An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents and Chemicals
2.2. Development of the ARP Assay
2.2.1. Assays at High Temperature
2.2.2. Assays at Intermediate and Room Temperatures
2.2.3. Assays at Lower pH
2.3. Evaluation/Validation of the ARP Assay
2.4. Determination of Total Acetaldehyde by HPLC
2.5. Data Treatment for the Estimation of Wine ARP Index
2.6. Statistical Analysis
3. Results and Discussion
3.1. Development of the ARP Assay
3.1.1. Assays at High Temperature
3.1.2. Assays at Intermediate and Room Temperatures
3.1.3. Assays at Lower pHs
3.2. Evaluation/Validation of the ARP Assay
3.2.1. ARP Index of the Wines
3.2.2. Forced Oxidation Procedure
3.2.3. Observed and Expected Accumulation of Acetaldehyde
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timberlake, C.F.; Bridle, P. Interactions Between Anthocyanins, Phenolic Compounds, And Acetaldehyde And Their Significance In Red Wines. Am. J. Enol. Vitic. 1976, 27, 97–105. [Google Scholar]
- Singleton, V.L.; Kramling, T.E. Browning Of White Wines And An Accelerated Test For Browning Capacity. Am. J. Enol. Vitic. 1976, 27, 157–160. [Google Scholar]
- Fulcrand, H.; Doco, T.; EsSafi, N.E.; Cheynier, V.; Moutounet, M. Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J. Chromatogr. A 1996, 752, 85–91. [Google Scholar] [CrossRef]
- Nave, F.; Teixeira, N.; Mateus, N.; de Freitas, V. The fate of flavanol-anthocyanin adducts in wines: Study of their putative reaction patterns in the presence of acetaldehyde. Food Chem. 2010, 121, 1129–1138. [Google Scholar] [CrossRef]
- Baranowski, E.S.; Nagel, C.W. Kinetics of Malvidin-3-Glucoside Condensation in Wine Model Systems. J. Food Sci. 1983, 48, 419. [Google Scholar] [CrossRef]
- Sheridan, M.K.; Elias, R.J. Reaction of Acetaldehyde with Wine Flavonoids in the Presence of Sulfur Dioxide. J. Agric. Food Chem. 2016, 64, 8615–8624. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Timberlake, C.F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem. 1997, 45, 35–43. [Google Scholar] [CrossRef]
- Atanasova, V.; Fulcrand, H.; Cheynier, W.; Moutounet, M. Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- Cano-Lopez, M.; Pardo-Minguez, F.; Schmauch, G.; Saucier, C.; Teissedre, P.L.; Lopez-Roca, J.M.; Gomez-Plaza, E. Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents. J. Agric. Food Chem. 2008, 56, 5932–5941. [Google Scholar] [CrossRef]
- Castellari, M.; Arfelli, G.; Riponi, C.; Amati, A. Evolution of phenolic compounds in red winemaking as affected by must oxygenation. Am. J. Enol. Vitic. 1998, 49, 91–94. [Google Scholar]
- Ji, J.H.; Henschen, C.W.; Nguyen, T.H.; Ma, L.; Waterhouse, A.L. Yeasts induce acetaldehyde production in wine micro-oxygenation treatments. J. Agric. Food Chem. 2020, 68, 15216–15227. [Google Scholar] [CrossRef]
