Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mango Preparation
2.2. Osmotic Dehydration
2.3. Hot Air Drying
2.4. Effect of Frozen Storage on Osmotic Hot Air-Dried Mango Quality Attributes
2.5. Analysis Methods
2.5.1. Moisture Content, Water Activity, Total Soluble Solids, and Titratable Acidity
2.5.2. Color Parameters
2.5.3. Browning Index
2.5.4. Polyphenol Oxidase Activity
2.5.5. Total Phenolic Content
2.5.6. Textural Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Osmotic Dehydration Kinetics
3.2. Hot Air Drying Kinetics
3.3. Dried Mango Quality Attributes
3.3.1. Moisture and Water Activity
3.3.2. Color, Browning Index, and PPO Activity
3.3.3. Total Phenolic Content
3.3.4. Textural Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT. 2022. Available online: https://www.fao.org/faostat (accessed on 11 January 2022).
- Mahayothee, B. Mango processing. In The Mango Tree Encyclopedia; Al Hinai, Y.K., Al Saadi, A.A., Al Saqri, F.A., Thani, Q.R.A., Eds.; Georg Olms AG: Hildesheim, Germany, 2014; Volume 2.2, pp. 873–909. [Google Scholar]
- Mühlbauer, W.; Müller, J. (Eds.) Drying Atlas; Woodhead Publishing: Sawston, UK, 2020; p. 446. [Google Scholar]
- Rungsardthong, V. Fruit and Vegetable Processing Technology; KMUTNB Textbook Publishing Center: Bangkok, Thailand, 2016; p. 409. (In Thai) [Google Scholar]
- Gendel, S.M. Comparison of international food allergen labeling regulations. Regul. Toxicol. Pharmacol. 2012, 63, 279–285. [Google Scholar] [CrossRef]
- Charoenrein, S.; Owcharoen, K. Effect of freezing rates and freeze-thaw cycles on the texture, microstructure and pectic substances of mango. Int. Food Res. J. 2016, 23, 613–620. [Google Scholar]
- Zhang, Y.; Zhao, J.-H.; Ding, Y.; Nie, Y.; Xiao, H.-W.; Zhu, Z.; Tang, X.-M. Effects of state/phase transitions on the quality attributes of mango (Mangifera indica L.) during frozen storage. Int. J. Food Sci. Technol. 2017, 52, 239–246. [Google Scholar] [CrossRef]
- Tangtua, J.; Leksawasdi, N.; Rattanapanone, N. Quality changes in ripened mango and litchi flesh after cryogenic freezing and during Storage. Chiang Mai Univ. J. Nat. Sci. 2014, 13, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, H.; Lenart, A.; Leszczyk, D. The effect of blanching and freezing on osmotic dehydration of pumpkin. J. Food Eng. 2008, 86, 30–38. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Angersbach, A.; Ade-Omowaye, B.I.O.; Knorr, D. Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. J. Agric. Food Chem. 2001, 49, 2804–2811. [Google Scholar] [CrossRef]
- Ando, Y.; Okunishi, T.; Okadome, H. Influences of blanching and freezing pretreatments on moisture diffusivity and quality attributes of pumpkin slices during convective air-drying. Food Bioprocess Technol. 2019, 12, 1821–1831. [Google Scholar] [CrossRef]
- Vallespir, F.; Cárcel, J.A.; Marra, F.; Eim, V.S.; Simal, S. Improvement of mass transfer by freezing pre-treatment and ultrasound application on the convective drying of beetroot (Beta vulgaris L.). Food Bioprocess Technol. 2018, 11, 72–83. [Google Scholar] [CrossRef]
- Zielinska, M.; Ropelewska, E.; Zapotoczny, P. Effects of freezing and hot air drying on the physical, morphological and thermal properties of cranberries (Vaccinium macrocarpon). Food Bioprod. Processing 2018, 110, 40–49. [Google Scholar] [CrossRef]
- Li, X.-X.; Zhao, J.-H.; Zhang, Y.; Xiao, H.-W.; Sablani, S.S.; Qu, T.-T.; Tang, X.-M. Quality changes of frozen mango with regard to water mobility and ice crystals during frozen storage. J. Food Process Eng. 2020, 43, e13508. [Google Scholar] [CrossRef]
- Peleg, M. An empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 1949. [Google Scholar]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the thin-layer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Baloch, A.K.; Buckle, K.A.; Edwards, R.A. Measurement of non-enzymic browning of dehydrated carrot. J. Sci. Food Agric. 1973, 24, 389–398. [Google Scholar] [CrossRef]
- Banerjee, A.; Suprasanna, P.; Variyar, P.S.; Sharma, A. Gamma irradiation inhibits wound induced browning in shredded cabbage. Food Chem. 2015, 173, 38–44. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Singh, V.; Guizani, N.; Al-Alawi, A.; Claereboudt, M.; Rahman, M.S. Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties. Ind. Crops Prod. 2013, 50, 866–873. [Google Scholar] [CrossRef]
- Onofri, A. The Broken Bridge between Biologists and Statisticians: A Blog and R Package. 2022. Available online: https://www.statforbiology.com (accessed on 11 January 2022).
