An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Plasma Treatments
2.2. Production of 1018K6
2.3. 1018K6 Immobilization on Polymer Surfaces and Release Test
2.4. Sample Preparation
2.5. pH and aw Measurements
2.6. Microbiological Analyses
2.7. Challenge Test
2.8. Colour
2.9. TBARS, Total Volatile Basic Nitrogen (TVB-N) and Trimethylamine (TMA) Analyses
2.10. Sensory Testing
2.11. Statistical Analyses
3. Results
3.1. 1018K6 Immobilization on PP Surface
3.2. Effects of 1018K6-PP on the Physical Properties and on the Microbiological Quality of Salmon Fillets
- (1)
- the high local concentration of the peptide tethered to the polymeric surface;
- (2)
- the strong electrostatic interaction between the cationic peptide chains and anionic bacteria cell membranes (instead of membrane insertion), thus leading to an alteration of the potential across the bacterial membrane, which ultimately triggers cellular death.
3.3. Instrumental Colour Analysis of Salmon Fillets
3.4. Effect of 1018K6-PP on Chemical Parameters of Salmon Fillets
3.5. Panelists’ Sensory Evaluation
3.6. Microbial Challenge Testing of L. monocytogenes on Salmon Fillets Packaged with 1018K6-PP
3.7. Evaluation of 1018K6-PPs Slides on the Physicochemical, Microbial and Sensorial Properties of Sarda Sarda Burgers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ackman, R.G. Fatty acids. In Marine Biogenic Lipids, Fats and Oils; CRC Press: Boca Raton, FL, USA, 1989; pp. 103–137. [Google Scholar]
- Ashie, I.N.A.; Smith, J.P.; Simpson, B.K. Spoilage and Shelf Life Extension of Fresh Fish and Shellfish. Cri. Rev. Food Sci. Nutr. 1996, 36, 87–121. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Chotphruethipong, L.; Benjakul, S. Use of cashew (Anacardium occidentale L.) leaf extract for prevention of lipidoxidation in Mayonnaise enriched with fish oil. Turkish J. Fish Aquat. Sci. 2019, 19, 825–836. [Google Scholar]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidantsin prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Hsieh, R.J.; Kinsella, J.E. Oxidation of polyunsaturatedfatty acids: Mechanisms, products, and inhibition with emphasison fish. Adv. Food Nutr. Res. 1989, 33, 233–341. [Google Scholar]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Comparative study on nitrogen and argon-based modified atmosphere-packaging on microbiological, chemical, and sensory attributes as well as on microbial diversity of Asian sea bass. Food Packag. Shelf Life 2019, 22, 100404. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S.; Sumpavapol, P.; Osako, K.; Faithong, N. Characterization of endogenous protease and the changes in proteolytic activity of Acetes vulgaris and Macrobrachium lanchesteri during kapi production. J. Food Biochem. 2017, 41, e12311. [Google Scholar] [CrossRef] [Green Version]
