An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods
Abstract
:1. Introduction
2. Sensory Descriptive Tests
3. Sensory Discriminative Tests
4. Sensory Hedonic Tests
5. Temporal Tests
6. Instrumental Sensory Devices and Immersive Techniques
7. Sensory Data Treatment
8. Comparison of Methodologies
9. Topics for Future Research
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, L. History of Sensory Panels. In Sensory Panel Management; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–6. [Google Scholar]
- Cover, S. A New Subjective Method of Testing Tenderness in Meat—The Paired-Eating Method. J. Food Sci. 1936, 1, 287–295. [Google Scholar] [CrossRef]
- Cover, S. Some Modifications of the Paired-Eating Method in Meat Cookery Research. Food Res. 1940, 5, 379–394. [Google Scholar] [CrossRef]
- Barbe, J.C.; Garbay, J.; Tempère, S. The Sensory Space of Wines: From Concept to Evaluation and Description. A Review. Foods 2021, 10, 1424. [Google Scholar] [CrossRef]
- Kemp, S.E.; Hort, J.; Hollowood, T. Descriptive Analysis in Sensory Evaluation, 1st ed.; Kemp, S.E., Hort, J., Hollowood, T., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
- Meilgaard, M.; Vance Civille, G.; Thomas Carr, B. Sensory Evaluation Techniques, 3rd ed.; Meilgaard, M.C., Civille, G.V., Carr, B.T., Eds.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Holway, A.H.; Hurvich, L.M. Differential Gustatory Sensitivity to Salt. Am. J. Psychol. 1937, 49, 37–48. [Google Scholar] [CrossRef]
- Dijksterhuis, G.B.; Piggott, J.R. Dynamic Methods of Sensory Analysis. Trends Food Sci. Technol. 2000, 11, 284–290. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Descriptive Analysis, 2nd ed.; Lawless, H.T., Heymann, H., Eds.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Crocker, E.C.; Platt, W. Food Flavors—A Critical Review of Recent Literature. Food Sci. 1937, 2, 183–196. [Google Scholar] [CrossRef]
- Meiselman, H.L. The Future in Sensory/Consumer Research: Evolving to a Better Science. Food Qual. Prefer. 2013, 27, 208–214. [Google Scholar] [CrossRef]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Introduction to Sensory Evaluation. In Sensory Evaluation Practices; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–21. [Google Scholar]
- Kalschne, D.L.; Biasuz, T.; de Conti, A.J.; Viegas, M.C.; Corso, M.P.; de Toledo Benassi, M. Sensory Characterization and Acceptance of Coffee Brews of C. Arabica and C. Canephora Blended with Steamed Defective Coffee. Food Res. Int. 2019, 124, 234–238. [Google Scholar] [CrossRef]
- Bemfeito, C.M.; Guimarães, A.S.; de Oliveira, A.L.; Andrade, B.F.; de Paula, L.M.A.F.; Pimenta, C.J. Do Consumers Perceive Sensory Differences by Knowing Information about Coffee Quality? LWT-Food Sci. Technol. 2021, 138, 110778. [Google Scholar] [CrossRef]
- Chapko, M.J.; Seo, H.S. Characterizing Product Temperature-Dependent Sensory Perception of Brewed Coffee Beverages: Descriptive Sensory Analysis. Food Res. Int. 2019, 121, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lee, J. Emotions Elicited While Drinking Coffee: A Cross-Cultural Comparison between Korean and Chinese Consumers. Food Qual. Prefer. 2019, 76, 160–168. [Google Scholar] [CrossRef]
- Da Silva, T.M.; Marinoni, D.T.; Peano, C.; Giuggioli, N.R. A New Sensory Approach Combined with a Text-Mining Tool to Create a Sensory Lexicon and Profile of Monovarietal Apple Juices. Foods 2019, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, S.R.; Beresford, M.K.; Lo, K.R.; Hunter, D.C.; Chheang, S.L. What Does It Mean to Check-All-That-Apply? Four Case Studies with Beverages. Food Qual. Prefer. 2020, 80, 103794. [Google Scholar] [CrossRef]
- Pierguidi, L.; Spinelli, S.; Monteleone, E.; Dinnella, C. The Combined Use of Temporal Dominance of Sensations (TDS) and Discrete Time-Intensity (DTI) to Describe the Dynamic Sensory Profile of Alcoholic Cocktails. Food Qual. Prefer. 2021, 93, 104281. [Google Scholar] [CrossRef]
- Silva, A.P.; Jager, G.; van Bommel, R.; van Zyl, H.; Voss, H.P.; Hogg, T.; Pintado, M.; de Graaf, C. Functional or Emotional? How Dutch and Portuguese Conceptualise Beer, Wine, and Non-Alcoholic Beer Consumption. Food Qual. Prefer. 2016, 49, 54–65. [Google Scholar] [CrossRef]
- Mora, M.; Giussani, B.; Pagliarini, E.; Chaya, C. Improvement of an Emotional Lexicon for the Evaluation of Beers. Food Qual. Prefer. 2019, 71, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Betancur, M.I.; Motoki, K.; Spence, C.; Velasco, C. Factors Influencing the Choice of Beer: A Review. Food Res. Int. 2020, 137, 109367. [Google Scholar] [CrossRef]
- Muggah, E.M.; McSweeney, M.B. Using Preferred Attribute Elicitation to Determine How Males and Females Evaluate Beer. J. Food Sci. 2017, 82, 1916–1923. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Odile, A. Consumers’ Categorization of Food Ingredients: Do Consumers Perceive Them as ‘Clean Label’ Producers Expect? An Exploration with Projective Mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Teillet, E.; Schlich, P.; Urbano, C.; Cordelle, S.; Guichard, E. Sensory Methodologies and the Taste of Water. Food Qual. Prefer. 2010, 21, 967–976. [Google Scholar] [CrossRef]
- Carneiro, R.C.V.; Wang, C.; Yu, J.; O’Keefe, S.F.; Duncan, S.E.; Gallagher, C.D.; Burlingame, G.A.; Dietrich, A.M. Check-If-Apply Approach for Consumers and Utilities to Communicate about Drinking Water Aesthetics Quality. Sci. Total Environ. 2021, 753, 141776. [Google Scholar] [CrossRef]
- Vilela, A.; Bacelar, E.; Pinto, T.; Anjos, R.; Correia, E.; Gonçalves, B.; Cosme, F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019, 8, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Data on Sensory Profile of Green Spanish-Style Table Olives Studied by Quantitative Descriptive Analysis. Data Brief 2018, 20, 1471–1488. [Google Scholar] [CrossRef]
- Gulzar, N.; Sameen, A.; Aadil, R.M.; Sahar, A.; Rafiq, S.; Huma, N.; Nadeem, M.; Arshad, R.; Saleem, I.M. Descriptive Sensory Analysis of Pizza Cheese Made from Mozzarella and Semi-Ripened Cheddar Cheese under Microwave and Conventional Cooking. Foods 2020, 9, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, R.; Khamrui, K.; Khetra, Y.; Malhotra, R. Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Characterization of Indian Milk Product Cham-Cham. J. Food Sci. Technol. 2016, 53, 1238–1246. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.L.; Du, X.; Wallace, R.W. Investigating Sensory Properties of Seven Watermelon Varieties and Factors Impacting Refreshing Perception Using Quantitative Descriptive Analysis. Food Res. Int. 2020, 138, 109681. [Google Scholar] [CrossRef]
