Distinctive Traits of Four Apulian Traditional Agri-Food Product (TAP) Cheeses Manufactured at the Same Dairy Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese and Natural Whey Starter Sampling
2.2. Compositional Analysis
2.3. Cultivable Microbiota
2.4. 16S Metagenetic Analysis
2.5. Assessment of Enzymatic Activities
2.6. Assessment of Proteolysis
2.7. VOC Analysis
2.8. Statistical Analysis
3. Results
3.1. Compositional Analysis of TAP Cheeses
3.2. Cultivable Microbiota of TAP Cheeses
3.3. Culture-Independent Analysis of the Bacterial Community of TAP Cheeses
3.4. Residual Enzymatic Activities in TAP Cheeses
3.5. Proteolysis in TAP Cheeses
3.6. VOC Profile of TAP Cheeses
3.7. Correlations between Microbiota and Biochemical Characteristics of TAP Cheeses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aquilanti, L.; Osimani, A.; Cardinali, F.; Clementi, F.; Foligni, R.; Garofalo, C.; Loreto, N.; Mandolesi, S.; Milanović, V.; Mozzon, M. Valorization of Foods: From Tradition to Innovation. In The First Outstanding 50 Years of “Università Politecnica delle Marche”, 1st ed.; Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 565–581. [Google Scholar] [CrossRef]
- European Commission: Agricultural and Rural Development: PDO, PGI, TSG Logos. 2012. Available online: http://ec.europa.eu/agriculture/quality/schemes/logos/index_en.htm (accessed on 27 October 2021).
- Ministerial Decree n. 350. Regolamento Recante Norme Per L’individuazione dei Prodotti Tradizionali di cui All’articolo 8, Comma 1, del Decreto Legislativo 30 Aprile 1998, n. 173. 1999. Available online: https://www.gazzettaufficiale.it/eli/id/1999/10/12/099G0423/sg (accessed on 27 October 2021).
- Renna, M.; Signore, A.; Santamaria, P. Traditional agrifood products: An expression of Italian cultural heritage. Italus Hortus 2018, 25, 1–13. [Google Scholar] [CrossRef]
- Mipaaf. Ministero delle Politiche Agricole Alimentari e Forestali Decreto ministeriale 15 febbraio 2021. Aggiornamento dell’elenco nazionale dei prodotti agroalimentari tradizionali ai sensi dell’articolo 12, comma 1, della legge 12 dicembre 2016, n. 238. (21A01168). Gazz. Uff. Ser. Gen. 2021, 48, 1–10. [Google Scholar]
- Gobbetti, M.; Neviani, E.; Fox, P.F.; Varanini, G.M. The Cheeses of Italy: Science and Technology, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–274. [Google Scholar] [CrossRef]
- Mipaaf. Ministero delle Politiche Agricole Alimentari e Forestali, Decreto ministeriale 18 luglio 2000. Elenco nazionale dei prodotti agroalimentari tradizionali. Gazz. Uff. 2000, 194, 1–2. [Google Scholar]
- Lacirignola, C.; De Blasi, G.; Bianco, V.V.; Gobbetti, M.; Faretra, F.; Vanadia, S. (Eds.) Regione Puglia-Area Politiche per lo Sviluppo Rurale. In Atlante dei Prodotti Tipici Agroalimentari di Puglia, 4th ed.; Edit s.r.l.: Bari, Italy, 2010. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on the Case for a Local Farming and Direct Sales Labelling Scheme. 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/be106719-60e5-11e3-ab0f-01aa75ed71a1 (accessed on 27 October 2021).
