New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Experimental Design
2.3. Ultrasound Bath Extraction
2.4. Determination of Total Phenolic Content (TPC)
2.5. Determination of Polar Compounds by HPLC-ESI-QTOF-MS
2.6. Antioxidant Assays in Tiger Nut By-Products
3. Results and Discussion
3.1. Fitting the Model
3.2. Identification of Polar Compounds by HPLC-ESI-TOF-MS
3.3. Quantification of Phenolic Compounds by HPLC-ESI-TOF-MS and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Alvarez, J.Á. Tiger Nut (Cyperus esculentus) commercialization: Health aspects, composition, properties, and food applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 366–377. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Alvarez, J.A.; Soares, J.; Sousa, S.; Gomes, A.M.P.; Pintado, M.M.E. In vitro evaluation of “horchata” co-products as carbon source for probiotic bacteria growth. Food Bioprod. Process. 2013, 91, 279–286. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Verardo, V.; Martín-García, B.; Díaz-De-Cerio, E.; García-Villanova, B.; Guerra-Hernández, E.J. Establishment of acid hydrolysis by box-behnken methodology as pretreatment to obtain reducing sugars from tiger nut byproducts. Agronomy 2020, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Zapata, E.; Muñoz, C.M.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of tiger nut fibre on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Bobreneva, I.V.; Baioumy, A.A. Effect of using tiger nuts (Cyperus esculentus) on nutritional and organoleptic characteristics of beef burger. Biosci. Res. 2018, 15, 1424–1432. [Google Scholar]
- Sánchez-Zapata, E.; Zunino, V.; Pérez-Alvarez, J.A.; Fernández-López, J. Effect of tiger nut fibre addition on the quality and safety of a dry-cured pork sausage (“Chorizo”) during the dry-curing process. Meat Sci. 2013, 95, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Ezeh, O.; Niranjan, K.; Gordon, M.H. Effect of enzyme pre-treatments on bioactive compounds in extracted tiger nut oil and sugars in residual meals. J. Am. Oil Chem. Soc. 2016, 93, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Roselló-Soto, E.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M.; Cantavella-Ferrero, Y. Enhancing bioactive antioxidants’ extraction from “horchata de chufa” by-products. Foods 2018, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef] [Green Version]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Moltó, J.C. Phenolic profile of oils obtained from “horchata” by-products assisted by supercritical-CO2 and its relationship with antioxidant and lipid oxidation parameters: Triple TOF-LC-MS-MS characterization. Food Chem. 2019, 274, 865–871. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Cano-Lamadrid, M.; Issa-Issa, H.; Hurtado, P.; Hernández, F.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Comparison on sensory profile, volatile composition and consumer’s acceptance for PDO or non-PDO tigernut (Cyperus esculentus L.) milk. LWT 2021, 140, 110606. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A, Methods in Enzymology; Accademic Press: Boston, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Front. Microbiol. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free redical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH· (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Yannai, S. Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Byrne, L.T.; Colegate, M.S.; Darling, P.R.; Huxtable, C.R. Imbricatonol, a naphthol-naphthoquinone dimer isolated from stypandra imbricata and dianella revoluta. Aust. J. Chem. 1987, 40, 1315–1320. [Google Scholar] [CrossRef]