- Siramard, S.; Charoenrein, S. Effect of ripening stage and infusion with calcium lactate and sucrose on the quality and microstructure of frozen mango. Int. J. Food Sci. Technol. 2014, 49, 2136–2141. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Marrufo-Hernández, N.A.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila). J. Agric. Food Chem. 2014, 62, 9832–9840. [Google Scholar] [CrossRef]
- Park, Y.K.; Sato, H.H.; Almeida, T.D.; Moretti, R.H. Polyphenol oxidase of mango (Mangifera indica var. Haden). J. Food Sci. 1980, 45, 1619–1621. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V. Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chem. 2009, 117, 122–126. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganjloo, A.; Rahman, R.A.; Bakar, J.; Osman, A.; Bimakr, M. Kinetics modeling of mass transfer using Peleg’s equation during osmotic dehydration of seedless guava (Psidium guajava L.): Effect of process parameters. Food Bioprocess Technol. 2012, 5, 2151–2159. [Google Scholar] [CrossRef]
- Brochier, B.; Marczak, L.D.F.; Noreña, C.P.Z. Osmotic dehydration of yacon using glycerol and sorbitol as solutes: Water effective diffusivity evaluation. Food Bioprocess Technol. 2015, 8, 623–636. [Google Scholar] [CrossRef]
- Ghellam, M.; Zannou, O.; Galanakis, C.M.; Aldawoud, T.M.S.; Ibrahim, S.A.; Koca, I. Vacuum-assisted osmotic dehydration of autumn olive berries: Modeling of mass transfer kinetics and quality assessment. Foods 2021, 10, 2286. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhu, Z.; Sun, D.-W. Effects of freezing on cell structure of fresh cellular food materials: A review. Trends Food Sci. Technol. 2018, 75, 46–55. [Google Scholar] [CrossRef]
- Simal, S.; Femenia, A.; Garau, M.C.; Rosselló, C. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J. Food Eng. 2005, 66, 323–328. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Vega-Mercado, H. Dehydration Mechanisms. In Dehydration of Foods; Springer: Boston, MA, USA, 1996; pp. 101–155. [Google Scholar]
- Pavkov, I.; Radojčin, M.; Stamenković, Z.; Kešelj, K.; Tylewicz, U.; Sipos, P.; Ponjičan, O.; Sedlar, A. Effects of osmotic dehydration on the hot air drying of apricot halves: Drying kinetics, mass transfer, and shrinkage. Processes 2021, 9, 202. [Google Scholar] [CrossRef]
- Vallespir, F.; Rodríguez, Ó.; Eim, V.S.; Rosselló, C.; Simal, S. Freezing pre-treatments on the intensification of the drying process of vegetables with different structures. J. Food Eng. 2018, 239, 83–91. [Google Scholar] [CrossRef]
- Guiamba, I.; Ahrné, L.; Khan, M.A.M.; Svanberg, U. Retention of β-carotene and vitamin C in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food Bioprod. Processing 2016, 98, 320–326. [Google Scholar] [CrossRef]