- Dambrosio, A.; Ioanna, F.; Storelli, M.M.; Castiglia, D.; Giannico, F.; Colonna, M.A.; De Rosa, M.; Quaglia, C.N. Microbiological quality and safety of cheeses belonging to “Traditional Agri-food Products (T.A.P.). J. Food Saf. 2018, 38, e12539. [Google Scholar] [CrossRef]
- Lerma-Garcia, M.J.; Gori, A.; Cerretani, L.; Simó-Alfonso, E.F.; Caboni, M.F. Classification of Pecorino cheeses produced in Italy according to their ripening time and manufacturing technique using Fourier transform infrared spectroscopy. J. Dairy Sci. 2010, 93, 4490–4496. [Google Scholar] [CrossRef]
- Baldini, M.; Fabietti, F.; Stefania, G.; Onori, R.; Orefice, L.; Stacchini, A. Metodi di analisi utilizzati per il controllo chimico degli alimenti. In Rapporti ISTISAN 96/34; Istituto Superiore di Sanità: Roma, Italy, 1996. [Google Scholar]
- Mipaaf. Ministero delle Politiche Agricole e Forestali, Decreto Ministeriale 21 aprile 1986. Approvazione dei “metodi ufficiali di analisi per i formaggi”. Gazz. Uff. Ser. Gen. 1986, 229, 11–23. [Google Scholar]
- ISO-3433; Cheese-Determination of Fat Content—Van Gulik Method. ISO: Geneva, Switzerland, 2008.
- Fox, P.F. Potentiometric determination of salt in cheese. J. Dairy Sci. 1963, 46, 744–745. [Google Scholar] [CrossRef]
- Zeppa, G.; Conterno, L.; Gerbi, V. Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. J. Agric. Food Chem. 2001, 49, 2722–2726. [Google Scholar] [CrossRef]
- Minervini, F.; Conte, A.; Del Nobile, M.A.; Gobbetti, M.; De Angelis, M. Dietary fibers and protective lactobacilli drive burrata cheese microbiome. Appl. Environ. Microbiol. 2017, 83, e01494-17. [Google Scholar] [CrossRef]
- De Pasquale, I.; Di Cagno, R.; Buchi, S.; De Angelis, M.; Gobbetti, M. Use of autochthonous mesophilic lactic acid bacteria as starter cultures for making Pecorino Crotonese cheese: Effect on compositional, microbiological and biochemical attributes. Food Res. Int. 2019, 116, 1344–1356. [Google Scholar] [CrossRef]
- Mühling, M.; Woolven-Allen, J.; Murrell, J.; Joint, I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2008, 2, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2013, 30, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Andreotti, R.; Pérez de León, A.; Dowd, S.E.; Guerrero, F.D.; Bendele, K.G.; Scoles, G. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011, 11, 1–11. [Google Scholar] [CrossRef]
- Kuchroo, C.N.; Fox, P.F. Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft 1982, 36, 331–335. [Google Scholar]
- Gobbetti, M.; Lowney, S.; Smacchi, E.; Battistotti, B.; Damiani, P.; Fox, P.F. Microbiology and biochemistry of taleggio cheese during ripening. Int. Dairy J. 1997, 7, 509–517. [Google Scholar] [CrossRef]
- Orlowski, N.; Wilk, S.A. multicatalytical protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem. Biophys. Res. Commun. 1981, 101, 814–822. [Google Scholar] [CrossRef]
- Kieronczyk, A.; Skeie, S.; Langsrud, T.; Yvon, M. Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl. Environ. Microbiol. 2003, 69, 734–739. [Google Scholar] [CrossRef]
- De Angelis, M.; Curtin, Á.C.; Mcsweeney, P.L.H.; Faccia, M.; Gobbetti, M. Lactobacillus reuteri DSM 20016: Purification and characterization of a cystathionine γ-lyase and use as adjunct starter in cheesemaking. J. Dairy Res. 2002, 69, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Fox, P.F.; Stepaniak, L. Esterolytic and lipolytic activities of mesophilic and thermophilic lactobacilli. Ital. J. Food Sci. 1996, 8, 125–135. [Google Scholar]
