Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematic Overview of the Experimental Study
2.2. Pomegranate Juice and By-Products
2.3. Fish Burger Preparation
2.4. Antimicrobial Activity of Pomegranate By-Products
2.5. Microbiological Analyses
2.6. pH Determination
2.7. Sensory Analyses
2.8. Shelf-Life Calculation
2.9. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Antimicrobial Activity of Pomegranate By-Products
3.2. Microbial Quality Decay of Fish Burgers
3.3. Fish Burger pH Evolution
3.4. Sensory Quality of Fish Burgers
3.5. Shelf Life of Fish Burgers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martau, G.A.; Szabo, K.; Calinoiu, L.F. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research; Academic Press: Amsterdam, The Netherlands, 2020; Volume 91, pp. 157–225. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The use of emergent technologies to extract added value compounds from grape byproducts. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Galanakis, C.M. The food systems in the era of the coronavirus (CoVID-19) pandemic crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chem. 2017, 233, 476–482. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.; Radhakrishna, K. Potential applications of plant-based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresource Technol. 2018, 266, 322–334. [Google Scholar] [CrossRef]
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review: Food Industry By-Products used as a Functional Food Ingredients. Int. J. Waste Res. 2016, 6, 248. [Google Scholar] [CrossRef]
- Arjeh, E.; Akhavan, H.R.; Barzegar, M.; Carbonell-Barrachina, A.A. Bio-active compounds and functional properties of pistachio hull: A review. Trends Food Sci. Technol. 2020, 97, 55–64. [Google Scholar] [CrossRef]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chem. 2020, 310. [Google Scholar] [CrossRef]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable use of fruit and vegetable by-products to enhance food packaging performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef]
- Singh, S.; Ramakrishna, S.; Gupta, M.K. Towards zero waste manufacturing: A multidisciplinary review. J. Clean Prod. 2017, 168, 1230–1243. [Google Scholar] [CrossRef]
- Norfezah, M.N.; Hardacre, A.; Brennan, C.S. Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci. Technol. Int. 2011, 17, 367–373. [Google Scholar] [CrossRef]
- Marinelli, V.; Lucera, A.; Incoronato, A.L.; Morcavallo, L.; Del Nobile, M.A.; Conte, A. Strategies for fortified sustainable food: The case of watermelon-based candy. J. Food Sci. Technol. 2021, 58, 894–901. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Concha-Olmos, J.; Zúñiga-Hansen, M.E. The effect of enzymatically treated ripe banana flour on the sensory quality and glycemic response of banana-wheat flour composite muffins. J. Food Sci. Technol. 2020, 57, 3621–3627. [Google Scholar] [CrossRef]
- Khoozani, A.; Kebede, B.; El-Din Ahmed Bekhit, A. Rheological, textural and structural changes in dough and bread partially substituted with whole green banana flour. LWT 2020, 126, 109252. [Google Scholar] [CrossRef]
- Pereira, J.; Brohi, S.A.; Malairaj, S.; Zhang, W.; Zhou, G.H. Quality of fat-reduced frankfurter formulated with unripe banana by-products and pre-emulsified sunflower oil. Int. J. Food Prop. 2020, 23, 420–433. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.; De Luca, L.; Manzo, N.; Pizzolongo, F.; Aiello, A. A new type of tomato puree with high content of bioactive compounds from 100% whole fruit. J. Food Sci. 2020, 85, 3264–3272. [Google Scholar] [CrossRef]