- Kreuz, S.; Joubert, E.; Waldmann, K.H.; Ternes, W. Aspalathin, a flavonoid in Aspalathus linearis (rooibos), is absorbed by pig intestine as a C-glycoside. Nutr. Res. 2008, 28, 690–701. [Google Scholar] [CrossRef]
- Tan, H.M.; Leong, K.H.; Song, J.; Mohd Sufian, N.S.F.; Mohd Hazli, U.H.A.; Chew, L.Y.; Kong, K.W. Antioxidant and LC-QToF-MS/MS analysis of polyphenols in polar and non-polar extracts from Strobilanthes crispus and Clinacanthus nutans. Int. Food Res. J. 2020, 27, 903–914. [Google Scholar]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol|BenthamScience. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Yan, J.; Zheng, D.; Sun, F.; Wang, J.; Han, L.; Zhang, Y.; Wang, T. Comprehensive chemical profiling in the ethanol extract of Pluchea indica aerial parts by liquid chromatography/mass spectrometry analysis of its silica gel column chromatography fractions. Molecules 2019, 24, 2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, E. Some physico-chemical properties, fatty acid compositions, macro-micro minerals and sterol contents of two variety tigernut tubers and oils harvested from east mediterranean region. Food Sci. Technol. 2019, 39, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Aljuhaimi, F.; Ghafoor, K.; Özcan, M.M.; Miseckaite, O.; Babiker, E.E.; Hussain, S. The effect of solvent type and roasting processes on physico-chemical properties of tigernut (Cyperus esculentus L.) tuber oil. J. Oleo Sci. 2018, 67, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Dominguez, R.; Pateiro, M.; Mañes, J.; Moltó, J.C. Evaluating the impact of supercritical-CO2 pressure on the recovery and quality of oil from “horchata” by-products: Fatty acid profile, α-tocopherol, phenolic compounds, and lipid oxidation parameters. Food Res. Int. 2019, 120, 888–894. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Gliszczynska-Swigło, A. Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. Eur. Food Res. Technol. 2016, 242, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Wan, C.; Huang, F.; Wei, C. Evaluation of quality properties and antioxidant activities of tiger nut (Cyperus esculentus L.) oil produced by mechanical expression or/with critical fluid extraction. LWT 2021, 141, 110915. [Google Scholar] [CrossRef]
- Badejo, A.A.; Olawoyin, B.; Salawu, S.O.; Fasuhanmi, O.S.; Boligon, A.A.; Enujiugha, V.N. Antioxidative potentials and chromatographic analysis of beverages from blends of gluten-free acha (Digitaria exilis) and tigernut (Cyperus esculentus) extracts. J. Food Meas. Charact. 2017, 11, 2094–2101. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Poojary, M.M.; Barba, F.J.; Lorenzo, J.M.; Mañes, J.; Moltó, J.C. Tiger nut and its by-products valorization: From extraction of oil and valuable compounds to development of new healthy products. Innov. Food Sci. Emerg. Technol. 2018, 45, 306–312. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Mhemdi, H.; Grimi, N.; Koubaa, W.; Vorobiev, E. Gas assisted mechanical expression (GAME) as a promising technology for oil and phenolic compound recovery from tiger nuts. Innov. Food Sci. Emerg. Technol. 2015, 32, 172–180. [Google Scholar] [CrossRef]