- Villière, A.; Symoneaux, R.; Roche, A.; Eslami, A.; Perrot, N.; le Fur, Y.; Prost, C.; Courcoux, P.; Vigneau, E.; Thomas-Danguin, T.; et al. Comprehensive Sensory and Chemical Data on the Flavor of 16 Red Wines from Two Varieties: Sensory Descriptive Analysis, HS-SPME-GC-MS Volatile Compounds Quantitative Analysis, and Odor-Active Compounds Identification by HS-SPME-GC-MS-O. Data Brief 2019, 24, 103725. [Google Scholar] [CrossRef]
- Guo, H.; Yang, F.; Gao, P.; Yu, D.; Xu, Y.; Jianga, Q.; Yu, P.; Xia, W. Comparison of Sensory Evaluation for Chinese Mitten Crab (Eriocheir Sinensis) by Big Data Mining and Trained Sensory Panel. Food Chem. 2021, 356, 129698. [Google Scholar] [CrossRef]
- Punter, P.H. Free Choice Profiling. In Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, US, 2018; pp. 493–511. [Google Scholar]
- Liu, J.; Bredie, W.L.P.; Sherman, E.; Harbertson, J.F.; Heymann, H. Comparison of Rapid Descriptive Sensory Methodologies: Free-Choice Profiling, Flash Profile, and Modified Flash Profile. Food Res. Int. 2018, 106, 892–900. [Google Scholar] [CrossRef]
- Vit, P.; Pedro, S.R.M.; Vergara, C.; Deliza, R. Ecuadorian Honey Types Described by Kichwa Community in Rio Chico, Pastaza Province, Ecuador Using Free-Choice Profiling. Rev. Bras. Farmacogn. 2017, 27, 384–387. [Google Scholar] [CrossRef]
- Lorido, L.; Estévez, M.; Ventanas, S. Fast and Dynamic Descriptive Techniques (Flash Profile, Time-Intensity and Temporal Dominance of Sensations) for Sensory Characterization of Dry-Cured Loins. Meat Sci. 2018, 145, 154–162. [Google Scholar] [CrossRef]
- Liu, J.; Grønbeck, M.S.; di Monaco, R.; Giacalone, D.; Bredie, W.L.P. Performance of Flash Profile and Napping with and without Training for Describing Small Sensory Differences in a Model Wine. Food Qual. Prefer. 2016, 48, 41–49. [Google Scholar] [CrossRef]
- Miele, N.A.; Cabisidan, E.K.; Blaiotta, G.; Leone, S.; Masi, P.; di Monaco, R.; Cavella, S. Rheological and Sensory Performance of a Protein-Based Sweetener (MNEI), Sucrose, and Aspartame in Yogurt. J. Dairy Sci. 2017, 100, 9539–9550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, L.; Jantzi, H.; Smith, A.; McSweeney, M.B. How Do Consumers Describe Cool Climate Wines Using Projective Mapping and Ultra-Flash Profile? Food Qual. Prefer. 2020, 86, 104026. [Google Scholar] [CrossRef]
- Wilson, C.; Brand, J.; Toit, W.; Buica, A. Matrix Effects Influencing the Perception of 3-Mercaptohexan-1-Ol (3MH) and 3-Mercaptohexyl Acetate (3MHA) in Different Chenin Blanc Wines by Projective Mapping (PM) with Ultra Flash Profiling (UFP) Intensity Ratings. Food Res. Int. 2019, 121, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.; Hayward, L.; Richardson, C.D.; McSweeney, M.B. Use of Different Panellists (Experienced, Trained, Consumers and Experts) and the Projective Mapping Task to Evaluate White Wine. Food Qual. Prefer. 2020, 83, 103900. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective Mapping: A Tool for Sensory Analysis and Consumer Research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Morin, M.; Hayward, L.; McSweeney, M.B. Use of Experienced Panelists and the Projective Mapping Task in Comparison to Trained Panelists and Naïve Consumers. J. Sens. Stud. 2018, 33, e12463. [Google Scholar] [CrossRef]
- Berget, I.; Varela, P.; Næs, T. Segmentation in Projective Mapping. Food Qual. Prefer. 2019, 71, 8–20. [Google Scholar] [CrossRef]
- Orden, D.; Fernández-Fernández, E.; Tejedor-Romero, M.; Martínez-Moraian, A. Geometric and Statistical Techniques for Projective Mapping of Chocolate Chip Cookies with a Large Number of Consumers. Food Qual. Prefer. 2021, 87, 104068. [Google Scholar] [CrossRef]
- Moelich, E.; Muller, M.; Joubert, E.; Næs, T.; Kidd, M. Validation of Projective Mapping as Potential Sensory Screening Tool for Application by the Honeybush Herbal Tea Industry. Food Res. Int. 2017, 99, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Varela, P.; Antúnez, L.; Berget, I.; Oliveira, D.; Christensen, K.; Vidal, L.; Naes, T.; Ares, G. Influence of Consumers’ Cognitive Style on Results from Projective Mapping. Food Res. Int. 2017, 99, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Brand, J.; Toit, W.; Buica, A. Polarized Projective Mapping as a Rapid Sensory Analysis Method Applied to South African Chenin Blanc Wines. LWT—Food Sci. Technol. 2018, 92, 140–146. [Google Scholar] [CrossRef]
- Arellano-Covarrubias, A.; Varela, P.; Escalona-Buendía, H.B.; Gómez-Corona, C. A Food and Beverage Map: Exploring Food-Beverage Pairing through Projective Mapping. Food Qual. Prefer. 2022, 96, 104431. [Google Scholar] [CrossRef]
- Varela, P.; Berget, I.; Hersleth, M.; Carlehög, M.; Asioli, D.; Næs, T. Projective Mapping Based on Choice or Preference: An Affective Approach to Projective Mapping. Food Res. Int. 2017, 100, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Kim, K.; Chung, S. Utilizing Hedonic Frame for Projective Mapping: A Case Study with Korean Fermented Soybean Paste Soup. Food Qual. Prefer. 2019, 71, 279–285. [Google Scholar] [CrossRef]
- Ares, G.; de Saldamando, L.; Vidal, L.; Antúnez, L.; Giménez, A.; Varela, P. Polarized Projective Mapping: Comparison with Polarized Sensory Positioning Approaches. Food Qual. Prefer. 2013, 28, 510–518. [Google Scholar] [CrossRef]
- Vilela, A. The Importance of Yeasts on Fermentation Quality and Human Health-Promoting Compounds. Fermentation 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Alexi, N.; Byrne, D.V.; Nanou, E.; Grigorakis, K. Investigation of Sensory Profiles and Hedonic Drivers of Emerging Aquaculture Fish Species. J. Sci. Food Agric. 2018, 98, 1179–1187. [Google Scholar] [CrossRef]
- Alexi, N.; Nanou, E.; Lazo, O.; Guerrero, L.; Grigorakis, K.; Byrne, D.V. Check-All-That-Apply (CATA) with Semi-Trained Assessors: Sensory Profiles Closer to Descriptive Analysis or Consumer Elicited Data? Food Qual. Prefer. 2018, 64, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, S.R.; Chheang, S.L.; Jin, D.; Roigard, C.M.; Ares, G. Check-All-That-Apply (CATA) Questions: Sensory Term Citation Frequency Reflects Rated Term Intensity and Applicability. Food Qual. Prefer. 2020, 86, 103986. [Google Scholar] [CrossRef]
- Vidal, L.; Antúnez, L.; Ares, G.; Cu, F.; Lee, P.; Le, M.; Jaeger, S.R. Sensory Product Characterisations Based on Check-All-That-Apply Questions: Further Insights on How the Static (CATA) and Dynamic (TCATA) Approaches Perform. Food Res. Int. 2019, 125, 108510. [Google Scholar] [CrossRef] [PubMed]
- Schumaker, M.R.; Diako, C.; Castura, J.C.; Edwards, C.G.; Ross, C.F. Influence of Wine Composition on Consumer Perception and Acceptance of Brettanomyces Metabolites Using Temporal Check-All-That-Apply Methodology. Food Res. Int. 2019, 116, 963–972. [Google Scholar] [CrossRef]