- Blakesley, R.W.; Boezi, J.A. A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250. Anal. Biochem. 1977, 82, 580–582. [Google Scholar] [CrossRef]
- Di Cagno, R.D.; Evan, M.R.; De Angelis, M.D.; Minervini, F.; Rizzello, C.G.; Anne, D.M.; Fox, P.F.; Gobbetti, M. Compositional, microbiological, biochemical, volatile profile and sensory characterization of four Italian semi-hard goats’ cheeses. J. Dairy Res. 2007, 74, 468–477. [Google Scholar] [CrossRef]
- Baukje, F.; Fox, P.F. Use of the Cd-ninhydrin reagent to assess proteolysis in cheese during ripening. J. Dairy Res. 1992, 59, 217–224. [Google Scholar] [CrossRef]
- Salum, P.; Erbay, Z.; Kelebek, H.; Selli, S. Optimization of Headspace Solid-Phase Microextraction with Different Fibers for the Analysis of Volatile Compounds of White-Brined Cheese by Using Response Surface Methodology. Food Anal. Methods 2017, 10, 1956–1964. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Liotta, L.; Angelis, M.D.; Celano, G.; Russo, N.; Hoorde, K.V.; Chiofalo, V.; Pino, A.; Caggia, C. Adjunct Culture of Non-Starter Lactic Acid Bacteria for the Production of Provola Dei Nebrodi PDO Cheese: In Vitro Screening and Pilot-Scale Cheese-Making. Microorganisms 2021, 9, 179. [Google Scholar] [CrossRef]
- Calasso, M.; Ercolini, D.; Mancini, L.; Stellato, G.; Minervini, F.; Di Cagno, R.; De Angelis, M.; Gobbetti, M. Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiol. 2016, 54, 115–126. [Google Scholar] [CrossRef]
- Aquilanti, L.; Santarelli, S.; Babini, V.; Osimani, A.; Clementi, F. Quality evaluation and discrimination of semi-hard and hard cheeses from the Marche region (Central Italy) using chemometric tools. Int. Dairy J. 2013, 29, 42–52. [Google Scholar] [CrossRef]
- Coda, R.; Brechany, E.; De Angelis, M.; De Candia, S.; Di Cagno, R.; Gobbetti, M. Comparison of the compositional, microbiological, biochemical, and volatile profile characteristics of nine italian ewes’ milk cheeses. J. Dairy Sci. 2006, 89, 4126–4143. [Google Scholar] [CrossRef]
- Faccia, M.; Gambacorta, G.; Caponio, F.; Pati, S.; Di Luccia, A. Influence of type of milk and ripening time on proteolysis and lipolysis in a cheese made from overheated milk. Int. J. Food Sci. Technol. 2007, 42, 427–433. [Google Scholar] [CrossRef]
- Guinee, T.P.; Fox, P.F. Salt in Cheese: Physical, Chemical and Biological Aspects. In Cheese: Chemistry, Physis and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Academic Press: London, UK, 2004; Volume 1, pp. 207–260. [Google Scholar]
- Beresford, T. What factors affect microbial growth in cheese? In Cheese Problems Solved, 1st ed.; McSweeney, P.L.H., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 119–123. [Google Scholar]
- Câmara, S.P.; Dapkevicius, A.; Rosa, H.J.; Silva, C.C.; Malcata, F.X.; Enes Dapkevicius, M.L. Physicochemical, biochemical, microbiological and safety aspects of Pico cheese: Assessment throughout maturation and on the final product. Int. J. Dairy Technol. 2017, 70, 542–555. [Google Scholar] [CrossRef]