- Socaciu, M.I.; Semeniuc, C.A.; Vodnar, D.C. Edible films and coatings for fresh fish packaging: Focus on quality changes and shelf-life extension. Coatings 2018, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Rollini, M.; Nielsen, T.; Musatti, A.; Limbo, S.; Piergiovanni, L.; Hernandez Munoz, P.; Gavara, R. Antimicrobial performance of two different packaging materials on the microbiological quality of fresh salmon. Coatings 2016, 6, 6. [Google Scholar] [CrossRef]
- Palmieri, G.; Balestrieri, M.; Proroga, Y.T.R.; Falcigno, L.; Facchiano, A.; Riccio, A.; Capuano, F.; Marrone, R.; Neglia, G.; Anastasio, A. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem. 2016, 211, 546–554. [Google Scholar] [CrossRef]
- Palmieri, G.; Balestrieri, M.; Capuano, F.; Proroga, Y.T.R.; Pomilio, F.; Centorame, P.; Riccio, A.; Marrone, R.; Anastasio, A. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry. Int. J. Food. Microbiol. 2018, 279, 33–42. [Google Scholar] [CrossRef]
- Agrillo, B.; Balestrieri, M.; Gogliettino, M.; Palmieri, G.; Moretta, R.; Proroga, Y.T.; Cornacchia, A.; Capuano, F.; Smaldone, G.; De Stefano, L. Functionalized polymeric materials with bio-derived antimicrobial peptides for “active” packaging. Int. J. Mol. Sci. 2019, 20, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festa, R.; Ambrosio, R.L.; Lamas, A.; Gratino, L.; Palmieri, G.; Franco, C.M.; Cepeda, A.; Anastasio, A. A Study on the An-timicrobial and Antibiofilm Peptide 1018K6 as Potential Alternative to Antibiotics against Food-Pathogen Salmonella enterica. Foods 2021, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, B.; Proroga, Y.T.R.; Gogliettino, M.; Balestrieri, M.; Tatè, R.; Nicolais, L.; Palmieri, G. A Safe and Multitasking Antimicrobial Decapeptide: The Road from De Novo Design to Structural and Functional Characterization. Int. J. Mol. Sci. 2020, 21, 6952. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Ambrosio, R.L.; Smaldone, G.; Di Paolo, M.; Vollano, L.; Ceruso, M.; Anastasio, A.; Marrone, R. Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals 2021, 11, 3060. [Google Scholar] [CrossRef]
- Conway, E.J.; Byrne, A. An absorption apparatus for the micro-determination of certain volatile substances: The mi-cro-determination of ammonia. Biochem. J. 1933, 27, 419. [Google Scholar]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. A new method to bio-preserve sea bass fillets. Int. J. Food Microbiol. 2018, 271, 60–66. [Google Scholar] [CrossRef]
- Palmieri, G.; Tatè, R.; Gogliettino, M.; Balestrieri, M.; Rea, I.; Terracciano, M.; Proroga, Y.T.; Capuano, F.; Anastasio, A.; De Stefano, L. Small synthetic peptides bioconjugated to hybrid gold nanoparticles destroy potentially deadly bacteria at sub-micromolar concentrations. Bioconjug. Chem. 2018, 29, 3877–3885. [Google Scholar] [CrossRef]
- Baniya, H.B.; Shrestha, R.; Guragain, R.P.; Kshetri, M.B.; Pandey, B.P.; Subedi, D.P. Generation and characterization of an atmospheric-pressure plasma jet (APPJ) and its application in the surface modification of polyethylene terephthalate. Int. J. Polym. Sci. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Stamatiou, A.P.; Nychas, G.J. Microbiological aspects and shelf life of processed seafood products. J. Sci. Food Agric. 2013, 93, 1184–1190. [Google Scholar] [CrossRef]