- Mahieu, B.; Visalli, M.; Thomas, A.; Schlich, P. An Investigation of the Stability of Free-Comment and Check-All-That-Apply in Two Consumer Studies on Red Wines and Milk Chocolates. Food Qual. Prefer. 2021, 90, 104159. [Google Scholar] [CrossRef]
- Meynersa, M.; Jaegerb, S.R.; Ares, G. On the Analysis of Rate-All-That-Apply (RATA) Data. Food Qual. Prefer. 2016, 49, 1–10. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Alcaire, F.; Hunter, D.C.; Jin, D.; Castura, J.C. Number of Terms to Use in Temporal Check-All-That-Apply Studies (TCATA and TCATA Fading) for Sensory Product Characterization by Consumers. Food Qual. Prefer. 2018, 64, 154–159. [Google Scholar] [CrossRef]
- Spinelli, S.; Dinnella, C.; Masi, C.; Paolo, G.; Prescott, J. Investigating Preferred Coffee Consumption Contexts Using Open-Ended Questions. Food Qual. Prefer. 2017, 61, 63–73. [Google Scholar] [CrossRef]
- Deneulin, P.; Bavaud, F. Analyses of Open-Ended Questions by Renormalized Associativities and Textual Networks: A Study of Perception of Minerality in Wine. Food Qual. Prefer. 2016, 47, 34–44. [Google Scholar] [CrossRef]
- Silva, R.; Rocha, R.S.; Guimarães, J.T.; Balthazar, C.F.; Scudino, H.; Ramos, G.L.P.A.; Pimentel, T.C.; Silva, M.C.; Henrique, F.; Silva, P.; et al. Dulce de Leche Submitted to Ohmic Heating Treatment: Consumer Sensory Profile Using Preferred Attribute Elicitation (PAE) and Temporal Check-All-That-Apply (TCATA). Food Res. Int. 2020, 134, 109217. [Google Scholar] [CrossRef] [PubMed]
- Himmler, S.; Soekhai, V.; van Exel, J.; Brouwer, W. What Works Better for Preference Elicitation among Older People? Cognitive Burden of Discrete Choice Experiment and Case 2 Best-Worst Scaling in an Online Setting. J. Choice Model. 2021, 38, 100265. [Google Scholar] [CrossRef]
- Campigotto, P.; Teso, S.; Battiti, R.; Passerini, A. Learning Modulo Theories for Constructive Preference Elicitation. Artif. Intell. 2021, 295, 103454. [Google Scholar] [CrossRef]
- Popoola, I.O.; Bruce, H.L.; McMullen, L.M.; Wismer, W.V. Consumer Sensory Comparisons Among Beef, Horse, Elk, and Bison Using Preferred Attributes Elicitation and Check-All-That-Apply Methods. J. Food Sci. 2019, 84, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Antúnez, L.; de Saldamando, L.; Giménez, A. Polarized Sensory Positioning. In Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, US, 2018; pp. 561–577. [Google Scholar]
- Lawless, H.T.; Clatter, S. Consistency of Multidimensional Scaling Models Derived from Odor Sorting. J. Sens. Stud. 1990, 5, 217–230. [Google Scholar] [CrossRef]
- Hamilton, L.M.; Lahne, J. Assessment of Instructions on Panelist Cognitive Framework and Free Sorting Task Results: A Case Study of Cold Brew Coffee. Food Qual. Prefer. 2020, 83, 103889. [Google Scholar] [CrossRef]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Panel and Panelist Performance in the Sensory Evaluation of Black Ripe Olives from Spanish Manzanilla and Hojiblanca Cultivars. Foods 2019, 8, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés-Diéguez, S.; Otero-Cerviño, C.; Rodeiro-Mougán, H.; Feijóo-Mateo, J.A. Quantitative Descriptive Analysis of Traditional Herbal and Coffee Liqueurs Made with Grape Marc Spirit (Orujo). Foods 2020, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Cliceri, D.; Dinnella, C.; Depezay, L.; Morizet, D.; Giboreau, A.; Appleton, K.M.; Hartwell, H.; Monteleone, E. Exploring Salient Dimensions in a Free Sorting Task: A Cross-Country Study within the Elderly Population. Food Qual. Prefer. 2017, 60, 19–30. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Chapter 1.3 - Sensory Evaluation by Quantitative Descriptive Analysis. In Descriptive Sensory Analysis in Practice; Gacula, M., Ed.; Wiley Online Library, 2004. [Google Scholar] [CrossRef]
- Williams, A.A.; Langron, S.P. The Use of Free-Choice Profiling for the Evaluation of Commercial Ports. J. Sci. Food Agric. 1984, 35, 558–568. [Google Scholar] [CrossRef]
- Geer, J. What Do Open-Ended Questions Measure? Public Opin. Q. 1988, 52, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Piqueras-Fiszman, B. Open-Ended Questions in Sensory Testing Practice. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 247–267. ISBN 9781782422587. [Google Scholar]
- Courcoux, P.; Qannari, E.M.; Faye, P. Profiling Technique for Product Development. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 153–185. ISBN 9781782422587. [Google Scholar]
- Cariou, V.; Qannari, E.M. Statistical Treatment of Free Sorting Data by Means of Correspondence and Cluster Analyses. Food Qual. Prefer. 2018, 68, 1–11. [Google Scholar] [CrossRef]
- Delarue, J.; Sieffermann, J.M. Sensory Mapping Using Flash Profile. Comparison with a Conventional Descriptive Method for the Evaluation of the Flavour of Fruit Dairy Products. Food Qual. Prefer. 2004, 15, 383–392. [Google Scholar] [CrossRef]
- Delarue, J. Flash Profile, Its Evolution and Uses in Sensory and Consumer Science. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 121–151. ISBN 9781782422587. [Google Scholar]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a Rating-Based Variant of Check-All-That-Apply Questions: Rate-All-That-Apply (RATA). Food Qual. Prefer. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Pramudya, R.C.; Seo, H. Using Check-All-That-Apply (CATA) Method for Determining Product Temperature-Dependent Sensory-Attribute Variations: A Case Study of Cooked. Food Res. Int. 2018, 105, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.L.; Pen, M.P.; Saxton, A.M.; Luckett, C.R. Comparison of Triangle and Tetrad Discrimination Methodology in an Applied Manner. Food Qual. Prefer. 2018, 68, 105–112. [Google Scholar] [CrossRef]
- Sinkinson, C. Triangle Test. In Discrimination Testing in Sensory Science; Woodhead Publishing: Duxford, UK, 2017; pp. 153–170. ISBN 9780081010099. [Google Scholar]
- Debela, H.; Belay, A. Caffeine, Invertase Enzyme, and Triangle Test Sensory Panel Used to Differentiate Coffea Arabica and Vernonia Amygdalina Honey. Food Control. 2021, 123, 107857. [Google Scholar] [CrossRef]
- Loucks, J.N.; Eggett, D.L.; Dunn, M.L.; Steele, F.M.; Jefferies, L.K. Effect of Monetary Reward and Food Type on Accuracy and Assessment Time of Untrained Sensory Panelists in Triangle Tests. Food Qual. Prefer. 2017, 56, 119–125. [Google Scholar] [CrossRef]
- Sanderson, T. Tetrad Test. In Discrimination Testing in Sensory Science; Elsevier Ltd: Amsterdam, The Netherlands, 2017; pp. 183–195. ISBN 9780081010099. [Google Scholar]
- Purcell, S. Duo-Trio. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier Ltd: Amsterdam, The Netherlands, 2017; pp. 197–207. ISBN 9780081011164. [Google Scholar]