- Cichoscki, A.J.; Valduga, E.; Valduga, A.T.; Tornadijo, M.E.; Fresno, J.M. Characterization of Prato cheese, a Brazilian semi-hard cow variety: Evolution of physico-chemical parameters and mineral composition during ripening. Food Control 2002, 13, 329–336. [Google Scholar] [CrossRef]
- Hickey, D.K.; Guinee, T.P.; Hou, J.; Wilkinson, M.G. Effects of variation in cheese composition and maturation on water activity in Cheddar cheese during ripening. Int. Dairy J. 2013, 30, 53–58. [Google Scholar] [CrossRef]
- National Research Council. I Prodotti Caseari del Mezzogiorno-Vol. II. Caratterizzazione Analitica e Compositiva; CNR: Roma, Italy, 1992. [Google Scholar]
- Gobbetti, M.; Di Cagno, R.; Calasso, M.; Neviani, E.; Fox, P.F.; De Angelis, M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 2018, 78, 244–254. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Foundamentals of Cheeses, 2nd ed.; Springer: New York, NY, USA, 2017; pp. 1–799. [Google Scholar] [CrossRef]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; De Angelis, M.; Limitone, A.; Fox, P.F.; Gobbetti, M. Response of Lactobacillus helveticus PR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl. Environ. Microbiol. 2006, 72, 4503–4514. [Google Scholar] [CrossRef]
- Valence, F.; Lortal, S. Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl. Environ. Microbiol. 1995, 61, 3391–3399. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; Guinee, T.P.; Fox, P.F. Factors which may influence the determination of autolysis starter bacteria during cheddar cheese ripening. Int. Dairy J. 1994, 4, 141–160. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; Guinee, T.P.; O’Collaghan, D.M.; Fox, P.F. Autolysis and proteolysis in different strains of starter bacteria during cheddar cheese ripening. J. Dairy Res. 1994, 61, 249–262. [Google Scholar] [CrossRef]
- Irlinger, F.; Loux, V.; Bento, P.; Gibrat, J.F.; Straub, C.; Bonnarme, P.; Landaud, S.; Monnet, C. Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. J. Bacteriol. 2012, 194, 5141–5142. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, I.; Di Cagno, R.; Buchin, S.; De Angelis, M.; Gobbetti, M. Spatial distribution of the metabolically active microbiota within italian PDO ewes’ milk cheeses. PLoS ONE 2016, 11, e0153213. [Google Scholar] [CrossRef] [PubMed]
- Bockelmann, W. Development of defined surface starter cultures for the ripening of smear cheeses. Int. Dairy J. 2002, 12, 123–131. [Google Scholar] [CrossRef]
- Bockelmann, W.; Jaeger, B.; Hoppe-Seyler, T.S.; Lillevang, S.K.; Sepulchre, A.; Heller, K.J. Application of a defined surface culture for ripening of Tilsit cheese. Kiel. Milchwirtsch. Forschungsber. 2007, 59, 191–202. [Google Scholar]
- Hannon, J.A.; Sousa, M.J.; Lilleyang, S.; Sepulchre, A.; Bockelmann, W.; McSweeney, P.L.H. Effect of defined-strain surface starters on the ripening of Tilsit cheese. Int. Dairy J. 2004, 14, 871–880. [Google Scholar] [CrossRef]
- Place, R.B.; Hiestand, D.; Gallman, H.R.; Teuber, M. Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst. Appl. Microbiol. 2003, 26, 30–37. [Google Scholar] [CrossRef]
- Lee, J.H.; Heo, S.; Jeong, D.W. Genomic insights into Staphylococcus equorum KS1039 as a potential starter culture for the fermentation of high-salt foods. BMC Genom. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Heo, S.; Lee, J.H.; Jeong, D.W. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Sci. Biotechnol. 2020, 29, 1023–1035. [Google Scholar] [CrossRef]