- Dilucia, F.; Lacivita, V.; Del Nobile, M.A.; Conte, A. Improving the storability of cod fish-burgers according to the zero-waste approach. Foods. 2021, 10, 1972. [Google Scholar] [CrossRef]
- Kahramanoglu, I.; Usanmaz, S. Pomegranate Production and Marketing; Taylor & Francis Group, LLC—CRC Press: Boca Raton, FL, USA, 2016; pp. 8–14. [Google Scholar]
- Kandylis, P.; Kokkinomagoulos, E. Review: Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Veloso, F.D.S.; Caleja, C.; Calhelha, R.C.; Pires, T.C.S.; Alves, M.J.; Barros, L.; Genena, A.K.; Barreira, J.C.M.; Ferreira, I.C.F.R. Characterization and application of pomegranate epicarp extracts as functional ingredients in a typical Brazilian pastry product. Molecules 2020, 25, 1481. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Li, Y.; Jia, S.; Hong, H.; Liu, Y.; Luo, Y. Effects of pomegranate peel extract on quality and microbiota composition of bighead carp (Aristichthys nobilis) fillets during chilled storage. Food Microbiol. 2019, 82, 445–454. [Google Scholar] [CrossRef]
- Lacivita, V.; Incoronato, A.L.; Conte, A.; Nobile, M.A.D. Pomegranate peel powder as a food preservative in fruit salad: A sustainable approach. Foods 2021, 10, 1359. [Google Scholar] [CrossRef]
- Akuru, E.A.; Oyeagu, C.E.; Mpendulo, T.C.; Rautenbach, F.; Oguntibeju, O.O. Effect of pomegranate (Punica granatum L.) peel powder meal dietary supplementation on antioxidant status and quality of breast meat in broilers. Heliyon 2020, 6, e05709. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.; Bostami, A.B.M.R.; Mun, H.-S.; Kim, Y.-J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- Basiri, S. Evaluation of antioxidant and antiradical properties of Pomegranate (Punica granatum L.) seed and defatted seed extracts. J. Food Sci. Technol. 2015, 52, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Bourekoua, H.; Różyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Pomegranate seed powder as a functional component of gluten-free bread (Physical, sensorial and antioxidant evaluation). Food Sci. Technol. 2018, 53, 1906–1913. [Google Scholar] [CrossRef]
- Ayoubi, A.; Balvardi, M.; Akhavan, H.R.; Hajimohammadi-Farimani, R. Fortified cake with pomegranate seed powder as a functional product. J. Food Sci. Technol. 2021, 59, 308–316. [Google Scholar] [CrossRef]
- Valdés, A.; Garcia-Serna, E.; Martínez-Abad, A.; Vilaplana, F.; Jimenez, A.; Garrigós, M.C. Gelatin-based antimicrobial films incorporating pomegranate (Punica granatum L.) seed juice by-product. Molecules 2020, 25, 166. [Google Scholar] [CrossRef] [Green Version]
- Corbo, M.R.; Speranza, B.; Filippone, A.; Conte, A.; Sinigaglia, M.; Del Nobile, M.A. Natural compounds to preserve fresh fish burgers. J. Food Sci. Technol. 2009, 44, 2021–2027. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Corbo, M.R.; Speranza, B.; Sinigaglia, M.; Conte, A.; Caroprese, M. Combined effect of MAP and active compounds on fresh blue fish burger. Int. J. Food Microbiol. 2009, 135, 281–287. [Google Scholar] [CrossRef]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. A new method to bio-preserve sea bass fillets. Int. J. Food Microbiol. 2018, 271, 60–66. [Google Scholar] [CrossRef]
- Okpala, C.O.R.; Choo, W.S.; Dykes, G.A. Quality and shelf life assessment of pacific white shrimp (Litopenaeus vannamei) freshly harvested and stored on ice. LWT Food Sci. Technol. 2014, 55, 110–116. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Cedola, A.; Conte, A.; Del Nobile, M.A. Juice and by-products from pomegranate to enrich pancake: Characterization and shelf-life evaluation. Int. J. Food Sci. Technol. 2021, 56, 2886–2894. [Google Scholar] [CrossRef]