- O’Sullivan, M.G. Discrimination Testing for Reformulated Products. Salt Fat Sugar Reduct. 2020, 9, 215–226. [Google Scholar] [CrossRef]
- Bi, J.; O’Mahony, M.; Lee, H.S. The Performance of the Dual Reference Duo-Trio (DRDT) Method Using a Balanced-Reference Mode. Food Qual. Prefer. 2016, 48, 303–313. [Google Scholar] [CrossRef]
- Jeong, Y.N.; Kang, B.A.; Jeong, M.J.; Song, M.J.; Hautus, M.J.; Lee, H.S. Sensory Discrimination by Consumers of Multiple Stimuli from a Reference: Stimulus Configuration in A-Not AR and Constant-Ref. Duo-Trio Superior to Triangle and Unspecified Tetrad? Food Qual. Prefer. 2016, 47, 10–22. [Google Scholar] [CrossRef]
- Vietoris, V. Dual-Standard Test. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier Ltd: Amsterdam, The Netherlands, 2017; pp. 289–301. ISBN 9780081011164. [Google Scholar]
- Yang, Q.; Ng, M.L. Paired Comparison/Directional Difference Test/2-Alternative Forced Choice (2-AFC) Test, Simple Difference Test/Same-Different Test. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 109–134. ISBN 9780081011164. [Google Scholar]
- Bi, J.; Kuesten, C.; Lee, H.S.; O’Mahony, M. Paired Versions of Various Sensory Discrimination Forced-Choice Methods and the Same-Different Area Theorem. Food Qual. Prefer. 2018, 63, 97–106. [Google Scholar] [CrossRef]
- Bi, J.; Kuesten, C. The Four-Interval, Two-Alternative Forced-Choice (4I2AFC): A Powerful Sensory Discrimination Method to Detect Small, Directional Changes Particularly Suitable for Visual or Manual Evaluations. Food Qual. Prefer. 2019, 73, 202–209. [Google Scholar] [CrossRef]
- Ennis, J.M.; Christensen, R. A Thurstonian Comparison of the Tetrad and Degree of Difference Tests. Food Qual. Prefer. 2015, 40, 263–269. [Google Scholar] [CrossRef]
- Jeong, Y.N.; van Hout, D.; Groeneschild, C.; Lee, H.S. Comparative Categorization Method: Using 2-AFC Strategy in Constant-Reference Duo-Trio for Discrimination of Multiple Stimuli from a Reference. Food Qual. Prefer. 2017, 62, 284–295. [Google Scholar] [CrossRef]
- Munson, W.A.; Gardner, M.B. Standardizing Auditory Tests. J. Acoust. Soc. Am. 1950, 22, 675. [Google Scholar] [CrossRef]
- Greenaway, R.E. ABX Discrimination Task. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–288. ISBN 9780081011164. [Google Scholar]
- De Bouillé, A.G. A-Not-A Test. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 135–151. ISBN 9780081011164. [Google Scholar]
- Linander, C.B.; Bojesen Christensen, R.H.; Cleaver, G.; Brockhoff, P.B. Principal Component Analysis of D-Prime Values from Sensory Discrimination Tests Using Binary Paired Comparisons. Food Qual. Prefer. 2020, 81, 103864. [Google Scholar] [CrossRef] [Green Version]
- Ruark, A.; Vingerhoeds, M.H.; Kremer, S.; Vries, M.A.N.; Piqueras-Fiszman, B. Insights on Older Adults’ Perception of at-Home Sensory-Hedonic Methods: A Case of Ideal Profile Method and CATA with Ideal. Food Qual. Prefer. 2016, 53, 29–38. [Google Scholar] [CrossRef]
- Zay, K.; Gere, A. Sensory Acceptance of Poppy Seed-Flavored White Chocolates Using Just-about-Right Method. LWT—Food Sci. Technol. 2019, 103, 162–168. [Google Scholar] [CrossRef]
- Gere, A.; Sipos, L.; Kovács, S.; Kókai, Z.; Héberger, K. Case Study Using Sum of Ranking Differences. Chemom. Intell. Lab. Syst. 2017, 161, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Nguyen, H.; Wismer, W.; Temelli, F. Development of an Orange-Flavoured Functional Beverage Formulated with Beta-Glucan and Coenzyme Q10-Impregnated Beta-Glucan. J. Funct. Foods 2018, 47, 397–404. [Google Scholar] [CrossRef]
- Kim, M.A.; van Hout, D.; Dessirier, J.M.; Lee, H.S. Degree of Satisfaction-Difference (DOSD) Method for Measuring Consumer Acceptance: A Signal Detection Measurement with Higher Reliability than Hedonic Scaling. Food Qual. Prefer. 2018, 63, 28–37. [Google Scholar] [CrossRef]
- Verdonk, N.; Ristic, R.; Culbert, J.; Pearce, K.; Wilkinson, K. Understanding Australian Wine Consumers’ Preferences for Different Sparkling Wine Styles. Beverages 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Dorado, R.; Picard, A.; Chaya, C. Influence of First Position Effect on Emotional Response. Food Qual. Prefer. 2016, 49, 189–196. [Google Scholar] [CrossRef]
- Adjei, M.Y.B.; Saliba, A.J.; Carr, T.; Hardie, W.J.; Heymann, H. Relative Preference Mapping (RPM)—A Novel Approach for Simultaneous 2D Relative Scoring of Difference and Liking to Identify Consumer Preference for Innovative Wine Styles. Food Qual. Prefer. 2020, 83, 103901. [Google Scholar] [CrossRef]
- Ristic, R.; Danner, L.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Jiranek, V.; Bastian, S.E.P. Wine-Related Aromas for Different Seasons and Occasions: Hedonic and Emotional Responses of Wine Consumers from Australia, UK, and the USA. Food Qual. Prefer. 2019, 71, 250–260. [Google Scholar] [CrossRef]
- Gmuer, A.; Siegrist, M.; Dohle, S. Does Wine Label Processing Fluency Influence Wine Hedonics? Food Qual. Prefer. 2015, 44, 12–16. [Google Scholar] [CrossRef]
- Danner, L.; Johnson, T.E.; Ristic, R.; Meiselman, H.L.; Bastian, S.E.P. “I like the Sound of That!” Wine Descriptions Influence Consumers’ Expectations, Liking, Emotions, and Willingness to Pay for Australian White Wines. Food Res. Int. 2017, 99, 263–274. [Google Scholar] [CrossRef]
- Danner, L.; Ristic, R.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Jeffery, D.W.; Bastian, S.E.P. Context and Wine Quality Effects on Consumers’ Mood, Emotions, Liking and Willingness to Pay for Australian Shiraz Wines. Food Res. Int. 2016, 89, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Ares, G. Methodological Issues in Cross-Cultural Sensory and Consumer Research. Food Qual. Prefer. 2018, 64, 253–263. [Google Scholar] [CrossRef]
- Calvo-Porral, C.; Ruiz-Vega, A. An Emotion-Based Typology of Wine Consumers. Food Qual. Prefer. 2020, 79, 103777. [Google Scholar] [CrossRef]
- Jiang, W.W.; Niimi, J.; Ristic, R.; Bastian, S.E.P. Effects of Immersive Context and Wine Flavor on Consumer Wine Flavor Perception and Elicited Emotions. Am. J. Enol. Vitic. 2017, 68, 1–10. [Google Scholar] [CrossRef]
- Mora, M.; Urdaneta, E.; Chaya, C. Effect of Personality on the Emotional Response Elicited by Wines. Food Qual. Prefer. 2019, 76, 39–46. [Google Scholar] [CrossRef]
- Danner, L.; Johnson, T.E.; Ristic, R.; Meiselman, H.L.; Bastian, S.E.P. Consumption Context Effects on Fine Wine Consumer Segments’ Liking and Emotions. Foods 2020, 9, 1798. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Varela, P. Identifying Temporal Drivers of Liking and Satiation Based on Temporal Sensory Descriptions and Consumer Ratings. Food Qual. Prefer. 2021, 89, 104143. [Google Scholar] [CrossRef]