- Alves, V.L.; Rico, B.P.; Cruz, R.M.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT 2018, 89, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Kitundu, E.; Young, O.; Seale, B.; Owens, A. Lactic fermentation of cooked, comminuted mussel, Perna canaliculus. Food Microbiol. 2021, 99, 103829. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rodriguez, M.N.; Sanz, J.J.; Santos, J.A.; Otero, A.; Garcia-Lopez, M.L. Bacteriological quality of aquacultured freshwater fish portions in prepackaged trays stored at 3 C. J. Food Prot. 2001, 64, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Lerfall, J.; Jakobsen, A.N.; Skipnes, D.; Waldenstrøm, L.; Hoel, S.; Rotabakk, B.T. Comparative evaluation on the quality and shelf life of Atlantic salmon (Salmo salar L.) filets using microwave and conventional pasteurization in combination with novel packaging methods. J. Food Sci. 2018, 83, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Mace, S.; Cornet, J.; Chevalier, F.; Cardinal, M.; Pilet, M.F.; Dousset, X.; Joffraud, J.J. Characterization of the spoilage microbiota in raw salmon steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR-TTGE. Food Microbiol. 2012, 30, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Wiernasz, N.; Leroi, F.; Chevalier, F.; Cornet, J.; Cardinal, M.; Rohloff, J.; Pilet, M.F. Salmon gravlax biopreservation with lactic acid bacteria: A polyphasic approach to assessing the impact on organoleptic properties, microbial ecosystem and volatilome composition. Front. Microbiol. 2020, 10, 3103. [Google Scholar] [CrossRef] [PubMed]
- Geeroms, N.; Verbeke, W.; Van Kenhove, P. Consumers’ health-related motive orientations and ready meal consumption behaviour. Appetite 2008, 51, 704–712. [Google Scholar] [CrossRef]
- Roberts, T.A.; Bryan, F.L.; Christian, J.H.B.; Kilsby, D.; Olson, J.C., Jr.; Siliker, J.H. ICMSF: International Commission on Microbiological Specifications for Foods. Microorganisms in Foods. 2. Sampling for Microbial Analysis. Principles and Specific Applications, 2nd ed.; University of Toronto Press: Toronto, ON, Canada, 1986. [Google Scholar]
- Colagiorgi, A.; Festa, R.; Di Ciccio, P.A.; Gogliettino, M.; Balestrieri, M.; Palmieri, G.; Anastasio, A.; Ianieri, A. Rapid biofilm eradication of the antimicrobial peptide 1018K6 against Staphylococcus aureus: A new potential tool to fight bacterial bio-films. Food Control 2020, 107, 106815. [Google Scholar] [CrossRef]
- Merlo, T.C.; Contreras-Castillo, C.J.; Saldana, E.; Barancelli, G.V.; Dargelio, M.D.B.; Yoshida, C.M.P.; Ribeiro Junior, E.E.; Massarioli, A.; Venturini, A.C. Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets. Food Res. Int. 2019, 125, 108633. [Google Scholar] [CrossRef]