- Delgado, S.; Rachid, C.; Fernández, E.; Rychlik, T.; Alegría, Á.; Peixoto, R.S.; Mayo, B. Diversity of thermophilic bacteria in raw, pasteurized and selectively-cultured milk, as assessed by culturing, PCR-DGGE and pyrosequencing. Food Microbiol. 2013, 36, 103–111. [Google Scholar] [CrossRef]
- Settanni, L.; Di Grigoli, A.; Tornambé, G.; Bellina, V.; Francesca, N.; Moschetti, G.; Bonanno, A. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese. Int. J. Food Microbiol. 2012, 155, 73–81. [Google Scholar] [CrossRef]
- Bassi, D.; Cappa, F.; Gazzola, S.; Orrù, L.; Cocconcelli, P.S. Biofilm formation on stainless steel by Streptococcus thermophilus UC8547 in milk environments is mediated by the proteinase PrtS. Appl. Environ. Microbiol. 2017, 83, e02840-16. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Ogier, J.C.; Parayre, S.; Pediliggieri, C.; Carnemolla, T.M.; Falentin, H.; Madec, M.N.; Carpino, S.; Lortal, S. Variability of bacterial biofilms of the “tina” wood vats used in the ragusano cheese-making process. Appl. Environ. Microbiol. 2007, 73, 6980–6987. [Google Scholar] [CrossRef] [PubMed]
- Spyrelli, E.; Stamatiou, A.; Tassou, C.; Nychas, G.J.; Doulgeraki, A. Microbiological and metagenomic analysis to assess the effect of container material on the microbiota of feta cheese during ripening. Fermentation 2020, 6, 12. [Google Scholar] [CrossRef]
- De Pasquale, I.; Di Cagno, R.; Buchin, S.; De Angelis, M.; Gobbetti, M. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese. Appl. Environ. Microbiol. 2014, 80, 6243–6255. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Banks, J.; Sheehan, L.; Fox, P.F.; Brechany, E.Y.; Corsetti, A.; Gobbetti, M. Comparison of the microbiological, compositional, biochemical, volatile profile and sensory characteristics of three Italian PDO ewes’ milk cheeses. Int. Dairy J. 2003, 13, 961–972. [Google Scholar] [CrossRef]
- Mangia, N.P.; Murgia, M.A.; Garau, G.; Deiana, P. Microbiological and physicochemical properties of pecorino romano cheese produced using a selected starter culture. J. Agric. Sci. Technol. 2011, 13, 585–600. [Google Scholar]
- Chessa, L.; Paba, A.; Daga, E.; Dupré, I.; Piga, C.; Di Salvo, R.; Mura, M.; Addis, M.; Comunian, R. Autochthonous natural starter cultures: A chance to preserve biodiversity and quality of Pecorino Romano PDO cheese. Sustainability 2021, 13, 8214. [Google Scholar] [CrossRef]
- Ardö, Y.; McSweeney, P.L.H.; Magboul, A.A.A.; Upadhyay, V.K.; Fox, P.F. Biochemistry of Cheese Ripening: Proteolysis. In Cheese: Chemistry, Physics & Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Oxford, UK, 2017; Volume 1, pp. 445–482. [Google Scholar] [CrossRef]
- Griffiths, M.W.; Tellez, A.M. Lactobacillus helveticus: The proteolytic system. Front. Microbiol. 2013, 4, 30. [Google Scholar] [CrossRef]
- Gatti, M.; Lindenr, D.D.; Gardini, F.; Mucchetti, G.; Bevacqua, D.; Fornasari, M.E.; Neviani, E. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening. J. Dairy Sci. 2008, 91, 4129–4137. [Google Scholar] [CrossRef]