- Chaya, C.; Criado, C.; Pozo-Bayón, M.Á.; Echevarrías-Marco, A.; Dupas, A.; Matos, D. A New Index for Predicting Differences in Repeatability of Time-Intensity Curves: Time-Intensity Reliability Index (TI-RI). Food Qual. Prefer. 2019, 76, 33–38. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, S.; Nie, Y.; Xu, Y.; Tang, K. Aroma Release during Wine Consumption: Factors and Analytical Approaches. Food Chem. 2021, 346, 128957. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Voss, H.P.; van Zyl, H.; Hogg, T.; de Graaf, C.; Pintado, M.; Jager, G. Effect of Adding Hop Aroma in Beer Analysed by Temporal Dominance of Sensations and Emotions Coupled with Temporal Liking. Food Qual. Prefer. 2019, 75, 54–63. [Google Scholar] [CrossRef]
- Frost, S.C.; Blackman, J.W.; Ebeler, S.E.; Heymann, H. Analysis of Temporal Dominance of Sensation Data Using Correspondence Analysis on Merlot Wine with Differing Maceration and Cap Management Regimes. Food Qual. Prefer. 2018, 64, 245–252. [Google Scholar] [CrossRef]
- Olegario, L.S.; González-Mohino, A.; Estévez, M.; Madruga, M.S.; Ventanas, S. Impact of ‘Free-from’ and ‘Healthy Choice’ Labeled Versions of Chocolate and Coffee on Temporal Profile (Multiple-Intake TDS) and Liking. Food Res. Int. 2020, 137, 109342. [Google Scholar] [CrossRef] [PubMed]
- Wakihira, T.; Miyashita, S.; Kobayashi, M.; Uemura, K.; Schlich, P. Temporal Dominance of Sensations Paired with Dynamic Wanting in an Ad Libitum Setting: A New Method of Sensory Evaluation with Consumers for a Better Understanding of Beer Drinkability. Food Qual. Prefer. 2020, 86, 103992. [Google Scholar] [CrossRef]
- Chaya, C. Continuous Time—Intensity. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Lorido, L.; Hort, J.; Estévez, M.; Ventanas, S. Reporting the Sensory Properties of Dry-Cured Ham Using a New Language: Time Intensity (TI) and Temporal Dominance of Sensations (TDS). Meat Sci. 2016, 121, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Van Bommel, R.; Stieger, M.; Boelee, N.; Schlich, P.; Jager, G. From First to Last Bite: Temporal Dynamics of Sensory and Hedonic Perceptions Using a Multiple-Intake Approach. Food Qual. Prefer. 2019, 78, 103748. [Google Scholar] [CrossRef]
- Greis, M.; Sainio, T.; Katina, K.; Kinchla, A.J.; Nolden, A.; Partanen, R.; Seppä, L. Dynamic Texture Perception in Plant-Based Yogurt Alternatives: Identifying Temporal Drivers of Liking by TDS. Food Qual. Prefer. 2020, 86, 104019. [Google Scholar] [CrossRef]
- Thomas, A.; Chambault, M.; Dreyfuss, L.; Gilbert, C.C.; Hegyi, A.; Henneberg, S.; Knippertz, A.; Kostyra, E.; Kremer, S.; Silva, A.P.; et al. Measuring Temporal Liking Simultaneously to Temporal Dominance of Sensations in Several Intakes. An Application to Gouda Cheeses in 6 European Countries. Food Res. Int. 2017, 99, 426–434. [Google Scholar] [CrossRef]
- Peltier, C.; Visalli, M.; Thomas, A. Using Temporal Dominance of Emotions at Home. Impact of Coffee Advertisements on Consumers’ Behavior and Methodological Perspectives. Food Qual. Prefer. 2019, 71, 311–319. [Google Scholar] [CrossRef]
- Merlo, T.C.; Soletti, I.; Saldaña, E.; Menegali, B.S.; Martins, M.M.; Clara, A.; Teixeira, B.; Harada-Padermo, S.S.; Dargelio, M.D.B.; Contreras-Castillo, C.J. Measuring Dynamics of Emotions Evoked by the Packaging Colour of Hamburgers Using Temporal Dominance of Emotions (TDE). Food Res. Int. 2019, 124, 147–155. [Google Scholar] [CrossRef]
- Van Bommel, R.; Stieger, M.; Visalli, M.; de Wijk, R.; Jager, G. Does the Face Show What the Mind Tells? A Comparison between Dynamic Emotions Obtained from Facial Expressions and Temporal Dominance of Emotions (TDE). Food Qual. Prefer. 2020, 85, 103976. [Google Scholar] [CrossRef]
- Rocha, C.; Lima, R.C.; Moura, A.P.; Costa, T.; Cunha, L.M. Implicit Evaluation of the Emotional Response to Premium Organic Herbal Infusions through a Temporal Dominance Approach: Development of the Temporal Dominance of Facial Emotions (TDFE). Food Qual. Prefer. 2019, 76, 71–80. [Google Scholar] [CrossRef]
- Van Bommel, R.; Stieger, M.; Schlich, P.; Jager, G. Dutch Consumers Do Not Hesitate: Capturing Implicit ‘No Dominance’ Durations Using Hold-down Temporal Dominance Methodologies for Sensations (TDS) and Emotions (TDE). Food Qual. Prefer. 2019, 71, 332–342. [Google Scholar] [CrossRef]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A Novel Dynamic Method for Characterizing Products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Janice, Q.; Niaura, T.; Kantono, K. How Does Wine Ageing Influence Perceived Complexity? Temporal-Choose-All-That-Apply (TCATA) Reveals Temporal Drivers of Complexity in Experts and Novices. Food Qual. Prefer. 2021, 92, 104230. [Google Scholar] [CrossRef]
- Mendel-Marabolí, M.; López-Solís, R.; Valenzuela-Prieto, D.; Vargas-Silva, S.; Obreque-Slier, E. Limited Relationship between Temporality of Sensory Perception and Phenolic Composition of Red Wines. LWT—Food Sci. Technol. 2021, 142, 111028. [Google Scholar] [CrossRef]
- Mahieu, B.; Visalli, M.; Thomas, A.; Schlich, P. Using Free-Comment with Consumers to Obtain Temporal Sensory Descriptions of Products. Food Qual. Prefer. 2020, 86, 104008. [Google Scholar] [CrossRef]
- Le Menn, N.; Marchal, R.; Demarville, D.; Casenave, P.; Tempere, S.; Campbell-Sills, H.; de Revel, G.; Marchand, S. Development of a New Sensory Analysis Methodology for Predicting Wine Aging Potential. Application to Champagne Reserve Wines. Food Qual. Prefer. 2021, 94, 104316. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Time-Intensity Methods. In Sensory Evaluation of Food: Principles and Practices; Springer Science + Business Media: New York, NY, USA, 1999; pp. 265–300. [Google Scholar]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS Curves and Comparison with Time-Intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Schlich, P. Temporal Dominance of Sensations (TDS): A New Deal for Temporal Sensory Analysis. Curr. Opin. Food Sci. 2017, 15, 38–42. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C. The Analysis of Temporal Check-All-That-Apply (TCATA) Data. Food Qual. Prefer. 2018, 67, 67–76. [Google Scholar] [CrossRef]
- Thomas, A.; Visalli, M.; Cordelle, S.; Schlich, P. Temporal Drivers of Liking. Food Qual. Prefer. 2015, 40, 365–375. [Google Scholar] [CrossRef]
- Jager, G.; Schlich, P.; Tijssen, I.; Yao, J.; Visalli, M.; de Graaf, C.; Stieger, M. Temporal Dominance of Emotions: Measuring Dynamics of Food-Related Emotions during Consumption. Food Qual. Prefer. 2014, 37, 87–99. [Google Scholar] [CrossRef]
- Delarue, J.; Brasset, A.; Jarrot, F.; Abiven, F. Taking Control of Product Testing Context Thanks to a Multi-Sensory Immersive Room. A Case Study on Alcohol-Free Beer. Food Qual. Prefer. 2019, 75, 78–86. [Google Scholar] [CrossRef]
