Wang, Y., Cui, R., Wang, F., & Lan, D. (2022). Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols. Foods, 11(24), 4069. https://doi.org/10.3390/foods11244069