- Møller, K.K.; Rattray, F.P.; Høier, E.; Ardö, Y. Manufacture and biochemical characteristics during ripening of Cheddar cheese with variable NaCl and equal moisture content. Dairy Sci. Technol. 2012, 92, 541–568. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Lecomte, X.; Miclo, L.; Dary-Mourot, A. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity. J. Dairy Sci. 2019, 102, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Peralta, G.H.; Bergamini, C.V.; Hynes, E.R. Aminostransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. Braz. J. Microbiol. 2016, 47, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Boran, O.S.; Hayaloglu, A.A. Effect of various blends of camel chymosin and microbial rennet (Rhizomucor miehei) on microstructure and rheological properties of Iranian UF White cheese. LWT-Food Sci. Technol. 2016, 68, 724–728. [Google Scholar] [CrossRef]
- Frank, D.C.; Owen, C.M.; Patterson, J. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. LWT-Food Sci. Technol. 2004, 37, 139–154. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Mukdsi, A.M.C.; McSweeney, P.L.H.; Wilkinson, M.G.; Spinnler, H.E. Lipolysis and metabolism of fatty acids in cheese. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Oxford, UK, 2017; Volume 1, pp. 423–444. [Google Scholar]
- Rothe, M.; Engst, W.; Erhardt, V. Studies on characterization of Blue cheese flavour. Food Nahrung 1982, 26, 591–602. [Google Scholar] [CrossRef]
- Chamba, J.F.; Irlinger, F. Secondary and adjunct cultures. In Cheese-Chemistry, Physics, and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Cogan, T.P., Guinee, T.P., Eds.; Elsevier Academic Press: Oxford, UK, 2004; Volume 1, pp. 191–206. [Google Scholar] [CrossRef]
- Richoux, R.; Maillard, M.B.; Kerjean, J.R.; Lortal, S.; Thierry, A. Enhancement of ethyl ester and flavour formation in Swiss cheese by ethanol addition. Int. Dairy J. 2008, 18, 1140–1145. [Google Scholar] [CrossRef]
- Engels, W.J.M.; Dekker, R.; de Jong, C.; Neeter, R.; Visser, S. A comparative study of volatile compounds in the water-soluble fraction of various types of ripened cheese. Int. Dairy J. 1997, 7, 255–263. [Google Scholar] [CrossRef]
- Lee, C.W.; Richard, J. Catabolism of L-phenylalanine by some microorganisms of cheese origin. J. Dairy Res. 1984, 51, 461–469. [Google Scholar] [CrossRef]
- Liu, S.Q.; Holland, R.; Crow, V.L. Esters and their biosynthesis in fermented dairy products: A review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Preininger, M.; Grosch, W. Evaluation of key odorants of the neutral volatiles of emmentaler cheese by the calculation of odour activity values. LWT-Food Sci. Technol. 1994, 27, 237–244. [Google Scholar] [CrossRef]
- Curioni, P.M.G.; Bosset, J.O. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Pitino, I.; De Luca, S.; Scifò, G.O.; Caggia, C. Effect of wild strains used as starter cultures and adjunct cultures on the volatile compounds of the Pecorino Siciliano cheese. Int. J. Food Microbiol. 2008, 122, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Guarrasi, V.; Sannino, C.; Moschetti, M.; Bonanno, A.; Di Grigoli, A.; & Settanni, L. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese. Int. J. Food Microbiol. 2017, 259, 35–42. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Bittante, G. From milk to cheese: Evolution of flavor fingerprint of milk, cream, curd, whey, ricotta, scotta, and ripened cheese obtained during summer Alpine pasture. J. Dairy Sci. 2018, 101, 3918–3934. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.; Cecchinato, A.; Bittante, G. Volatile fingerprinting of ripened cheese for authentication and characterisation of different dairy systems. Ital. J. Anim. Sci. 2020, 19, 173–185. [Google Scholar] [CrossRef]