- Lerfall, J.; Bendiksen, E.A.; Olsen, J.V.; Østerlie, M. A comparative study of organic- versus conventional Atlantic Salmon. II. Fillet color, carotenoid- and fatty acid composition as affected by dry salting, cold smoking and storage. Aquaculture 2015, 451, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Bjerkeng, B. Carotenoid pigmentation of salmonid fishes–recent progress 1. In Avances en Nutricion Acuicola V Memorias del V. Simposium Internacional de Nutricion Acuicola; Merida: Yucatan, Mexico, 2000; pp. 71–89. [Google Scholar]
- Yeşilayer, N. Comparison of Flesh Colour Assessment Methods for Wild Brown Trout (Salmo trutta macrostigma), Farmed Rainbow Trout (Oncorhynchus mykiss) and Farmed Atlantic Salmon (Salmo salar). Pak. J. Zool. 2020, 3, 52. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 C. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Lalabadi, M.; Rafiei, L.; Divband, B.; Ehsani, A. Active packaging for Salmon stored at refrigerator with Polypropylene nanocomposites containing 4A zeolite, ZnO nanoparticles, and green tea extract. Food Sci. Nutr. 2020, 8, 6445–6456. [Google Scholar] [CrossRef] [PubMed]
- Bramstedt, F.; Auerbach, M. The Spoilage of Fresh-Water Fish. In Fish as Food; Borgstram, G., Ed.; Academic Press Inc.: San Diego, CA, USA, 1961; Volume 1, pp. 613–637. [Google Scholar]
- Jacquot, R. Organic Constituents of Fish and Other Aquatic Animal Foods. In Fish as Food; Borgstram, G., Ed.; Academic Press Inc.: San Diego, CA, USA, 1961; Volume 1, pp. 145–209. [Google Scholar]
- Jorgensen, L.V.; Huss, H.H.; Dalgaard, P. The effect of biogenic amine production by single bacterial cultures and metabiosis on cold-smoked salmon. J. Appl. Microbiol. 2000, 89, 920–934. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Ho, P.; Lopez-Caballero, M.E.; Vaz-Pires, P.; Nunes, M.L. Characterization and identification of microflora from soaked cod and respective salted raw materials. Food Microbiol. 2003, 20, 471–481. [Google Scholar] [CrossRef]
- European Commission. Commission implementing regulation (EU) 2019/627 of 15 March 2019 laying down uniform practical arrangements for the performance of official controls on products of animal origin intended for human consumption in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and amending Commission Regulation (EC) No 2074/2005 as regards official controls. Off. J. Eur. Union L 2019, 131, 51–100. [Google Scholar]
- Dalgaard, P.; Gram, L.; Huss, H.H. Spoilage and shelf life of cod fillets packed in vacuum or modified atmospheres. Int. J. Food Microbiol. 1993, 19, 283–294. [Google Scholar] [CrossRef]
- Boskou, G.; Debevere, J. Reduction of trimethylamine oxide by Shewanella spp. under modified atmospheres in vitro. Food Microbiol. 1997, 14, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Giménez, B.; Roncalés, P.; Beltrán, J.A. The effects of natural antioxidants and lighting conditions on the quality of salmon (Salmo salar) fillets packaged in modified atmosphere. J. Sci. Food Agric. 2005, 85, 1033–1040. [Google Scholar] [CrossRef]