- Podrazka, M.; Báczyńska, E.; Kundys, M.; Jeleń, P.S.; Nery, E.W. Electronic Tongue-A Tool for All Tastes? Biosensors 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nery, E.W. Use of a Potentiometric and Hybrid Electronic Tongue for the Analysis of Beer and Wine. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E., Jock, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 424–9432. [Google Scholar]
- Gamboa, J.C.R.; da Silva, A.J.; de Andrade Lima, L.L.; Tiago, T.A. Wine Quality Rapid Detection Using a Compact Electronic Nose System: Application Focused on Spoilage Thresholds by Acetic Acid. LWT—Food Sci. Technol. 2019, 108, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Gamboa, J.C.; da Silva, A.J.; Tiago, T.A. Electronic Nose Dataset for Detection of Wine Spoilage Thresholds. Data Brief 2019, 25, 104202. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Yan, B.; Zhang, L.; Gu, Y. Bionic Electronic Nose Based on Mos Sensors Array and Machine Learning Algorithms Used for Wine Properties Detection. Sensors 2019, 19, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of Red Wines Using an Electronic Tongue and Infrared Spectroscopy. Correlations with Phenolic Content and Color Parameters. LWT-Food Sci. Technol. 2020, 118, 108785. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L.; de Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.; García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannum, M.; Forzley, S.; Popper, R.; Simons, C.T. Does Environment Matter? Assessments of Wine in Traditional Booths Compared to an Immersive and Actual Wine Bar. Food Qual. Prefer. 2019, 76, 100–108. [Google Scholar] [CrossRef]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; di Natale, C.; Paolesse, R.; Legin, A. Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, J.; Santos, J.P.; Horrillo, M.C. Wine Applications with Electronic Noses; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128004029. [Google Scholar]
- Rita, A.; Rosa, D.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal Source Food Authentication and Quality Assessment e A Review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Fusion of Artificial Senses as a Robust approach to Food Quality Assessment. J. Food Eng. 2016, 171, 230–239. [Google Scholar] [CrossRef]
- Martínez-García, R.; Moreno, J.; Bellincontro, A.; Centioni, L.; Puig-Pujol, A.; Peinado, R.A.; Mauricio, J.C.; García-Martínez, T. Using an Electronic Nose and Volatilome Analysis to Differentiate Sparkling Wines Obtained under Different Conditions of Temperature, Ageing Time and Yeast Formats. Food Chem. 2021, 334, 127574. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; Rodriguez-Mendez, M.L. Analysis of Musts and Wines by Means of a Bio-Electronic Tongue Based on Tyrosinase and Glucose Oxidase Using Polypyrrole/Gold Nanoparticles as the Electron Mediator. Food Chem. 2019, 289, 751–756. [Google Scholar] [CrossRef]
- Cavallari, M.R.; Braga, G.S.; da Silva, M.F.P.; Izquierdo, J.E.E.; Paterno, L.G.; Dirani, E.A.T.; Kymissis, I.; Fonseca, F.J. A Hybrid Electronic Nose and Tongue for the Detection of Ketones: Improved Sensor Orthogonality Using Graphene Oxide-Based Detectors. IEEE Sens. J. 2017, 17, 1971–1980. [Google Scholar] [CrossRef]
- Ammann, J.; Stucki, M.; Siegrist, M. True Colours: Advantages and Challenges of Virtual Reality in a Sensory Science Experiment on the Influence of Colour on Flavour Identification. Food Qual. Prefer. 2020, 86, 103998. [Google Scholar] [CrossRef]
- Crofton, E.C.; Botinestean, C.; Fenelon, M.; Gallagher, E. Potential Applications for Virtual and Augmented Reality Technologies in Sensory Science. Innov. Food Sci. Emerg. Technol. 2019, 56, 102178. [Google Scholar] [CrossRef]
- Torrico, D.D.; Sharma, C.; Dong, W.; Fuentes, S.; Viejo, C.G.; Dunshea, F.R. Virtual reality environments on the sensory acceptability and emotional responses of no- and full-sugar chocolate. LWT—Food Sci. Technol. 2021, 137, 110383. [Google Scholar] [CrossRef]
- Sinesio, F.; Moneta, E.; Di, S.; Paolo, G.; Abb, S. Influence of Wine Traits and Context on Liking, Intention to Consume, Wine-Evoked Emotions and Perceived Sensory Sensations. Food Qual. Prefer. 2021, 93, 104268. [Google Scholar] [CrossRef]
- Schakel, L.; Veldhuijzen, D.S.; Manai, M.; van Beugen, S.; van der Vaart, R.; van Middendorp, H.; Evers, A.W.M. Editor’s Choice: Optimizing Healthy Food Preferences by Serious Gaming. Psychol. Health 2020, 35, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, M.; Ullrich, A.; Knost, D.; Gronau, N. Serious Games in Learning Factories: Perpetuating Knowledge in Learning Loops by Game-Based Learning. Procedia Manuf. 2020, 45, 259–264. [Google Scholar] [CrossRef]
- Yue, C.; Rizki, R.; Bojer, M.; Papavasileiou, M.; Djin, G.; Olsen, A. Can Games Change Children’s Eating Behaviour? A Review of Gamification and Serious Games. Food Qual. Prefer. 2020, 80, 103823. [Google Scholar] [CrossRef]
- Coulthard, H.; Ahmed, S. Non-Taste Exposure Techniques to Increase Fruit and Vegetable Acceptance in Children: Effects of Task and Stimulus Type. Food Qual. Prefer. 2017, 61, 50–54. [Google Scholar] [CrossRef]
- Palee, P.; Wongta, N.; Khwanngern, K.; Jitmun, W.; Choosri, N. International Journal of Medical Informatics Serious Game for Teaching Undergraduate Medical Students in Cleft Lip and Palate Treatment Protocol. Int. J. Med Inform. 2020, 141, 104166. [Google Scholar] [CrossRef] [PubMed]
- Aloweni, F.; Ting, M.; See, A.; Ping, X.; Yuh, S. Nurse Education Today Employing Serious Game for Assessing Knowledge of Blood Transfusion Procedure among Nurses: A Qualitative Evaluation and Feedback Improvement Study. Nurse Educ. Today 2021, 101, 104873. [Google Scholar] [CrossRef] [PubMed]
- Lievense, P.; Vacaru, V.S.; Kruithof, Y.; Bronzewijker, N.; Doeve, M.; Sterkenburg, P.S. Effectiveness of a Serious Game on the Self-Concept of Children with Visual Impairments: A Randomized Controlled Trial. Disabil. Health J. 2021, 14, 101017. [Google Scholar] [CrossRef]
- Ho, P. Statistical Methods and Tools for Analysing Sensory Food Texture. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 45–87. ISBN 9781782423522. [Google Scholar]