- Faccia, M.; Trani, A.; Natrella, G.; Gambacorta, G. Chemical-sensory and volatile compound characterization of ricotta forte, a traditional fermented whey cheese. J Dairy Sci. 2018, 101, 5751–5757. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.; Carpino, S.; Tuminello, L.; Rapisarda, T.; Corallo, L.; Licitra, G. Differences in volatiles, and chemical, microbial and sensory characteristics between artisanal and industrial Piacentinu Ennese cheeses. Int. Dairy J. 2005, 15, 605–617. [Google Scholar] [CrossRef]
- Rgeghe, P.P.; Piga, C.; Addis, M.; Di Salvo, R.; Piredda, G.; Scintu, M.F.; Wolf, I.V.; Sanna, G. SPME/GC-MS characterization of the volatile fraction of an Italian PDO sheep cheese to prevalent lypolitic ripening: The case of Fiore Sardo. Food Anal. Methods 2012, 5, 723–730. [Google Scholar] [CrossRef]
- Calasso, M.; Mancini, L.; Di Cagno, R.; Cardinali, G.; Gobbetti, M. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese. J. Dairy Sci. 2015, 98, 5874–5889. [Google Scholar] [CrossRef]
- Crow, V.L. Properties of the 2,3-butanediol dehydrogenase from Lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl. Environ. Microbiol. 1990, 56, 1656–1662. [Google Scholar] [CrossRef]
- Jeong, D.W.; Lee, B.; Her, J.Y.; Lee, K.G.; Lee, J.H. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int. J. Food Microbiol. 2016, 236, 9–16. [Google Scholar] [CrossRef] [PubMed]
Caprino | Pecorino | Vaccino | Cacioricotta | |
---|---|---|---|---|
Moisture (%) | 34.18 b ± 1.18 | 30.98 cd ± 1.59 | 31.99 c ± 1.32 | 38.10 a ± 1.24 |
Fat (%) | 29.42 b ± 0.50 | 35.14 a ± 0.5 | 34.25 ab ± 0.5 | 27.08 c ± 0.5 |
Protein (%) | 26.14 ab ± 0.30 | 27.09 a ± 0.20 | 24.54 b ± 0.30 | 22.13 c ± 0.30 |
Carbohydrates (%) | 0.71 c ± 0.20 | 1.40 b ± 0.20 | 1.43 b ± 0.30 | 4.20 a ± 0.20 |
NaCl (%) | 0.61 c ± 0.20 | 0.91 b ± 0.20 | 0.90 b ± 0.20 | 6.23 a ± 0.20 |
Aw | 0.879 b ± 0.05 | 0.868 c ± 0.03 | 0.858 d ± 0.04 | 0.905 a ± 0.07 |
pH | 5.22 b ± 0.02 | 5.23 b ± 0.04 | 5.30 b ± 0.03 | 5.93 a ± 0.03 |
Compounds | Caprino | Pecorino | Vaccino | Cacioricotta |
---|---|---|---|---|
Acetic acid | 36.170 b | 84.573 a | 53.141 b | 4.558 c |
Butanoic acid | 113.145 b | 266.107 a | 87.824 b | 22.280 c |
Butanoic acid, 3-methyl- | 0.585 b | 0.402 c | 0.447 bc | 0.915 a |
Pentanoic acid | 1.404 b | 3.170 a | 0.982 c | 0.649 d |
Hexanoic acid | 221.612 b | 485.377 a | 95.968 c | 49.290 d |
Heptanoic acid | 3.548 b | 15.290 a | 0.378 c | 0.502 c |
Octanoic acid | 153.853 b | 344.211 a | 13.183 d | 20.891 c |
Nonanoic acid | 6.257 c | 7.722 a | 7.891 a | 3.638 d |
Decanoic acid | 58.208 b | 136.895 a | 3.186 c | 5.905 c |
Decenoic acid | 1.197 b | 5.427 a | 0.212 c | 0.132 c |
Dodecanoic acid | 2.368 b | 6.826 a | 0.440 c | 0.306 c |
Total acids | 598.35 | 1356 | 263.65 | 109.06 |
Acetic acid, ethyl ester | 0.232 b | 0.425 a | 0.314 ab | 0.256 b |
Butanoic acid, methyl ester | n.d. 1 | 0.612 b | 0.981 a | n.d. |
Butanoic acid, ethyl ester | 1.390 b | 3.205 a | 1.101 bc | 0.786 c |