- Bueno, M.; Marrufo-Curtido, A.; Carrascon, V.; Fernandez-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Aventín, E.; Escudero, A.; Fernández-Zurbano, P.; Ferreira, V. Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. J. Agric. Food Chem. 2021, 69, 15290–15300. [Google Scholar] [CrossRef]
- Marrufo-Curtido, A.; Carrascon, V.; Bueno, M.; Ferreira, V.; Escudero, A. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition. Food Chem. 2018, 248, 37–45. [Google Scholar] [CrossRef]
- Gislason, N.E.; Currie, B.L.; Waterhouse, A.L. Novel Antioxidant Reactions of Cinnamates in Wine. J. Agric. Food Chem. 2011, 59, 6221–6226. [Google Scholar] [CrossRef]
- Kreitman, G.; Cantu, A.; Waterhouse, A. Effect of Metal Chelators on the Oxidative Stability of Model Wine. J. Agric. Food Chem. 2013, 61, 9480–9487. [Google Scholar] [CrossRef] [PubMed]
- Carrascon, V.; Vallverdu-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Wildenradt, H.L.; Singleton, V.L. The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and its Relation to Wine Aging. Am. J. Enol. Vitic. 1974, 25, 119–126. [Google Scholar]
- Ugliano, M. Oxygen Contribution to Wine Aroma Evolution during Bottle Aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2016; pp. 1–443. [Google Scholar]
- Marrufo-Curtido, A.; de-la-Fuente-Blanco, A.; Saenz-Navajas, M.P.; Ferreira, V.; Bueno, M.; Escudero, A. Sensory Relevance of Strecker Aldehydes in Wines. Preliminary Studies of Its Removal with Different Type of Resins. Foods 2021, 10, 1711. [Google Scholar] [CrossRef]
- OIV-MA-AS313-15:R2011. Determination of pH. Compendium of International Methods of Analysis of Wines and Musts. Available online: https://www.oiv.int/public/medias/7372/oiv-compendium-volume-1-2020.pdf (accessed on 23 October 2021).
- OIV-MA-AS323-04A Sulphur Dioxide. Compendium of International Methods of Analysis. Available online: https://www.oiv.int/public/medias/2581/oiv-ma-as323-04a.pdf (accessed on 23 October 2021).
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: Chichester, UK; New York, NY, USA, 2006; Volume 2. [Google Scholar]
- Grindlay, G.; Mora, J.; de Loos-Vollebregt, M.T.C.; Vanhaecke, F. Evaluation of the multi-element capabilities of collision/reaction cell inductively coupled plasma-mass spectrometry in wine analysis. Talanta 2014, 128, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.M.; Wang, H.; Webb, M.R.; Waterhouse, A.L. A rapid, one step preparation for measuring selected free plus SO2-bound wine carbonyls by HPLC-DAD/MS. Talanta 2015, 134, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, N.E.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Competition between (+)-catechin and (-)-epicatechin in acetaldehyde-induced polymerization of flavanols. J. Agric. Food Chem. 1999, 47, 2088–2095. [Google Scholar] [CrossRef]
- Tachtalidou, S.; Sok, N.; Denat, F.; Noret, L.; Schmit-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability. Food Chem. 2021, 373, 131679. [Google Scholar] [CrossRef] [PubMed]