- Alizadeh Behbahani, B.; Tabatabaei Yazdi, F.; Shahidi, F.; Mortazavi, S.A.; Mohebbi, M. Principal Component Analysis (PCA) for Investigation of Relationship between Population Dynamics of Microbial Pathogenesis, Chemical and Sensory Characteristics in Beef Slices Containing Tarragon Essential Oil. Microb. Pathog. 2017, 105, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ouyang, Q.; Park, B.; Kang, R.; Wang, Z.; Wang, L.; Chen, Q. Physicochemical Indicators Coupled with Multivariate Analysis for Comprehensive Evaluation of Matcha Sensory Quality. Food Chem. 2022, 371, 131100. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, L.M.; Lahne, J. Fast, and Automated Sensory Analysis: Using Natural Language Processing for Descriptive Lexicon Development. Food Qual. Prefer. 2020, 83, 103926. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Vázquez-Cruz, M.A.; Miranda-Lopez, R.; Garcia-Mier, L.; Guevara-González, R.G.; Feregrino-Perez, A.A. Effect of Elicitors as Stimulating Substances on Sensory Quality Traits in Color Sweet Bell Pepper (Capsicum Annuum L. Cv. Fascinato and Orangela) Grown under Greenhouse Conditions. Pol. J. Food Nutr. Sci. 2018, 68, 359–365. [Google Scholar] [CrossRef]
- Chakraborty, P.; Shivhare, U.S.; Basu, S. Effect of Milk Composition on Sensory Attributes and Instrumental Properties of Indian Cottage Cheese (Chhana). NFS J. 2021, 23, 8–16. [Google Scholar] [CrossRef]
- Dumanoglu, H.; Aygun, A.; Delialioglu, R.A.; Erdogan, V.; Serdar, U.; Kalkisim, O.; Bastas, K.; Kocabas, Z. Analyses of Fruit Attributes by Multidimensional Scaling Method of Apple Genetic Resources from Coastal Zone of Northeastern Anatolia, Turkey. Sci. Hortic. 2018, 240, 147–154. [Google Scholar] [CrossRef]
- Zhu, L.X.; Zhang, M.M.; Xiang, X.F.; Lan, Y.B.; Shi, Y.; Duan, C.Q.; Zhang, R.L. Aromatic Characterization of Traditional Chinese Wine Msalais by Partial Least-Square Regression Analysis Based on Sensory Quantitative Descriptive and Odor Active Values, Aroma Extract Dilution Analysis, and Aroma Recombination and Omission Tests. Food Chem. 2021, 361, 129781. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, I.; Cámara-Martos, F.; Flores, J.M.; Serrano, S. Spanish Avocado (Persea Americana Mill.) Honey: Authentication Based on Its Composition Criteria, Mineral Content and Sensory Attributes. LWT—Food Sci. Technol. 2019, 111, 561–572. [Google Scholar] [CrossRef]
- Vilela, A.; Marques, C.; Correia, E. Structural Equation Modelling (SEM) Applied to Sensory Profile of Vinho Verde Monovarietal Wines. Food Res. Int. 2018, 111, 650–660. [Google Scholar] [CrossRef]
- Tu, Y.K.; Wu, Y.C. Using Structural Equation Modeling for Network Meta-Analysis. BMC Med. Res. Methodol. 2017, 17, 104. [Google Scholar] [CrossRef] [Green Version]
- Esmerino, E.A.; Tavares, E.R.; Carr, B.T.; Ferraz, J.P.; Silva, H.L.A.; Pinto, L.P.F.; Freitas, M.Q.; Cruz, A.G.; Bolini, H.M.A. Consumer-Based Product Characterization Using Pivot Profile, Projective Mapping and Check-All-That-Apply (CATA): A Comparative Case with Greek Yogurt Samples. Food Res. Int. 2017, 99, 375–384. [Google Scholar] [CrossRef]
- He, W.; Chung, H.Y. Multivariate Relationships among Sensory, Physicochemical Parameters, and Targeted Volatile Compounds in Commercial Red Sufus (Chinese Fermented Soybean Curd): Comparison of QDA® and Flash Profile Methods. Food Res. Int. 2019, 125, 108548. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; Deliza, R. Comparison of Consumer-Based Methodologies for Optimizing the Development of New Products: A Case Study with Probiotic Chocolate Flavored Milk. Food Sci. Technol. Int. 2021, 27, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Adjei, M.Y.B. Applications and Limitations of Discrimination Testing. In Discrimination Testing in Sensory Science: A Practical Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 85–105. ISBN 9780081011164. [Google Scholar]
- Braghieri, A.; Piazzolla, N.; Galgano, F.; Condelli, N.; de Rosa, G.; Napolitano, F. Effect of Preservative Addition on Sensory and Dynamic Profile of Lucanian Dry-Sausages as Assessed by Quantitative Descriptive Analysis and Temporal Dominance of Sensations. Meat Sci. 2016, 122, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Alcaire, F.; Antúnez, L.; Vidal, L.; Zorn, S.; Giménez, A.; Castura, J.C.; Ares, G. Comparison of Static and Dynamic Sensory Product Characterizations Based on Check-All-That-Apply Questions with Consumers. Food Res. Int. 2017, 97, 215–222. [Google Scholar] [CrossRef] [PubMed]
Test | Type of Evaluation | Lexicon | Statistical Analysis | Advantages | Limitations | Variations | Ref. |
---|---|---|---|---|---|---|---|
QDA 1 | After the training phase, assessors develop qualitative attributes and provide quantitative data about the attribute’s intensity | Provided by a trained panel | ANOVA 2; PCA 3 | Allows for the determination of product profiles | Time-consuming and requires a training phase | FCP 4 | [28,30,75] |
FCP 4 | Assessors develop qualitative attributes and provide quantitative data about attribute’s intensity without the training phase | Elicited by assessors or a predetermined list | GPA 5 | Rapid and less time-consuming | Lack of accuracy | FP 6 | [34,76] |
OEQ 7 | Verbal description of samples | Elicited by the assessors | MFA 8; CA 9; Chi-square test | Complete freedom of expression | Time-consuming, Has redundancy, has ambiguity, and requires the extension of terms | Textual data treatment from open-ended questions | [77,78] |
Sorting; FS 10; FMS 11 | Classification of samples based on their similarities and differences | Elicited by the assessors orprovided by the researcher | DISTATIS; CA 9; MDS 12 | A fast and straightforward method that can be used in a single session | All samples should be presented simultaneously | SBA 13; Q-sort method; CS 14; FS 15; FMS 16; HS 17 | [70,79,80] |
PM 18; Napping | Generating samples on a two-dimensional map according to their similarities and differences | Elicited by the assessors | MFA 8 | Description through product similarities and differences, as well as the clustering samples | All samples should be presented simultaneously; difficult to understand for naïve consumers | Affective approach; intensity approach; hedonic frame; PPM 19 | [40,43,51,52] |
FP 20 | Ranking of samples on a set of selected attributes | Elicited by the assessors | GPA 5; CVA 21; PCA 3; MFA 8 | Rapid | Two sessions are required. All samples should be presented simultaneously | Modified FP 20 with napping Pivot Profile | [81,82] |
PAE 22 | Ranking of attributes according to assessors’ liking intensity of those attributes | Elicited by the assessors | GPA 5; HCA 23 PANOVA 24 | Only one session is required | A round-table discussion is necessary; all samples should be presented simultaneously | Discrete choice experiments; best-worst scaling; CLEO 25 | [23,65,67] |
CATA 26 | Pre-selected terms, where assessors choose the ones that apply to the product | Provided by the researcher | Cochran Q test; MFA 8; Chi-square test | A fast and straightforward method that is easy to merge with affective measurements, such as hedonic tests | The design of the term list could influence the answers; not recommended for evaluating very similar samples | Check-if-apply; RATA 27; TCATA 28 | [26,83,84] |