Hexanoic acid, ethyl ester | n.d. | 1.155 b | 2.183 a | n.d. |
Octanoic acid, ethyl ester | 3.014 b | 7.249 a | 1.666 c | 1.380 c |
Decanoic acid, ethyl ester | 1.042 b | 4.076 a | 0.229 c | 0.226 c |
Butanoic acid, butyl ester | 0.771 b | 2.910 a | 0.753 b | 0.321 b |
Octanoic acid, butyl ester | 4.460 b | 6.420 a | 1.169 c | 0.883 c |
Hexanoic acid, 1-cyclopentylethyl ester | 0.396 b | 0.406 c | 0.535 a | 0.234 d |
Total esters | 11.3 | 26.46 | 8.93 | 4.08 |
2-Propanol | n.d. | 0.931 a | n.d. | n.d. |
Ethanol | 2.506 c | 4.215 b | 3.167 bc | 7.204 a |
2-Butanol | n.d. | 2.042 | n.d. | n.d. |
2-Pentanol | 0.499 c | 6.616 a | 0.614 b | n.d. |
1-Butanol, 3-methyl- | 0.673 c | n.d. | 1.097 b | 5.794 a |
2-Heptanol | 0.392 c | 1.410 a | 0.518 c | 0.737 b |
1-Hexanol | n.d. | 0.473 a | n.d. | 0.291 b |
2-Ethylhexanol | 0.574 a | 0.292 c | 0.323 c | 0.405 b |
2-Nonanol | 0.389 c | 0.736 a | 0.514 b | 0.442 c |
2,3-Butanediol | 3.040 b | 2.463 b | 5.146 a | 2.138 b |
Phenylethyl alcohol | n.d. | n.d. | n.d. | 0.392 a |
2-Furanmethanol | 0.382 a | n.d. | n.d. | n.d. |
Total alcohols | 8.46 | 19.18 | 11.38 | 15.27 |
2-Butanone | n.d. | 0.449 b | 0.427 b | 0.601 a |
2-Pentanone | 5.769 b | 10.458 a | 2.195 c | 1.062 d |
2-Heptanone | 15.373 b | 28.399 a | 6.658 c | 7.901 c |
2-Butanone, 3-hydroxy- (Acetoin) | 1.679 b | 1.605 b | 1.630 b | 5.273 a |
2-Nonanone | 19.974 b | 34.366 a | 19.541 b | 7.763 c |
2-Undecanone | 2.212 b | 7.200 a | 2.930 b | 0.185 c |
Total ketones | 45.01 | 82.48 | 33.38 | 22.78 |
Acetaldehyde | 1.081 a | n.d. | 0.298 b | n.d. |
Butanal, 2-methyl- | 0.237 a | n.d. | n.d. | n.d. |
Butanal, 3-methyl- | 0.755 a | 0.344 d | 0.598 b | 0.390 c |
Nonanal | 1.116 b | 1.633 a | 1.469 ab | 1.171 b |
Benzaldehyde | 0.938 a | 0.831 b | n.d. | 0.249 c |
Total aldehydes | 4.13 | 2.81 | 2.37 | 1.81 |
Pyrazine, 2,5-dimethyl- | 0.480 a | n.d. | n.d. | n.d. |
Pyrazine, 2,6-dimethyl- | 1.226 a | n.d. | n.d. | n.d. |
Pyrazine, trimethyl- | 0.438 a | n.d. | n.d. | n.d. |
Total pyrazines | 2.14 | n.d. | n.d. | n.d. |
Caprolactone | n.d. | 2.669 a | n.d. | n.d. |
Dodecalactone | n.d. | n.d. | n.d. | 0.235 a |
Total lactones | n.d. | 2.67 | n.d. | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celano, G.; Costantino, G.; Calasso, M.; Randazzo, C.; Minervini, F. Distinctive Traits of Four Apulian Traditional Agri-Food Product (TAP) Cheeses Manufactured at the Same Dairy Plant. Foods 2022, 11, 425. https://doi.org/10.3390/foods11030425
Celano G, Costantino G, Calasso M, Randazzo C, Minervini F. Distinctive Traits of Four Apulian Traditional Agri-Food Product (TAP) Cheeses Manufactured at the Same Dairy Plant. Foods. 2022; 11(3):425. https://doi.org/10.3390/foods11030425
Chicago/Turabian StyleCelano, Giuseppe, Giuseppe Costantino, Maria Calasso, Cinzia Randazzo, and Fabio Minervini. 2022. "Distinctive Traits of Four Apulian Traditional Agri-Food Product (TAP) Cheeses Manufactured at the Same Dairy Plant" Foods 11, no. 3: 425. https://doi.org/10.3390/foods11030425
APA StyleCelano, G., Costantino, G., Calasso, M., Randazzo, C., & Minervini, F. (2022). Distinctive Traits of Four Apulian Traditional Agri-Food Product (TAP) Cheeses Manufactured at the Same Dairy Plant. Foods, 11(3), 425. https://doi.org/10.3390/foods11030425