- Mukhtar, A.; Latif, S.; Mueller, J. Effect of heat exposure on activity degradation of enzymes in mango varieties sindri, sb chaunsa, and Tommy Atkins during drying. Molecules 2020, 25, 5396. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Castañeda-Valbuena, D.; Fernandez-Lafuente, R.; Berenguer-Murcia, Á.; Meza-Gordillo, R.; Gutiérrez, L.-F.; Pacheco, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T. Phenolic compounds in mango fruit: A review. J. Food Meas. Charact. 2022, 16, 619–636. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin−Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallespir, F.; Rodríguez, Ó.; Eim, V.S.; Rosselló, C.; Simal, S. Effects of freezing treatments before convective drying on quality parameters: Vegetables with different microstructures. J. Food Eng. 2019, 249, 15–24. [Google Scholar] [CrossRef]
- Stamenković, Z.; Pavkov, I.; Radojčin, M.; Tepić Horecki, A.; Kešelj, K.; Bursać Kovačević, D.; Putnik, P. Convective drying of fresh and frozen raspberries and change of their physical and nutritive properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barragán-Iglesias, J.; Rodríguez-Ramírez, J.; Sablani, S.S.; Méndez-Lagunas, L.L. Texture analysis of dried papaya (Carica papaya L., cv. Maradol) pretreated with calcium and osmotic dehydration. Dry. Technol. 2019, 37, 906–919. [Google Scholar] [CrossRef]
Fresh | Quick Freezing | Slow Freezing | ||||||
---|---|---|---|---|---|---|---|---|
0 mo | 1 mo | 2 mo | 0 mo | 1 mo | 2 mo | |||
NWC | ||||||||
k1 (s.e.) | 5.16 b | 16.68 a | 11.35 a | 12.17 a | 15.57 a | 12.45 a | 10.79 a | |
(0.55) | (1.61) | (1.16) | (1.33) | (1.64) | (1.28) | (1.23) | ||
k2 (s.e.) ns | 2.57 | 2.51 | 2.67 | 2.86 | 2.60 | 2.57 | 2.95 | |
(0.06) | (0.13) | (0.10) | (0.12) | (0.14) | (0.12) | (0.11) | ||
NWCe (s.e.) ns | 0.61 | 0.60 | 0.63 | 0.65 | 0.62 | 0.61 | 0.66 | |
(0.01) | (0.03) | (0.02) | (0.03) | (0.03) | (0.03) | (0.02) | ||
RSE | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
R2 | 0.9902 | 0.9678 | 0.9878 | 0.9810 | 0.9943 | 0.9815 | 0.9805 | |
NSC | ||||||||
k1 (s.e.) ns | 1.61 | 2.16 | 1.99 | 2.53 | 1.73 | 1.95 | 2.02 | |
(0.44) | (0.29) | (0.24) | (0.38) | (0.28) | (0.24) | (0.27) | ||
k2 (s.e.) | 1.45 a | 0.90 bc | 0.83 c | 1.02 b | 0.98 b | 0.79 c | 0.88 bc | |
(0.05) | (0.03) | (0.03) | (0.04) | (0.03) | (0.03) | (0.03) | ||
NSCe (s.e.) | 1.69 b | 2.11 a | 2.20 a | 1.98 a | 2.02 a | 2.27 a | 2.14 a | |
(0.06) | (0.07) | (0.08) | (0.08) | (0.06) | (0.09) | (0.07) | ||
RSE | 0.04 | 0.05 | 0.04 | 0.04 | 0.03 | 0.05 | 0.06 | |
R2 | 0.9497 | 0.9746 | 0.9815 | 0.9785 | 0.9924 | 0.9804 | 0.9637 |
Drying Temperature (°C) | Mango | Drying Time (h) | k (s.e.) | n (s.e.) | RSE | R2 |
---|---|---|---|---|---|---|
50 | Fresh | 38 | 0.2459 (0.0055) b | 0.88 (0.01) c | 0.005 | 0.9995 |
Quick freezing | 32 | 0.2080 (0.0053) c | 1.02 (0.01) a | 0.005 | 0.9996 | |
Slow freezing | 28 | 0.2284 (0.0056) b | 0.97 (0.01) ab | 0.007 | 0.9993 | |
60 | Fresh | 19 | 0.2983 (0.0068) a | 0.88 (0.01) c | 0.018 | 0.9959 |
Quick freezing | 18 | 0.3095 (0.0074) a | 0.94 (0.01) b | 0.013 | 0.9979 | |
Slow freezing | 16 | 0.3186 (0.0079) a | 0.99 (0.02) ab | 0.004 | 0.9998 |
Dried Mango Quality Attributes | Fresh | Quick Freezing | Slow Freezing | ||||
---|---|---|---|---|---|---|---|
0 mo | 1 mo | 2 mo | 0 mo | 1 mo | 2 mo | ||
Drying time (h) | 19 | 18 | 18 | 18 | 16 | 16 | 16 |
Water activity | 0.57 ± 0.01 b | 0.60 ± 0.01 a | 0.58 ± 0.01 b | 0.55 ± 0.00 c | 0.61 ± 0.01 a | 0.58 ± 0.01 b | 0.58 ± 0.00 b |
Moisture content (% w.b.) | 20.68 ± 1.65 a | 20.09 ± 1.26 ab | 18.68 ± 0.40 b | 19.02 ± 1.00 ab | 20.55 ± 0.88 ab | 18.74 ± 0.73 b | 19.87 ± 1.20 ab |
