The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Experimental Design
2.4. Ultrasound-Assisted Extraction of Phenolic Compounds in Morus alba Leaves
2.5. Antioxidant Capacity
2.5.1. DPPH Radical Scavenging
2.5.2. ABTS Cation Radical Scavenging
2.5.3. Ferric Reducing Antioxidant Power (FRAP)
2.6. Analysis of Phenolic Compounds in Morus alba Leaf Extracts by HPLC-ESI-TOF-MS
3. Results and Discussion
3.1. Fitting the Model
3.2. Response Surfaces Methodology Analysis
3.3. Optimization of Ultrasonic-Assisted Extraction
3.3.1. Optimal Ultrasonic-Assisted Extraction Conditions
3.3.2. Determination of Phenolic Compounds in Morus alba Leaf Extracts by HPLC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donno, D.; Mellano, M.G.; Cerutti, A.K.; Beccaro, G.L. Nutraceuticals in alternative and underutilized fruits as functional food ingredients: Ancient species for new health needs. Altern. Replace. Foods 2018, 261–282. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, C.; Dai, F.; Xiao, G.; Luo, G. HPLC determination of phenolic compounds in different solvent extracts of mulberry leaves and antioxidant capacity of extracts. Int. J. Food Prop. 2021, 24, 544–552. [Google Scholar] [CrossRef]
- Baranwal, V.K.; Negi, N.; Khurana, P. Auxin response factor genes repertoire in mulberry: Identification, and structural, functional and evolutionary analyses. Genes 2017, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Tang, C.; Xiao, G.; Dai, F.; Lin, S.; Li, Z.; Luo, G. Comparison of free and bound phenolic compositions and antioxidant activities of leaves from different mulberry varieties. BMC Chem. 2021, 15, 21. [Google Scholar]
- Doi, K.; Kojima, T.; Makino, M.; Kimura, Y.; Fujimoto, Y. Studies on the constituents of the leaves of Morus alba L. Chem. Pharm. Bull. 2001, 49, 151–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Song, B.; Zheng, C.; Zhang, S.; Yan, Z.; Tang, Z.; Kong, X.; Duan, Y.; Li, F. Flavonoids from mulberry leaves alleviate lipid dysmetabolism in high fat diet-fed mice: Involvement of gut Microbiota. Microorganisms 2020, 8, 860. [Google Scholar] [CrossRef]
- Becerril-sánchez, A.L.; Quintero-salazar, B.; Dublán-garcía, O.; Escalona-buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Jahromi, S.G. Extraction techniques of phenolic compounds from plants. In Plant Physiological Aspects of Phenolic Compounds Basic; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Sungthong, B.; Butiman, C.; Jitsaeng, K. Optimized ultrasonic-assisted extraction of antioxidant from mulberry (Morus alba L.) leaves using multiple linear regression analysis. Int. J. Pharm. Pharm. Sci. 2014, 6, 914–917. [Google Scholar]