- Danilewicz, J.C.; Seccombe, J.T.; Whelan, J. Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am. J. Enol. Vitic. 2008, 59, 128–136. [Google Scholar]
- Elias, R.J.; Andersen, M.L.; Skibsted, L.H.; Waterhouse, A.L. Identification of Free Radical Intermediates in Oxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. J. Agric. Food Chem. 2009, 57, 4359–4365. [Google Scholar] [CrossRef]
- Kreitman, G.Y.; Laurie, V.F.; Elias, R.J. Investigation of Ethyl Radical Quenching by Phenolics and Thiols in Model Wine. J. Agric. Food Chem. 2013, 61, 685–692. [Google Scholar] [CrossRef]
N° | Code | Region | Variety | Vintage | TPI 1 |
---|---|---|---|---|---|
Assay at 70 °C | |||||
1 | T1 RDW 2 | Cariñena | Garnacha | 2016 | 56.3 |
2 | T2 RDW | Rioja | Tempranillo | 2015 | 50.2 |
3 | T3 RDW | Ribera del Duero | Tempranillo | 2014 | 68.3 |
4 | T4 RDW | Toro | Tempranillo | 2013 | 60.2 |
5 | T5 RDW | Navarra | M/C/T 5 | 2010 | 54.9 |
Assay at 25 and 45 °C | |||||
1 | White wine | Rioja | Viura | 2016 | 10.9 |
2 | BS RDW | Campo de Borja | Garnacha | 2016 | 46.9 |
3 | QT RDW | Ribera del Duero | Tempranillo | 2014 | 68.3 |
4 | BL RDW | Rioja | Tempranillo | 2012 | 58.2 |
Assay at pH 1–2 | |||||
1 | White wine | Rioja | Viura | 2016 | 5.2 |
2 | DS RDW | Mancha | Tempranillo | 2018 | 41.1 |
3 | VN RDW | Ribera del Duero | Tempranillo | 2018 | 42.9 |
4 | VI RDW | Cariñena | Garnacha | 2014 | 48.9 |
5 | MT RDW | Toro | Tempranillo | 2013 | 59.8 |
Evaluation/validation of the ARP assay | |||||
1 | CV RDW | Cariñena | G/T/Cr 6 | 2008 | 53.0 |
2 | DM RDW | Zamora | Tempranillo | 2012 | 55.6 |
3 | CL RDW | Rioja | Tempranillo | 2013 | 46.3 |
4 | VF RDW | Campo de Borja | Grenache | 2015 | 54.7 |
5 | MT RDW | Toro | Tempranillo | 2018 | 61.8 |
6 | FP RDW | Rioja | Tempranillo | 2018 | 46.7 |
7 | BG RDW | Calatayud | Garnacha | 2018 | 50.6 |
8 | RB RDW | Campo de Borja | Garnacha | 2018 | 44.1 |
9 | VMG RW 3 | Catalayud | Garnacha | 2018 | 11.8 |
10 | GF RW | Navarra | G/T/M/C/Sy 7 | 2018 | 13.3 |
11 | VT WHW 4 | Campo de Borja | Viura | 2018 | 10.7 |
12 | VM WHW | Calatayud | Viura | 2018 | 7.41 |
Wines | ARP Index | ||||||||
---|---|---|---|---|---|---|---|---|---|
N° | Type 1 | pH | Total SO2 (mgL−1) | Initial Acetald. 2 (mgL−1) | Initial Fe (mgL−1) | AR pH 2 3 (mgL−1) | % AR 4 | K’ pH 2 Kinetic Constant | K’ pH Kinetic Constant |
1 | AR | 3.5 | 62.8 | 27.9 | 1.3 | 11.9 | 0.204 | 0.0326 | 0.00103 |
2 | AR | 3.8 | 20.0 | 8.76 | 1.2 | 11.2 | 0.268 | 0.0446 | 0.00071 |
3 | AR | 3.7 | 81.0 | 20.6 | 1.9 | 13.5 | 0.220 | 0.0355 | 0.00071 |
4 | AR | 3.5 | 124 | 53.8 | 1.2 | 17.7 | 0.220 | 0.0355 | 0.00112 |
5 | YR | 3.8 | 57.0 | 13.7 | 0.9 | 12.2 | 0.257 | 0.0425 | 0.00067 |
6 | YR | 3.6 | 52.0 | 20.1 | 1.8 | 14.5 | 0.278 | 0.0466 | 0.00117 |
7 | YR | 3.5 | 37.0 | 7.32 | 2.2 | 14.3 | 0.377 | 0.0677 | 0.00214 |