Browning index (OD/g d.m.) | 0.463 ± 0.03 a | 0.266 ± 0.02 b | 0.218 ± 0.01 c | 0.204 ± 0.01 c | 0.218 ± 0.01 b | 0.199 ± 0.00 c | 0.270 ± 0.03 b |
PPO activity (U/g d.m.) | 108.95 ± 6.44 a | 88.79 ± 5.46 b | 69.10 ± 5.66 d | 73.55 ± 2.55 bcd | 87.61 ± 6.77 bc | 71.07 ± 1.23 cd | 69.66 ± 4.77 d |
TPC (mg GAE/g d.m.) | 2.55 ± 0.17 abc | 2.71 ± 0.07 a | 2.55 ± 0.04 abc | 2.47 ± 0.01 bc | 2.70 ± 0.00 a | 2.63 ± 0.05 ab | 2.40 ± 0.02 b |
Hardness (g) | 146.20 ± 35.15 c | 249.89 ± 13.35 b | 352.53 ± 14.16 a | 371.37 ± 14.70 a | 279.34 ± 6.76 b | 348.31 ± 10.34 a | 352.91 ± 8.07 a |
Adhesiveness ns | −15.52 ± 1.48 | −17.04 ± 0.41 | −27.66 ± 12.97 | −36.41 ± 20.16 | −17.28 ± 2.32 | −28.18 ± 10.86 | −18.31 ± 11.53 |
Springiness ns | 0.97 ± 0.07 | 1.02 ± 0.06 | 0.98 ± 0.01 | 1.08 ± 0.07 | 1.07 ± 0.11 | 0.97 ± 0.02 | 1.19 ± 0.19 |
Cohesiveness ns | 0.76 ± 0.02 | 0.73 ± 0.01 | 0.66 ± 0.13 | 0.62 ± 0.16 | 0.66 ± 0.01 | 0.65 ± 0.09 | 0.69 ± 0.14 |
Chewiness | 100.48 ± 12.71 b | 177.17 ± 29.08 ab | 220.71 ± 135.61 ab | 378.02 ± 185.94 a | 165.93 ± 20.16 b | 198.34 ± 0.48 ab | 238.94 ± 19.84 ab |
Gumminess (g) | 106.95 ± 21.90 b | 171.65 ± 15.91 ab | 227.49 ± 143.85 ab | 352.95 ± 149.30 a | 159.44 ± 8.80 b | 207.89 ± 0.76 ab | 218.95 ± 43.86 ab |
Fresh | Quick Freezing | Slow Freezing | |||||
---|---|---|---|---|---|---|---|
0 mo | 1 mo | 2 mo | 0 mo | 1 mo | 2 mo | ||
(Peel side) | |||||||
L* ns | 53.31 ± 3.62 | 50.96 ± 5.71 | 54.37 ± 5.50 | 54.42 ± 5.18 | 53.76 ± 3.32 | 54.74 ± 4.74 | 54.03 ± 4.58 |
a* | 20.04 ± 2.29 a | 19.21 ± 2.86 a | 15.20 ± 2.79 b | 14.81 ± 2.55 b | 19.30 ± 1.78 a | 15.21 ± 2.36 b | 15.03 ± 1.56 b |
b* ns | 53.35 ± 6.25 | 49.61 ± 9.15 | 57.66 ± 6.96 | 53.01 ± 6.85 | 58.47 ± 8.99 | 56.79 ± 5.04 | 55.35 ± 5.45 |
ΔE ns | - | 9.51 ± 7.88 | 9.94 ± 4.91 | 9.02 ± 4.90 | 9.92 ± 5.81 | 8.68 ± 3.24 | 8.26 ± 3.29 |
(Inner side) | |||||||
L* ns | 52.60 ± 2.40 | 51.64 ± 5.11 | 54.21 ± 4.07 | 55.75 ± 4.58 | 53.10 ± 3.38 | 53.83 ± 4.29 | 54.88 ± 3.92 |
a* | 19.19 ± 2.14 a | 19.21 ± 2.30 a | 17.41 ± 2.49 ab | 15.88 ± 2.99 b | 18.82 ± 2.17 a | 17.09 ± 1.98 ab | 16.37 ± 1.61 b |
b* ns | 50.80 ± 3.67 | 50.99 ± 9.07 | 55.34 ± 5.54 | 53.33 ± 6.52 | 55.95 ± 6.76 | 53.70 ± 6.25 | 55.76 ± 5.52 |
ΔE ns | - | 8.62 ± 5.64 | 8.58 ± 3.36 | 8.62 ± 4.95 | 7.91 ± 4.56 | 7.95 ± 3.84 | 8.74 ± 3.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuwijitjaru, P.; Somkane, S.; Nakagawa, K.; Mahayothee, B. Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods 2022, 11, 489. https://doi.org/10.3390/foods11030489
Khuwijitjaru P, Somkane S, Nakagawa K, Mahayothee B. Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods. 2022; 11(3):489. https://doi.org/10.3390/foods11030489
Chicago/Turabian StyleKhuwijitjaru, Pramote, Supawadee Somkane, Kyuya Nakagawa, and Busarakorn Mahayothee. 2022. "Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage" Foods 11, no. 3: 489. https://doi.org/10.3390/foods11030489
APA StyleKhuwijitjaru, P., Somkane, S., Nakagawa, K., & Mahayothee, B. (2022). Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods, 11(3), 489. https://doi.org/10.3390/foods11030489