- Chung, S.W.C.; Chan, B.T.P. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit. Contam. 2009, 2 Pt B, 44–51. [Google Scholar] [CrossRef]
- Dalgaard, P. Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int. J. Food Microbiol. 1995, 26, 319–333. [Google Scholar] [CrossRef]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria—Problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Shumilina, E.; Slizyte, R.; Mozuraityte, R.; Dykyy, A.; Stein, T.A.; Dikiy, A. Quality changes of salmon by-products during storage: Assessment and quantification by NMR. Food Chem. 2016, 211, 803–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeisi, M.; Tajik, H.; Aliakbarlu, J.; Mirhosseini, S.H.; Hosseini, S.M.H. Effect of carboxymethyl cellulose-based coatings in-cor- porated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Sci. Technol. 2015, 64, 898–904. [Google Scholar] [CrossRef]
- Secci, G.; Parisi, G. From farm to fork: Lipid oxidation in fish products. A review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
- Remya, S.; Mohan, C.O.; Bindu, J.; Sivaraman, G.K.; Venkateshwarlu, G.; Ravishankar, C.N. Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. J. Food Sci. Technol. 2016, 53, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Ana-lytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef]
- Rasekh, J.; Kramer, A.; Finch, R. Objective evaluation of canned tuna sensory quality. J. Food Sci. 1970, 35, 417–423. [Google Scholar] [CrossRef]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or orégano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Françoise, L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 2010, 27, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Int. Food Res. 2017, 99, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sveinsdóttir, K.; Magnússon, H.; Martinsdóttir, E. Combined Application of Modified Atmosphere Packaging and Superchilled Storage to Extend the Shelf Life of Fresh Cod (Gadus morhua) Loins. J. Food Sci. 2007, 73, S11–S19. [Google Scholar] [CrossRef] [PubMed]
Day | 0 | 4 | 7 | ||
---|---|---|---|---|---|
m ± sem | m ± sem | m ± sem | |||
TAB 30 °C | CTR | 4.76 ± 0.06 A | 6.77 ± 0.07 B | 6.89 ± 0.02 B | |
1018K6-PP | 4.76 ± 0.06 A | 6.73 ± 0.01 B | 6.88 ± 0.01 C | ||
TAB 7 °C | CTR | 2.91 ± 0.04 A | 4.24 ± 0.01 B,X | 5.32 ± 0.04 C | |
1018K6-PP | 2.91 ± 0.04 A | 4.56 ± 0.04 B,Y | 5.28 ± 0.04 C | ||
Coliforms | CTR | 1.91 ± 0.05 A | 3.91 ± 0.04 a,B,X | 3.44 ± 0.19 b,B | |
1018K6-PP | 1.91 ± 0.05 A | 3.56 ± 0.07 B,Y | 3.44 ± 0.18 B | ||
Enterobacteriaceae | CTR | 0.96 ± 0.01 A | 3.86 ± 0.07 B,x | 3.07 ± 0.04 C,X | |
1018K6-PP | 0.96 ± 0.01 A | 3.66 ± 0.04 B,y | 3.96 ± 0.04 C,Y | ||
Pseudomonas spp. | CTR | 4.31 ± 0.09 A | 7.32 ± 0.10 B,X | 7.44 ± 0.16 B,X | |
1018K6-PP | 4.31 ± 0.09 A | 6.28 ± 0.05 B,Y | 6.91 ± 0.04 C,Y | ||
E. coli | CTR | niA | 2.07 ± 0.09 B,X | 2.95 ± 0.03 C,X | |