- Panza, O.; Conte, A.; Del Nobile, M.A. Pomegranate By-Products as Natural Preservative to Prolong the Shelf Life of Breaded Cod Stick. Molecules 2021, 26, 2385. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Devatkal, S.K.; Jaiswal, P.; Jha, S.N.; Bharadwaj, R.; Viswas, K.N. Antibacterial activity of aqueous extract of pomegranate peel against Pseudomonas Stutzeri isolated from poultry meat. J. Food Sci. Technol. 2013, 50, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Khodanazary, A. Quality characteristics of refrigerated mackerel scomberomorus commersion using gelatin-polycaprolactone composite film incorporated with lysozyme and pomegranate peel extract. Int. J. Food Prop. 2019, 22, 2057–2071. [Google Scholar] [CrossRef] [Green Version]
Ingredients | M1 (g) | M2 (g) | M3 (g) | Ctrl (g) |
---|---|---|---|---|
Cod fish | 50 | 50 | 50 | 50 |
Pomegranate juice | 9.5 | 8.6 | 9.5 | - |
Water | - | 0.9 | - | - |
Pomegranate by-products (peel) | 9.14 | 8.14 | 9.14 | - |
Pomegranate by-products (seeds) | 2.96 | 2.63 | 2.96 | - |
Potato starch | 9.61 | 9.61 | 9.61 | 9.61 |
Extra virgin olive oil | 9.61 | 9.61 | 9.61 | 5 |
Potato flakes | 7.7 | 7.7 | 7.7 | 7.7 |
Sample | Photobacterium phosphoreum | Enterobacteriaceae |
---|---|---|
Ctrl | 7.25 ± 0.36 a | 7.95 ± 0.08 |
M1 | 3.74 ± 0.37 b | 2.00 ± 0.00 b |
M2 | 3.64 ± 0.90 b | 2.00 ± 0.00 b |
M3 | 3.00 ± 0.00 b | 2.00 ± 0.00 b |
Samples | Microbiological Acceptability Limit (Day) | Sensory Acceptability Limit (Day) | Shelf Life (Day) | |||
---|---|---|---|---|---|---|
MALTMB | MALTPB | MALPse | MALShew | SALCooked | ||
Ctrl | 3.12 ± 0.23 (χ2 = 0.74) | 3.33 ± 0.30 a (χ2 = 0.49) | 2.5 ± 0.20 a (χ2 = 0.88) | 3.94 ± 0.25 a (χ2 = 0.48) | - | 2.5 ± 0.20 a |
M1 | >26 | 19.91 ± 0.99 b (χ2 = 0.65) | 14.17 ± 0.85 b (χ2 = 0.28) | 13.58 ± 0.97 b (χ2 = 0.55) | 18.93 ± 0.87 a (χ2 = 0.86) | 13.58 ± 0.97 b |
M2 | >26 | 21.40 ± 0.92 b (χ2 = 0.98) | 21.27 ± 4.10 c (χ2 = 0.30) | 20.26 ± 2.44 c (χ2 = 0.68) | 19.51 ± 0.83 a (χ2 = 0.69) | 19.51 ± 0.83 c |
M3 | >26 | >26 | >26 | >26 | 19.01 ± 0.95 a (χ2 = 0.98) | 19.01 ± 0.95 c |
Samples | Time (Day) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 20 | 22 | 26 | |
M1 Raw | 9.0 ± 0.0 a | 7.5 ± 0.0 a | 7.5 ± 0.0 a | 6.5 ± 0.5 a | 6.3 ± 0.3 a | 6.0 ± 0.5 a | 5.8 ± 0.3 a | 5.7 ± 0.6 a | 4.5 ± 0.5 a | 4.3 ± 0.6 a | 4.0 ± 0.5 a |
M2 Raw | 9.0 ± 0.0 a | 8.3 ± 0.3 b | 7.0 ± 0.0 a | 6.7 ± 0.3 a | 6.2 ± 0.3 a | 6.0 ± 0.0 a | 5.7 ± 0.3 a | 5.5 ± 0.0 a | 5.2 ± 0.3 b | 4.8 ± 0.3 a | 4.2 ± 0.3 a |
M3 Raw | 9.0 ± 0.0 a | 8.2 ± 0.3 b | 7.0 ± 0.0 a | 6.3 ± 0.3 a | 5.8 ± 0.3 a | 5.7 ± 0.3 a | 5.5 ± 0.0 a | 5.5 ± 0.0 a | 5.0 ± 0.0 b | 5.0 ± 0.0 a | 4.2 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panza, O.; Conte, A.; Del Nobile, M.A. Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life. Foods 2022, 11, 551. https://doi.org/10.3390/foods11040551
Panza O, Conte A, Del Nobile MA. Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life. Foods. 2022; 11(4):551. https://doi.org/10.3390/foods11040551
Chicago/Turabian StylePanza, Olimpia, Amalia Conte, and Matteo Alessandro Del Nobile. 2022. "Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life" Foods 11, no. 4: 551. https://doi.org/10.3390/foods11040551
APA StylePanza, O., Conte, A., & Del Nobile, M. A. (2022). Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life. Foods, 11(4), 551. https://doi.org/10.3390/foods11040551