- Mohamed Ahmed, I.A.; Al-Juhaimi, F.; Adisa, A.R.; Adiamo, O.Q.; Babiker, E.E.; Osman, M.A.; Gassem, M.A.; Ghafoor, K.; Alqah, H.A.S.; Elkareem, M.A. Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidant activity from Argel (Solenostemma argel Hayne) leaves using response surface methodology (RSM). J. Food Sci. Technol. 2020, 57, 3071–3080. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. Leaves as a promising food source of phenolic compounds with antioxidant activity. Plant Foods Hum. Nutr. 2021, 76, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Doh, E.J.; Lee, G. Quantitative comparison of the marker compounds in different medicinal parts of Morus alba L. Using high-performance liquid chromatography-diode array detector with chemometric analysis. Molecules 2020, 25, 5592. [Google Scholar] [CrossRef] [PubMed]
- Elshreef, H.S.; Mirghani, M.E.S.; Sulaiman, S.; Jami, M.S. A review of the effect of UAE optimization parameters on antioxidant activity. IOP Conf. Ser. Earth Environ. Sci. 2021, 765, 012109. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Menezes Rodrigues, G.; Cardozo-Filho, L.; da Silva, C. Pressurized liquid extraction of oil from soybean seeds. Can. J. Chem. Eng. 2017, 95, 2383–2389. [Google Scholar] [CrossRef]
- Aiyarakanchanakun, P.; Palanuvej, C.; Ruangrungsi, N.; Phanumartwiwath, A. Pharmacognostic specifications, RP-HPLC analysis of chlorogenic acid content and antioxidant activity of morus alba linn. leaves in Thailand. Pharmacogn. J. 2021, 13, 1186–1194. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Diez-Echave, P.; Vezza, T.; Hidalgo-García, L.; Lozano-Sánchez, J.; Arráez-Román, D.; Cenis, J.L.; Lozano-Pérez, A.A.; et al. Comparative study of the antioxidant and anti-inflammatory effects of leaf extracts from four different Morus alba genotypes in high fat diet-induced obesity in mice. Antioxidants 2020, 9, 733. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-cerio, E.; Tylewicz, U.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Romani, S. Design of sonotrode ultrasound-assisted extraction of phenolic compounds from Psidium guajava L. leaves. Food Anal. Methods 2017, 10, 2781–2791. [Google Scholar] [CrossRef]
- Martín-García, B.; Pasini, F.; Verardo, V.; Díaz-De-cerio, E.; Tylewicz, U.; Gómez-Caravaca, A.M.; Caboni, M.F. Optimization of sonotrode ultrasonic-assisted extraction of proanthocyanidins from brewers’ spent grains. Antioxidants 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okçu, G.D.; Pakdil, N.B.; Ökten, H.E.; Yalçuk, A. A Box–Behnken design (BBD) optimization of the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using TiO2/H2O2. Desalin. Water Treat. 2018, 123, 188–195. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kang, Y.M.; Jin, W.Y.; Sung, Y.-Y.; Choi, G.; Kim, H.K. Antioxidant activities and polyphenol content of Morus alba leaf extracts collected from varying regions. Biomed. Rep. 2014, 2, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef]
- Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci. Rep. 2020, 10, 4808. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, J.; Ma, L.; Wen, D.; Chen, F.; Li, J. Identification of polyphenols in mulberry (genus Morus) cultivars by liquid chromatography with time-of-flight mass spectrometer. J. Food Compos. Anal. 2017, 63, 55–64. [Google Scholar] [CrossRef]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Groza, F.M.; Venter, A.C.; Vicas, S.I. Phytochemical composition of different botanical parts of Morus species, health benefits and application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, S.; Shen, W.; Liu, F.; Tang, C.; Chen, C.Y.O.; Sun, Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in southern China. Int. J. Mol. Sci. 2012, 13, 16544–16553. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; Guimarães, R.D.C.A.; Freitas, K.D.C. Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Run | Dependent Factors | Response Variables | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | SPC | DPPH | ABTS | FRAP | |
1 | 100 | 500 | 50 | 12.17 | 3.38 | 9.05 | 30.41 |
2 | 0 | 20 | 50 | 14.08 | 2.84 | 5.92 | 6.87 |
3 | 50 | 500 | 90 | 31.40 | 22.35 | 27.32 | 27.39 |
4 | 0 | 500 | 50 | 30.07 | 12.29 | 6.39 | 26.63 |
5 | 50 | 500 | 10 | 32.65 | 22.21 | 31.29 | 32.54 |
6 | 50 | 260 | 50 | 32.73 | 24.60 | 29.08 | 32.58 |
7 | 50 | 260 | 50 | 33.04 | 27.55 | 27.76 | 35.34 |
8 | 100 | 260 | 90 | 12.69 | 5.89 | 8.12 | 13.30 |
9 | 0 | 260 | 90 | 23.23 | 7.93 | 3.40 | 19.37 |
10 | 0 | 260 | 10 | 22.85 | 7.89 | 10.30 | 23.67 |
11 | 100 | 20 | 50 | 5.37 | 1.84 | 10.06 | 5.38 |
12 | 50 | 20 | 90 | 26.44 | 17.00 | 15.20 | 20.69 |
13 | 50 | 20 | 10 | 24.18 | 15.67 | 14.39 | 23.41 |
14 | 100 | 260 | 10 | 6.65 | 3.89 | 6.69 | 9.79 |
15 | 50 | 260 | 50 | 33.76 | 25.95 | 27.51 | 32.24 |
SPC | DPPH | ABTS | FRAP | |||||
---|---|---|---|---|---|---|---|---|
Coefficients | Effects | Coefficients | Effects | Coefficients | Effects | Coefficients | Effects | |
β0 | 10.85230 * | 20.1500 | −3.42399 | 10.26411 | −1.56191 | 12.34545 | 8.764200 * | 19.95608 |
Linear | ||||||||
β1 | 0.48233 * | −13.3355 | 0.66784 * | −3.98835 | 0.69638 * | 1.97903 | 0.389353 * | −4.41331 |
β2 | 0.05756 * | 9.0560 | 0.05799 * | 5.72199 | 0.05052 * | 7.12160 | 0.059015 * | 15.15499 |
β3 | 0.12328 * | 1.8605 | 0.17588 ** | 0.87715 | 0.19197 * | −2.15594 | 0.195844 ** | −2.16710 |
Cross product | ||||||||
β12 | −0.00019 * | −4.5953 | −0.00016 | −3.95706 | −0.00003 | −0.73700 | 0.000110 | 2.63046 |
β13 | 0.00071 * | 2.8316 | 0.00025 | 0.98140 | 0.00104 * | 4.16383 | 0.000977 | 3.90610 |
β23 | −0.00009 ** | −1.7544 | −0.00003 | −0.58807 | −0.00012 | −2.38837 | −0.000063 | −1.21595 |
Quadratic | ||||||||
β11 | −0.00601 * | 15.0324 | −0.00677 * | 16.92810 | −0.00721 * | 18.01628 | −0.005108 * | 12.77022 |
β22 | −0.00005 * | 2.7197 | −0.00007 * | 4.02061 | −0.00005 * | 3.09327 | −0.000057 ** | 3.29606 |