Run | Independent Factors | Response | ||
---|---|---|---|---|
X1 | X2 | X3 | TPC (µg GAE/g d.w.) | |
1 | 5 (−1) | 0 (−1) | 40 (0) | 124.02 ± 1.60 |
2 | 85 (1) | 0 (−1) | 40 (0) | 142.00 ± 1.46 |
3 | 5 (−1) | 100 (1) | 40 (0) | 57.95 ± 0.91 |
4 | 85 (1) | 100 (1) | 40 (0) | 93.64 ± 0.40 |
5 | 5 (−1) | 50 (0) | 20 (−1) | 135.34 ± 1.44 |
6 | 85 (1) | 50 (0) | 20 (−1) | 100.73 ± 1.74 |
7 | 5 (−1) | 50 (0) | 100 (1) | 278.72 ± 1.67 |
8 | 85 (1) | 50 (0) | 100 (1) | 383.11 ± 1.76 |
9 | 45 (0) | 0 (−1) | 20 (−1) | 77.80 ± 1.11 |
10 | 45 (0) | 100 (1) | 20 (−1) | 42.80 ± 1.08 |
11 | 45 (0) | 0 (−1) | 100 (1) | 281.54 ± 1.48 |
12 | 45 (0) | 100 (1) | 100 (1) | 221.53 ± 1.12 |
13 | 45 (0) | 50 (0) | 40 (0) | 305.47 ± 1.06 |
14 | 45 (0) | 50 (0) | 40 (0) | 291.97 ± 1.93 |
15 | 45 (0) | 50 (0) | 40 (0) | 298.69 ± 1.75 |
Regression Coefficients | Response | |||
---|---|---|---|---|
Effect | Standard Error | t-Value | p-Value | |
β0 * | 178.4055 | 1.9924 | 89.5448 | 0.0001 |
Lineal | ||||
β1 * | 46.8713 | 5.0403 | 9.2993 | 0.0114 |
β2 * | −52.3614 | 4.7817 | −10.9505 | 0.0082 |
β3 * | 201.9806 | 4.7817 | 42.2407 | 0.0006 |
Quadratic | ||||
β11 * | 62.9065 | 3.5192 | 17.8752 | 0.0031 |
β22 * | 131.3867 | 3.5192 | 37.3342 | 0.0007 |
β33 * | 61.8885 | 3.7167 | 16.6515 | 0.0036 |
Crossed | ||||
β12 | 8.8587 | 6.7623 | 1.3100 | 0.3204 |
β13 * | 63.7294 | 6.3755 | 9.9959 | 0.0099 |
β23 | −12.5084 | 6.7623 | −1.8497 | 0.2056 |
R2 | 0.9891 | |||
p model | 0.0000 | |||
p lack of fit | 0.2304 |
No. | Compound | Retention Time (min) | Molecular Formula | m/z Experimental | m/z Calculated | Fragments | Score (%) | Error (ppm) |
---|---|---|---|---|---|---|---|---|
1 | 2-O-Galloyl-1,4-galactarolactone | 0.274 | C13H12O11 | 343.0308 | 343.0301 | 201.0249 | 90.7 | 2.0 |
2 | Scopoletin | 0.520 | C10H8O4 | 191.1686 | 191.1680 | 111.0071; 174.0401; 160.8401 | 100 | −3.1 |
3 | Imbricantonol | 1.155 | C26H20O7 | 443.1111 | 443.1131 | 214.9512; 229.0186; 570.0947 | 93.9 | −4.5 |
4 | p-hydroxybenzoic acid | 1.341 | C7H6O3 | 137.0234 | 137.0239 | - | 100 | −3.6 |
5 | l-leucic acid | 1.916 | C6H12O3 | 131.0702 | 131.0708 | 85.0646 | 100 | −4.6 |
6 | Vanillic acid | 2.570 | C8H8O4 | 167.0338 | 167.0344 | - | 100 | −3.6 |
7 | Ethyl vanillin | 3.877 | C9H10O3 | 165.0556 | 165.0552 | 151.8809; 136.9292 | 100 | 2.4 |
8 | 4-vinylphenol | 4.643 | C8H8O | 119.0492 | 119.0497 | - | 100 | −4.2 |
9 | Ferulic acid | 5.515 | C10H10O4 | 193.0504 | 193.0501 | 134.0359; 166.9101 | 100 | 1.6 |
10 | p-coumaric acid | 5.734 | C9H8O3 | 163.0403 | 163.0395 | 119.0499; 117.0318; 149.0263 | 100 | 4.9 |
11 | 3-Hydroxyphloretin 2′-O-glucoside (aspalathin) | 7.505 | C21H24O11 | 451.3276 | 451.3271 | 225.1289; 337.1716; 433.2887; 291.9893; 189.9602; | 100 | 1.1 |