PSP 29 | Evaluation of global differences between samples and a set of fixed references | Elicited by the assessors | ANOVA 2; PCA 3; MDS 14; MFA 8; GPA 5; CA 9 | A fast and straightforward method | Stable and readily available references are needed; selection of references couldstrongly affect the results | PSP 28 based on the degree of different scales and triadic PSP 29 | [25,69] |
Test | Type of Evaluation | Statistical Analysis | Advantages | Limitations | Variations | Ref. |
---|---|---|---|---|---|---|
Triangle test | Identification of a different sample from a set of three samples. | Mixed model logistic analysis; mixed ANOVA 1; Tukey’s test | Does not require specification of the nature of the difference | Lack of accuracy; ineffectiveness and sensory fatigue; requires large sample sizes to be effective | Tetrad test; duo–trio test | [85,87] |
Tetrad test | Group similar samples from a set of four samples. | Hypothesis testing | Fewer assessors can be used to recover the same confidence in the result | Sensory fatigue | [89,98] | |
Duo–trio test | Three samples are displayed; one of them is the reference. Identification of the most similar sample regarding the reference. | Hypothesis testing | Easier performance in complex or hard-to-evaluate products; the ability to evaluate how significant sensory differences are between samples | Sensory fatigue; large assessor groups need to be used to increase confidence in the data; low statistical power | CRM 2; BRM 3; A-Not AR 4; 2-AFCR 5; different positions of references; ABX | [90,91,92,99] |
ABX test | Two control samples and a treated sample are presented to assessors, and they are asked to match the “X” sample to one of the references. | Hypothesis testing | Participants do not need anyprior knowledge of the samples; assessment of fewer products | No guidance over an attribute to focus on; less sensitive test; relies on the assessors’ memory | [100,101] | |
A Not-A test | Reference A and other samples are presented to assessors, and they must decide whether the other samples assessed are similar to the A sample. | Chi-squared test; Thurstonian distance | Single presentation test; usable with high carryover effect samples | Less recommended when assessors are untrained and/or with no experience with the products | [91,102] | |
Paired Comparison | Compares two samples without concerning the intensity of perception. | PCA 6; Friedman test; Bradley–Terry model | Simple and intuitive task; sensitiveness to differences between stimuli | Time-consuming. Low statistical power | Simple difference tests or directional paired comparison tests (or 2-alternative forced-choice tests); multiple paired comparison test; FC 7 | [91,95,103] |
FC 7 | Assessors must choose one of the two samples. | ANOVA 1 | Simple task | A tendency for “noise” in the datasets | Triangle test; AFC 8; can be based on the triangle test becoming 3-AFC or paired comparison test becoming 2-AFC; 4I2AFC 9 | [95,98] |
Test | Type of Evaluation | Data Acquisition | Statistical Analysis | Advantages | Limitations | Variations | Ref. |
---|---|---|---|---|---|---|---|
TI 1 | Tracks the evolution of the intensity of sensory attributes over time | ANOVA 2; PCA 3 | Quantification of the continuous perceptual changes that occur in a specific attribute over time | Time-consuming when used on several attributes | DTI 4; DATI 5; MATI 6 | [19,143] | |
TDS 7 | Records several sensory attributes consecutively over time, identifying one specific attribute as “dominant” | Compusense 8; EyeQuestion® 9; Fizz 10; TimeSens 11 | PCA 3; ANOVA 4 | Effective regarding temporal differences; Less time consuming; Simpler task foruntrained consumers | Not so adapted to trained panels | TDL 12; TDE 13; HDTDSE 14 | [144,145] |
TCATA 15 | Assessors are asked to check all attributes that apply to the product in evaluation in addition to recording the evolution of sensory changes in products | Compusense at-hand 5.6 16 | Randomization Tests; Cochran’s Q Test; McNemar’s Test; binomial test | Continuous selection and deselection of attributes based on applicability of the attribute to describe a sample | More complicated for the consumer | [139,145,146] | |
TL 17 | Collects scores and perceives variations of the acceptability of a product over time | TimeSens® | ANOVA 4; LSD 18 | Easier performance in complex or hard-to-evaluate products The ability to evaluate how significant sensory differences are between samples | Sensory fatigue; large assessor groups need to be used to increase confidence in the data; low statistical power | TDE 13 | [124,147] |
TDE 13 | Records several emotions consecutively over time, identifying one specific emotion as “dominant” | TimeSens 1.0 19; FaceReader™; An adapted version of EsSense Profile® | ANOVA 4; AHC 20; MDA 21 | Allows for the evaluation of food evoked emotions as motivators for food choices | Risk of simulated emotions | HDTDSE 14; TDFE 22 | [133,136,148] |
HDTDSE 14 | Assessors hold down the attribute button when it is perceived as dominant and release it when it is no longer dominant | TimeSens 23 | ANOVA 4; CVA 24; MANOVA 25 | Allows for subjects to report indecisive behavior | Does not overcome classic temporal dominance in terms of sensitivity and discrimination ability | [137] | |
FCAEF 26 | Assessors describe a product through free comment descriptions during periods, namely attack, evolution, and finish | TimeSens© 27; IRaMuTeQ© | Bootstrap test; Fisher’s exact tests; Chi-square test; CA 28 | Description of the temporal evolution with complete freedom of expression | Time-consuming, Redundancy, ambiguity, and requires an extension of terms | [141] | |
PC 29 | Assessors place samples on one of three curves | A statistical method developed by [146] | Quantifies three dimensions simultaneously | Requires a large number of assessors | [142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, C.; Correia, E.; Dinis, L.-T.; Vilela, A. An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods. Foods 2022, 11, 255. https://doi.org/10.3390/foods11030255
Marques C, Correia E, Dinis L-T, Vilela A. An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods. Foods. 2022; 11(3):255. https://doi.org/10.3390/foods11030255
Chicago/Turabian StyleMarques, Catarina, Elisete Correia, Lia-Tânia Dinis, and Alice Vilela. 2022. "An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods" Foods 11, no. 3: 255. https://doi.org/10.3390/foods11030255
APA StyleMarques, C., Correia, E., Dinis, L. -T., & Vilela, A. (2022). An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods. Foods, 11(3), 255. https://doi.org/10.3390/foods11030255