β33 | −0.00112 * | 1.7866 | −0.00169 ** | 2.70756 | −0.00239 * | 3.81799 | −0.002553 * | 4.08468 |
R2 | 0.98932 0.054291 | 0.99476 0.461657 | 0.92168 0.052922 | 0.86893 0.083124 | ||||
p (Lack of fit) |
Optimal Conditions | SPC | DPPH | ABTS | FRAP |
---|---|---|---|---|
Ethanol/water % (v/v) | 40 | 40 | 40 | 40 |
Solvent-to-solid ratio (v/w) | 400 | 400 | 400 | 400 |
Time (min) | 35 | 35 | 35 | 35 |
Predicted | 36 ± 2 | 25 ± 3 | 29 ± 3 | 36 ± 4 |
Observed | 37.3 ± 0.7 | 27.6 ± 0.9 | 30.5 ± 0.3 | 36.8 ± 0.2 |
Significant differences | N.S. | N.S. | N.S. | N.S. |
Peak | RT | m/z Experimental | m/z Calculated | Tolerance (ppm) | Error (ppm) | Fit Conf % | In Source Fragments | Molecular Formula | Compound |
---|---|---|---|---|---|---|---|---|---|
1 | 2.02 | 315.0714 | 315.0716 | 10 | 1.3 | 99.96 | 153.0162, 109.0279 | C13H15O9 | Protocatechuic acid-glucoside |
2 | 3.78 | 353.087 | 353.0873 | 10 | −0.8 | 99.98 | 179.0336, 191.0551, 135.0436, 173.0419 | C16H17O9 | 3-Caffeoylquinic acid (neochlorogenic acid) |
3 | 5.32 | 515.1405 | 515.1401 | 10 | 0.8 | 99.85 | 341.0868, 191.0472, 179.0314 | C22H27O14 | Chlorogenic acid hexoside |
4 | 5.52 | 353.0866 | 353.0873 | 10 | −2 | 99.96 | 191.0551, 179.0337, 173.0455 | C16H17O9 | 5-caffeoylquinic acid (chlorogenic acid) |
5 | 5.75 | 353.0873 | 353.0873 | 10 | 0.0 | 96.51 | 191.0553 173.0432 179.0428 | C16H17O9 | 4-Caffeoylquinic acid (cryptochlorogenic acid) |
6 | 6.05 | 771.1996 | 771.1984 | 10 | 1.6 | 98.28 | 609.1451, 463.0819, 300.0279 299.0175 | C33H39O21 | Quercetin rhammosyl hexoside |
7 | 6.64 | 625.1411 | 625.1405 | 10 | 1 | 99.49 | 300.0234, 301.0336 | C27H29O17 | Quercetin dihexoside |
8 | 7.35 | 609.1446 | 609.1456 | 10 | −1.6 | 94.92 | 285.0388, 447.0918 | C27H29O16 | Kaempferol-hexoside-hexoside |
9 | 7.47 | 711.1434 | 711.1409 | 10 | 3.5 | 98.63 | 667.1544 | C30H31O20 | Quercetin malonyl di-hexoside |
10 | 8.37 | 695.1463 | 695.146 | 10 | 0.4 | 98.62 | 651.1573, 489.1035, 531.1118 | C30H31O19 | Kaempferol-malonyl-dihexoside |
11 | 9.64 | 755.2037 | 755.2035 | 10 | 0.3 | 99.55 | 300.0264, 271.0244 | C33H39O20 | Kaempferol rutinoside hexoside |
12 | 10.07 | 609.1467 | 609.1456 | 10 | 1.8 | 99.32 | 301.0321 | C27H29O16 | Rutin isomer a |
13 | 10.32 | 609.1483 | 609.1456 | 10 | 4.4 | 84.77 | 301.0343 | C27H29O16 | Rutin isomer b |
14 | 10.53 | 463.0894 | 463.0877 | 10 | 3.7 | 94.13 | 255.0298, 300.0277 | C21H19O12 | Isoquercitrin (Quercetin-3-glucoside) |
15 | 10.79 | 593.1511 | 593.1506 | 10 | 0.8 | 99.78 | 285.0381 | C27H29O15 | Kaempferol-3-rutinoside |
16 | 11.20 | 593.1519 | 593.1506 | 10 | 2.2 | 99.99 | 353.0872, 473.2368 | C27H29O15 | Vicenin-2 |
17 | 11.41 | 505.0984 | 505.0982 | 10 | 0.4 | 99.71 | 255.0289, 271.0237, 300.0265 301.0332 | C23H21O13 | Quercetin-3-O-(6-acetylglucoside) isomer a |
18 | 11.51 | 447.0916 | 447.0927 | 10 | −2.5 | 88.67 | 284.0318 | C21H19O11 | Kaempferol 3-o-glucoside |