12 | Kaempferol 3,7-diglucoside, sophoraflavonoloside or luteolin-7,3′-di-O-glucoside | 8.246 | C27H30O16 | 609.1453 | 609.1456 | 297.0602; 153.0205; 507.1086; 285.0299; 447.0884 | 93.4 | −0.5 |
13 | Dehydrodivanillin | 9.467 | C16H14O6 | 301.0698 | 301.0712 | 286.0476; 166.9093; 215.0308; 239.0385 | 99.9 | −4.7 |
14 | Veronicafolin 3-glucosyl-(1->3)-galactoside | 9.652 | C30H36O18 | 683.1799 | 683.1823 | 721.1418; 593.1249; 563.1607 | 94.7 | −3.5 |
15 | Sinensetin | 10.368 | C20H20O7 | 371.1117 | 371.1131 | 175.0426; 193.0490; 145.0287; 161.0240; 161.9289 | 97.6 | −3.8 |
16 | Sinapyl alcohol | 11.642 | C11H14O4 | 209.0807 | 209.0814 | 193.0477; 175.0416 | 100 | −3.3 |
17 | p-Coumaric acid ethyl ester | 12.672 | C11H12O3 | 191.0699 | 191.0708 | 165.0252; 195.0582; 119.0503; 116.9892; 179.0338; | 100 | −4.7 |
18 | Trihydroxy octadecenoic acid isomer a | 14.400 | C18H34O5 | 329.2334 | 329.2328 | 229.1451; 211.1347; 171.1032; 183.1397 | 99.8 | 1.8 |
19 | Trihydroxy octadecenoic acid isomer b | 14.550 | C18H34O5 | 329.2332 | 329.2328 | 229.1451; 211.1347; 171.1032; 183.1397 | 95.3 | 1.2 |
20 | Trihydroxy octadecenoic acid isomer c | 15.295 | C18H34O5 | 329.2325 | 329.2328 | 229.1451; 211.1347; 171.1032; 183.1397 | 99.6 | −0.9 |
21 | Cyanidin | 15.853 | C15H11O6 | 286.2408 | 286.2400 | 265.0123; 116.1101 | 92.3 | 0.7 |
22 | Benzoic acid | 16.131 | C19H20O7 | 359.1118 | 359.1131 | 311.1693; 183.0196; 163.0394; 149.0360 | 98.4 | −3.6 |
23 | Dihydroxyoleic acid acid isomer a | 16.487 | C18H34O4 | 313.237 | 313.2379 | 183.1375;295.2259; 269.0670 | 100 | −2.9 |
24 | Dihydroxyoleic acid isomer b | 16.570 | C18H34O4 | 313.2374 | 313.2379 | 201.1127; 223.0940; 171.1013 | 100 | −1.6 |
25 | Dihydroxyoleic acid isomer c | 16.830 | C18H34O4 | 313.2367 | 313.2379 | 171.1015; 277.2166; 295.2282 | 100 | −3.8 |
26 | Dihydroxyoleic acid isomer d | 16.917 | C18H34O4 | 313.2376 | 313.2379 | 157.0854; 171.1016; 187.0971 | 100 | −1.0 |
27 | Dihydroxystearic acid | 16.975 | C18H36O4 | 315.2531 | 315.2535 | 297.2422; 279.2317 | 100 | −1.3 |
28 | Hydroxylinoleic acid isomer a | 17.091 | C18H32O3 | 295.2263 | 295.2273 | 277.2172; 187.0946; 171.1006 | 100 | −3.4 |
29 | Hydroxypalmitic acid | 17.120 | C16H32O3 | 271.2262 | 271.2273 | 187.0974; 152.9931; 125.0954 | 100 | −4.1 |
30 | Hydroxylinoleic acid isomer b | 17.202 | C18H32O3 | 295.2266 | 295.2273 | 277.2162; 171.1014; 195.1375 | 100 | −2.4 |
31 | Hydroxyoleic acid isomer a | 17.302 | C18H34O3 | 297.2418 | 297.2430 | 279.2306 | 100 | −4.0 |
32 | Hydroxyoleic acid isomer b | 17.339 | C18H34O3 | 297.2418 | 297.2430 | 279.2319 | 100 | −4.0 |
33 | Hydroxyoleic acid isomer c | 17.384 | C18H34O3 | 297.2421 | 297.2430 | 279.2316 | 100 | −3.0 |
34 | Hydroxylinoleic acid isomer c | 17.442 | C18H32O3 | 295.2263 | 295.2273 | 277.2166; 171.1017 | 100 | −3.4 |
35 | Hydroxystearic acid | 17.538 | C18H36O3 | 299.2575 | 299.2586 | 281.2489; 253.2527 | 96.7 | −3.7 |
36 | Hydroxyoleic acid isomer d | 17.621 | C18H34O3 | 297.2422 | 297.2430 | 279.2321 | 100 | −2.7 |
37 | Linolenic acid | 17.753 | C18H30O2 | 277.2156 | 277.2168 | 279.2310; 255.2310 | 100 | −4.3 |
38 | Myristic acid | 17.782 | C14H28O2 | 227.2001 | 227.2011 | 152.9942; 209.0703 | 100 | −4.4 |
39 | Palmitoleic acid | 17.865 | C16H30O2 | 253.2161 | 253.2168 | 152.9945 | 100 | −2.8 |