8 | YR | 3.4 | 96.0 | 20.7 | 1.3 | 9.8 | 0.183 | 0.0289 | 0.00115 |
9 | YR1 | 3.3 | 86.0 | 26.0 | 0.4 | −0.3 | −0.005 | −0.0007 | −0.00004 |
10 | YR1 | 3.2 | 78.0 | 30.5 | 2.1 | −4.5 | −0.080 | −0.0110 | −0.00069 |
11 | YW | 3.2 | 115 | 51.3 | 0.6 | 8.3 | 0.088 | 0.0132 | 0.00084 |
12 | YW | 3.3 | 97.0 | 22.2 | 0.2 | 4.7 | 0.079 | 0.0118 | 0.00059 |
pH 2 | pH 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 1 | Batch 2 | |||||||||
Sample | Mean | s | Mean | s | Mean | %RSD | Mean | s | Mean | s | Mean | %RSD |
White wine | 2.60 | 1.38 | 0.0 | 1.54 | 1.30 | 99.8 | −2.71 | 2.23 | 3.5 | 0.77 | 0.40 | 1100 |
DS RDW 1 | 19.8 | 1.74 | 19.1 | 1.94 | 19.5 | 1.72 | 58.1 | 0.52 | 45.6 | 1.44 | 51.8 | 17.1 |
VN RDW | 27.2 | 1.07 | 27.8 | 0.28 | 27.5 | 1.14 | 58.3 | 0.97 | 68.9 | 0.35 | 63.6 | 11.7 |
VI RDW | 13.8 | 0.07 | 10.5 | 0.02 | 12.1 | 13.7 | 37.0 | 0.39 | 25.8 | 0.89 | 31.4 | 25.2 |
MT RDW | 22.5 | 1.52 | 17.9 | 17.8 | 20.2 | 11.5 | 54.9 | 0.545 | 44.7 | 0.02 | 49.8 | 14.5 |
Nº | O2 Cons. (mgL−1) | Time (days) | SO2 Cons. (mgL−1) | SO2 Rem. (mgL−1) | O2 Not SO2 (mgL−1) | Final Acetaldehyde (mgL−1) | Accumulated Acetaldehyde AA (mgL−1) | Acetaldehyde Formed (Expected) 1 AFexp (mgL−1) | Acetaldehyde Reacted (Expected) 2 ARexp (mgL−1) | ARexp (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 38.5 | 45.8 | 43.6 | 19.2 | 27.6 | 31 | 3.1 | 32.3 | 29.2 | 90% |
2 | 36.7 | 23.8 | 8.8 | 11.2 | 34.5 | 14 | 5.24 | 40.3 | 35.1 | 87% |
3 | 49.3 | 45.8 | 43.4 | 37.6 | 38.5 | 28 | 7.4 | 45.0 | 37.6 | 84% |
4 | 49.8 | 51.8 | 108.8 | 15.2 | 22.6 | 44 | −9.8 | 26.4 | 36.2 | 137% |
5 | 43.1 | 30.8 | 37.6 | 19.4 | 33.7 | 19 | 5.3 | 39.4 | 34.1 | 87% |
6 | 43.1 | 38.3 | 26.4 | 25.6 | 36.5 | 23 | 2.9 | 42.7 | 39.8 | 93% |
7 | 40.0 | 38.8 | 15.4 | 21.6 | 36.1 | 12 | 4.68 | 42.2 | 37.5 | 89% |
8 | 43.5 | 51.8 | 69.1 | 26.9 | 26.3 | 18 | −2.7 | 30.7 | 33.4 | 109% |
9 | 35.2 | 51.8 | 46.0 | 40.0 | 23.7 | 27 | 1 | 27.7 | 26.7 | 96% |
10 | 33.1 | 53.8 | 46.5 | 31.5 | 21.5 | 26 | −4.5 | 25.1 | 29.6 | 118% |
11 | 27.2 | 53.8 | 54.2 | 60,8 | 13.7 | 57 | 5.7 | 16.0 | 10.3 | 64% |
12 | 32.9 | 53.8 | 63.9 | 33.1 | 16.9 | 26 | 3.8 | 19.8 | 16.0 | 81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrufo-Curtido, A.; Ferreira, V.; Escudero, A. An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods 2022, 11, 476. https://doi.org/10.3390/foods11030476
Marrufo-Curtido A, Ferreira V, Escudero A. An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods. 2022; 11(3):476. https://doi.org/10.3390/foods11030476
Chicago/Turabian StyleMarrufo-Curtido, Almudena, Vicente Ferreira, and Ana Escudero. 2022. "An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation" Foods 11, no. 3: 476. https://doi.org/10.3390/foods11030476
APA StyleMarrufo-Curtido, A., Ferreira, V., & Escudero, A. (2022). An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods, 11(3), 476. https://doi.org/10.3390/foods11030476