19 | 11.89 | 505.0967 | 505.0982 | 10 | −3 | 99.96 | 255.0277, 271.0230, 301.0303, 300.0256 | C23H21O13 | Quercetin-3-O-(6-acetylglucoside) isomer b |
20 | 12.11 | 505.0983 | 505.0982 | 10 | 0.2 | 98.9 | 255.0367, 271.0314, 300.0284, 301.0421 | C23H21O13 | Quercetin-3-O-(6-acetylglucoside) isomer c |
21 | 12.48 | 489.1051 | 489.1033 | 10 | 3.7 | 87.34 | 285.0398, 191.0552 | C23H21O12 | Kaempferol-3-O-6″-O-acetyl-β-D-glucopyranoside |
Compound | MAL1 | MAL2 |
---|---|---|
Protocatechuic acid-glucoside | 9.3 ± 0.3 | 4.1 ± 0.4 |
3-Caffeoylquinic acid (neochlorogenic acid) | 3.4 ± 0.1 | 1.5 ± 0.07 |
Chlorogenic acid hexoside | 0.95 ± 0.05 | 0.4 ± 0.02 |
5-caffeoylquinic acid (chlorogenic acid) | 3.4 ± 0.2 | 1.5 ± 0.2 |
4-Caffeoylquinic acid (cryptochlorogenic acid) | 8.4 ± 0.7 | 3.7 ± 0.2 |
Quercetin rhammosyl hexoside | 0.08 ± 0.01 | 0.037 ± 0.008 |
Quercetin dihexoside | 0.61 ± 0.05 | 0.27 ± 0.03 |
Kaempferol-hexoside-hexoside | 0.57 ± 0.03 | 0.25 ± 0.02 |
Quercetin malonyl di-hexoside | 0.11 ± 0.01 | 0.05 ± 0.02 |
Kaempferol-malonyl-dihexoside | 0.022 ± 0.002 | 0.010 ± 0.001 |
Kaempferol rutinoside hexoside | 0.29 ± 0.03 | 0.13 ± 0.01 |
Rutin isomer a | 0.81 ± 0.01 | 0.36 ± 0.04 |
Rutin isomer b | 1.8 ± 0.1 | 0.8 ± 0.1 |
Isoquercitrin (Quercetin-3-glucoside) | 1.8 ± 0.2 | 0.79 ± 0.06 |
Kaempferol-3-rutinoside | 0.25 ± 0.03 | 0.11 ± 0.03 |
Vicenin-2 | 0.41 ± 0.05 | 0.18 ± 0.02 |
Quercetin-3-O-(6-acetylglucoside) isomer a | 2.44 ± 0.06 | 1.08 ± 0.05 |
Kaempferol-3-O-glucoside | 0.20 ± 0.02 | 0.09 ± 0.02 |
Quercetin-3-O-(6-acetylglucoside) isomer b | 0.16 ± 0.01 | 0.07 ± 0.04 |
Quercetin-3-O-(6-acetylglucoside) isomer c | 0.072 ± 0.004 | 0.03 ± 0.01 |
Kaempferol-3-O-6″-O-acetyl-β-D-glucopyranoside | 2.3 ± 0.2 | 1.0 ± 0.3 |
Sum flavonols | 11.9 ± 0.3 | 5.2 ± 0.8 |
Sum phenolic acid derivatives | 25.4 ± 0.5 | 11.2 ± 0.8 |
Sum of phenolic compounds (SPC) | 37.3 ± 0.7 | 16.4 ± 0.6 |
DPPH | 27.6 ± 0.9 | 16.4 ± 0.4 |
ABTS | 30.5 ± 0.3 | 21.6 ± 0.1 |
FRAP | 36.8 ± 0.2 | 20.1 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-García, B.; Aznar-Ramos, M.J.; Verardo, V.; Gómez-Caravaca, A.M. The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves. Foods 2022, 11, 314. https://doi.org/10.3390/foods11030314
Martín-García B, Aznar-Ramos MJ, Verardo V, Gómez-Caravaca AM. The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves. Foods. 2022; 11(3):314. https://doi.org/10.3390/foods11030314
Chicago/Turabian StyleMartín-García, Beatriz, María José Aznar-Ramos, Vito Verardo, and Ana María Gómez-Caravaca. 2022. "The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves" Foods 11, no. 3: 314. https://doi.org/10.3390/foods11030314
APA StyleMartín-García, B., Aznar-Ramos, M. J., Verardo, V., & Gómez-Caravaca, A. M. (2022). The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves. Foods, 11(3), 314. https://doi.org/10.3390/foods11030314