40 | Linoleic acid | 17.923 | C18H32O2 | 279.2319 | 279.2324 | 152.9952; 255.2314; 241.0059 | 100 | −1.8 |
41 | Methylpalmitic acid | 18.009 | C17H32O2 | 267.2319 | 267.2324 | 255.2336; 253.2151; 152.9937 | 96.2 | −1.9 |
42 | Palmitic acid | 18.088 | C16H32O2 | 255.2316 | 255.2324 | 152.9935 | 99.6 | −3.1 |
43 | Oleic acid | 18.121 | C18H34O2 | 281.2472 | 281.2481 | 255.2308; 152.9945 | 99.2 | −3.2 |
44 | Heptadecanoic acid | 18.216 | C17H34O2 | 268.2473 | 268.2481 | 269.2477; 255.2326; 152.9957 | 98.7 | −3.0 |
45 | Stearic acid | 18.344 | C18H36O2 | 283.2629 | 283.2637 | 255.2336; 279.2322; 152.9945 | 99.3 | −2.8 |
No. | Compound | PDO by-Product (µg/g d.w.) | n-PDO by-Product (µg/g d.w.) |
---|---|---|---|
1 | 2-O-Galloyl-1,4-galactarolactone | 29.17 ± 2.55 b | 5.00 ± 0.28 a |
2 | Scopoletin | 3.58 ± 0.05 b | 1.44 ± 0.03 a |
3 | Imbricantonol | 0.63 ± 0.04 b | <LOQ a |
4 | p-hydroxybenzoic acid | 0.62 ± 0.03 b | <LOQ a |
5 | Vanillic acid | 1.26 ± 0.01 b | 0.97 ± 0.02 a |
6 | Ethyl vanillin | 5.60 ± 0.13 b | 0.55 ± 0.01 a |
7 | 4-vinylphenol | 3.73 ± 0.00 b | 0.88 ± 0.02 a |
8 | Ferulic acid | 1.84 ± 0.02 b | 1.19 ± 0.06 a |
9 | p-coumaric acid | 0.77 ± 0.15 b | 0.16 ± 0.08 a |
10 | 3-Hydroxyphloretin 2′-O-glucoside (aspalathin) | 0.19 ± 0.03 a | 0.18 ± 0.00 a |
11 | Kaempferol 3,7-diglucoside, sophoraflavonoloside or luteolin-7,3′-di-O-glucoside | 0.14 ± 0.01 a | 0.10 ± 0.02 a |
12 | Dehydrodivanillin | 2.27 ± 0.04 b | 0.38 ± 0.07 a |
13 | Veronicafolin 3-glucosyl-(1->3)-galactoside | 0.23 ± 0.00 a | 0.31 ± 0.01 b |
14 | Sinensetin | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
15 | Sinapyl alcohol | 1.37 ± 0.41 a | 2.49 ± 0.58 a |
16 | p-Coumaric acid ethyl ester | 0.60 ± 0.19 a | <LOQ a |
17 | Cyanidin | 0.67 ± 0.09 a | 1.01 ± 0.03 a |
18 | Benzoic acid | 1.37 ± 0.58 a | 2.47 ± 0.02 a |
Sum of phenolic compounds | 54.07 ± 4.33 b | 17.16 ± 1.23 a |
Antioxidant Assay | PDO by-Product (µg/g d.w.) | n-PDO by-Product (µg/g d.w.) |
---|---|---|
DPPH | 434.41 ± 4.73 b | 356.90 ± 5.56 a |
ABTS | 834.61 ± 9.62 b | 726.22 ± 7.27 a |
FRAP | 757.48 ± 6.55 b | 618.31 ± 7.89 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razola-Díaz, M.d.C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.J.; Garcia-Villanova, B.; Verardo, V. New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products. Foods 2022, 11, 343. https://doi.org/10.3390/foods11030343
Razola-Díaz MdC, Gómez-Caravaca AM, Guerra-Hernández EJ, Garcia-Villanova B, Verardo V. New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products. Foods. 2022; 11(3):343. https://doi.org/10.3390/foods11030343
Chicago/Turabian StyleRazola-Díaz, María del Carmen, Ana María Gómez-Caravaca, Eduardo J. Guerra-Hernández, Belén Garcia-Villanova, and Vito Verardo. 2022. "New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products" Foods 11, no. 3: 343. https://doi.org/10.3390/foods11030343
APA StyleRazola-Díaz, M. d. C., Gómez-Caravaca, A. M., Guerra-Hernández, E. J., Garcia-Villanova, B., & Verardo, V. (2022). New Advances in the Phenolic Composition of Tiger Nut (Cyperus esculentus L.) by-Products. Foods, 11(3), 343. https://doi.org/10.3390/foods11030343