1018K6-PP | ni | niY | niY | ||
Enterococcus faecalis | CTR | 3.32 ± 0.08 A | 3.96 ± 0.01 B,X | 5.07 ± 0.12 C,x | |
1018K6-PP | 3.32 ± 0.08 a,A | 2.96 ± 0.12 bA,Y | 4.74 ± 0.06 B,y | ||
B. thermosphacta | CTR | 4.98 ± 0.07 A | 5.98 ± 0.03 B,X | 7.36 ± 0.14 C,X | |
1018K6-PP | 4.98 ± 0.07 A | 6.81 ± 0.04 B,Y | 5.96 ± 0.19 C,Y | ||
Staph. coagulase positive | CTR | niA | 2.26 ± 0.09 B,X | 3.19 ± 0.05 C,X | |
1018K6-PP | niA | niA,Y | 1.96 ± 0.02 B,Y | ||
pH | CTR | 6.25 ± 0.01 A | 6.18 ± 0.02 B,X | 6.07 ± 0.03 C | |
1018K6-PP | 6.25 ± 0.01 A | 6.11 ± 0.01 B,Y | 6.02 ± 0.01 C | ||
aw | CTR | 0.973 ± 0.003 a | 0.981 ± 0.001 b | 0.982 ± 0.002 b | |
1018K6-PP | 0.973 ± 0.003 a | 0.979 ± 0.000 b | 0.980 ± 0.002 b |
Day | 0 | 4 | 7 | ||
---|---|---|---|---|---|
m ± sem | m ± sem | m ± sem | |||
L* | CTR | 43.51 ± 1.47 a | 45.93 ± 0.63 a,X | 48.23 ± 0.67 b,x | |
1018K6-PP | 43.51 ± 1.47 A | 36.13 ± 1.89 B,Y | 44.48 ± 1.51 A,y | ||
a* | CTR | 16.78 ± 0.83 | 19.75 ± 1.41 | 15.94 ± 1.44 | |
1018K6-PP | 16.78 ± 0.83 | 20.02 ± 1.25 a | 16.63 ± 0.59 b | ||
b* | CTR | 21.15 ± 1.68 | 23.55 ± 2.86 | 15.94 ± 1.99 | |
1018K6-PP | 21.15 ± 1.68 | 24.40 ± 3.40 | 17.01 ± 1.62 | ||
Chroma | CTR | 27.01 ± 1.82 | 30.76 ± 3.06 | 22.55 ± 2.43 | |
1018K6-PP | 27.01 ± 1.82 | 31.63 ± 3.30 | 23.82 ± 1.52 | ||
Hue angle | CTR | 51.46 ± 1.01 A | 49.75 ± 1.64 a | 44.80 ± 0.92 b,B | |
1018K6-PP | 51.46 ± 1.01 a | 50.10 ± 2.92 | 45.42 ± 1.97 b | ||
ΔE | CTR | 6.31 ± 2.26 | 7.22 ± 0.88 | ||
1018K6-PP | 9.47 ± 1.45 | 6.45 ± 1.82 | |||
Δa* | CTR | 2.97 ± 1.94 | −0.83 ± 0.61 | ||
1018K6-PP | 3.24 ± 1.53 | −0.14 ± 1.21 | |||
Δb* | CTR | 2.40 ± 3.14 a | −5.21 ± 0.67 b | ||
1018K6-PP | 3.24 ± 2.55 | −4.15 ± 3.28 |
Day | 0 | 3 | 5 | 7 | ||
---|---|---|---|---|---|---|
m ± sem | m ± sem | m ± sem | m ± sem | |||
TAB 30 °C | CTR | 6.25 ± 0.02 a,A | 6.52 ± 0.17 A | 6.74 ± 0.17 b,A | 8.14 ± 0.08 X,B | |
1018K6-PP | 6.25 ± 0.02 | 6.17 ± 0.12 | 6.22 ± 0.22 | 6.37 ± 0.34 Y | ||
TAB 7 °C | CTR | 5.16 ± 0.09 A | 6.36 ± 0.08 B | 6.79 ± 0.07 C,X | 8.17 ± 0.04 D,X | |
1018K6-PP | 5.16 ± 0.09 A | 6.01 ± 0.16 B | 5.94 ± 0.19 B,Y | 6.50 ± 0.39 B,Y | ||
Coliforms | CTR | 4.61 ± 0.02 A | 5.39 ± 0.09 a,B,X | 4.90 ± 0.04 C | 5.15 ± 0.06 b,B,X | |
1018K6-PP | 4.61 ± 0.02 | 4.60 ± 0.23 Y | 4.62 ± 0.16 | 4.35 ± 0.25 Y | ||
Enterobacteriaceae | CTR | 3.26 ± 0.17 A | 5.96 ± 0.57 B,C,X | 4.98 ± 0.10 B | 5.26 ± 0.00 C | |
1018K6-PP | 3.26 ± 0.17 A | 3.63 ± 0.46 a,A,Y | 4.97 ± 0.16 b,B | 5.11 ± 0.15 B | ||
Pseudomonas spp. | CTR | 5.91 ± 0.02 a,A | 6.51 ± 0.20 bB,x | 5.79 ± 0.10 A,x | 8.59 ± 0.09 C,X | |
1018K6-PP | 5.91 ± 0.02 A | 5.91 ± 0.13 y | 5.47 ± 0.08 B,y | 6.44 ± 0.36 Y | ||
E. coli | CTR | 1.50 ± 0.12 a | 1.80 ± 0.20 A | 1.62 ± 0.11 A | 1.11 ± 0.09 b,B | |
1018K6-PP | 1.50 ± 0.12 | 1.32 ± 0.18 | 1.19 ± 0.23 | 1.28 ± 0.16 | ||
Enterococcus faecalis | CTR | 4.39 ± 0.13 A | 4.41 ± 0.09 A,X | 3.21 ± 0.23 B | 3.96 ± 0.00 C | |
1018K6-PP | 4.39 ± 0.13 a,A | 3.39 ± 0.13 B,Y | 3.81 ± 0.39 | 3.87 ± 0.21 b | ||
B. thermosphacta | CTR | niA | niA | 1.98 ± 0.00 B,X | 1.98 ± 0.00 B,X | |
1018K6-PP | ni | ni | niY | niY | ||
Staph. coagulase positive | CTR | 4.45 ± 0.01 A | 5.64 ± 0.08 B,X | 4.23 ± 0.14 A,X | 4.37 ± 0.26 A,X | |
1018K6-PP | 4.45 ± 0.01 A | 4.12 ± 0.16 a,A,Y | 3.6 ± 0.08 b,B,Y | 3.19 ± 0.22 B,Y | ||
pH | CTR | 6.20 ± 0.01 A | 6.18 ± 0.00 A,x | 6.24 ± 0.01 B | 6.39 ± 0.03 C,X | |
1018K6-PP | 6.20 ± 0.01 a | 6.21 ± 0.01 y | 6.23 ± 0.00 b | 6.26 ± 0.03 b,Y | ||
aw | CTR | 0.976 ± 0.006 | 0.969 ± 0.001 a | 0.972 ± 0.001 | 0.974 ± 0.001 b | |
1018K6-PP | 0.976 ± 0.006 | 0.963 ± 0.009 | 0.973 ± 0.000 | 0.974 ± 0.002 |
Day | 0 | 3 | 5 | 7 | ||
---|---|---|---|---|---|---|
m ± sem | m ± sem | m ± sem | m ± sem | |||
L* | CTR | 42.68 ± 1.09 | 41.07 ± 0.51 A | 42.95 ± 1.20 | 45.04 ± 0.77 B,x | |
1018K6-PP | 42.68 ± 1.09 a | 39.76 ± 0.74 b,A | 42.32 ± 0.80 a | 42.79 ± 0.70 B,y | ||
a* | CTR | 6.12 ± 0.89 | 4.93 ± 0.20 A | 4.87 ± 0.47 A,x | 7.46 ± 0.27 B,X | |
1018K6-PP | 6.79 ± 0.34 a,A | 4.74 ± 0.37 B | 5.95 ± 0.20 b,A,y | 6.12 ± 0.63 Y | ||
b* | CTR | 12.42 ± 0.38 a,A | 15.61 ± 0.31 B,x | 10.71 ± 0.77 A | 10.93 ± 0.60 b,A | |
1018K6-PP | 12.42 ± 0.38 a,A | 14.50 ± 0.37 B,y | 12.29 ± 0.38 a,A | 10.53 ± 0.70 b,A | ||
Chroma | CTR | 13.89 ± 0.44 a,A | 16.37 ± 0.33 B,x | 11.79 ± 0.83 b,A,x | 13.24 ± 0.61 A | |
1018K6-PP | 14.15 ± 0.43 | 15.28 ± 0.35 A,y | 13.66 ± 0.37 B,y | 12.21 ± 0.86 B | ||
Hue angle | CTR | 63.86 ± 3.54 a | 72.47 ± 0.62 b,A | 65.48 ± 1.87 B | 55.51 ± 1.09 b,B,x | |
1018K6-PP | 61.34 ± 1.08 A | 71.86 ± 1.45 B | 64.11 ± 0.97 A | 60.06 ± 1.83 A,y | ||
ΔE | CTR | 4.20 ± 0.60 A | 3.61 ± 0.88 B | 4.06 ± 0.91 B | ||
1018K6-PP | 4.60 ± 0.80 A | 2.79 ± 0.70 a,B | 3.65 ± 0.76 b,B | |||
Δb* | CTR | 3.10 ± 0.00 | −1.71 ± 0.91 | −1.49 ± 0.54 | ||
1018K6-PP | 2.09 ± 0.39 | −0.13 ± 0.37 | −1.88 ± 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosio, R.L.; Gogliettino, M.; Agrillo, B.; Proroga, Y.T.R.; Balestrieri, M.; Gratino, L.; Cristiano, D.; Palmieri, G.; Anastasio, A. An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022, 11, 338. https://doi.org/10.3390/foods11030338
Ambrosio RL, Gogliettino M, Agrillo B, Proroga YTR, Balestrieri M, Gratino L, Cristiano D, Palmieri G, Anastasio A. An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods. 2022; 11(3):338. https://doi.org/10.3390/foods11030338
Chicago/Turabian StyleAmbrosio, Rosa Luisa, Marta Gogliettino, Bruna Agrillo, Yolande T. R. Proroga, Marco Balestrieri, Lorena Gratino, Daniela Cristiano, Gianna Palmieri, and Aniello Anastasio. 2022. "An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study" Foods 11, no. 3: 338. https://doi.org/10.3390/foods11030338
APA StyleAmbrosio, R. L., Gogliettino, M., Agrillo, B., Proroga, Y. T. R., Balestrieri, M., Gratino, L., Cristiano, D., Palmieri, G., & Anastasio, A. (2022). An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods, 11(3), 338. https://doi.org/10.3390/foods11030338