The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Genistein Micro- and Nanoparticles
2.2. Laboratory Animals
- -
- A control group in which the animals were fed with a standard diet, without supplementation (they received 0.4 mL of water via a gavage);
- -
- A group that received genistein nanoparticles (92 ± 41 nm) in dose 0.1 mg/mL, i.e., 0.2 mg/kg bw;
- -
- A group that received genistein microparticles (587 ± 83) in dose 0.1 mg/mL, i.e., 0.2 mg/kg bw;
- -
- A group that received genistein macromolecules in dose 0.1 mg/mL, i.e., 0.2 mg/kg bw.
2.3. Histopathological Analysis of Tumors
2.4. Determination of Fatty Acids, Cholesterol, and Its Oxidized Derivatives in Serum of Rats
2.5. Estimation of Desaturases Activity
2.6. Statistical Analysis
3. Results
3.1. Histopathological Examination of Tumors after Treatment with Genistein
3.2. The Rats’ Body Weight
3.3. Determination of Cholesterol and Cholesterol Oxidation Products (Oxysterols)
3.4. Fatty Acids Content in Rats’ Serum
3.5. Desaturase Activity Indicators (D6D and D5D)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, H.; Saladi, R.; Lu, Y.; Wang, Y.; Palep, S.R.; Moore, J.; Phelps, R.; Shyong, E.; Lebwohl, M. Isoflavone genistein: Photoprotection and clinical implications in dermatology. J. Nutr. 2002, 133, 3811–3819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; et al. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.S.; Li, C.Y.; Li, Z.L.; Zhu, H.L. Genistein and its synthetic analogs as anticancer agents. Anticancer Agents Med. Chem. 2012, 12, 271–281. [Google Scholar] [CrossRef]
- Morris, S.M.; Akerman, G.S.; Warbritton, A.R.; Patton, R.E.; Doerge, D.R.; Ding, X.; Chen, J.J. Effect of dietary genistein on cell replication indices in C57BL6 mice. Cancer Lett. 2003, 195, 139–145. [Google Scholar] [CrossRef]
- Yang, X.; Yang, S.; McKimmey, C.; Liu, B.; Edgerton, S.M.; Bales, W.; Archer, L.T.; Thor, A.D. Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation. Carcinogenesis 2012, 31, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Chen, S.P.; Zheng, Q.L.; Nie, S.P.; Li, W.J.; Hu, X.J.; Xie, M.Y. Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-ĸB pathway. J. Cancer 2018, 9, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helferich, W.G.; Andrade, J.E.; Hoagland, M.S. Phytoestrogens and breast cancer: A complex story. Inflammopharmacology 2008, 16, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, D.A.; Zhang, Y.; Zhao, H.; Lim, S.B.; Constantinou, A.I. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKC alpha. Nutr. Cancer 2007, 58, 222–229. [Google Scholar] [CrossRef]
- Banys, K.; Giebultowicz, J.; Sobczak, M.; Wyrebiak, R.; Bielecki, W.; Wrzesien, R.; Bobrowska-Korczak, B. Effect of Genistein Supplementation on the Progression of Neoplasms and the Level of the Modified Nucleosides in Rats With Mammary Cancer. Natl. Cent. Biotechnol. Inf. 2021, 35, 2059–2072. [Google Scholar] [CrossRef]
- Stawarska, A.; Jelińska, M.; Czaja, J.; Paczesniak, E.; Bobrowska-Korczak, B. Oils’ Impact on Comprehensive Fatty Acid Analysis and Their Metabolites in Rats. Nutrients 2020, 12, 1232. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter Enter. Nutr. 2015, 39, 18–32. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 6569. [Google Scholar] [CrossRef] [PubMed]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J. Nutr. 2003, 133, 1238–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, L.M.; Hess, J.B.; Oates, S.S.; Berry, W.D. A comparison of the effects of estradiol and the soy phytoestrogen genistein on liver lipid content of chickens. Int. J. Poult. Sci. 2014, 13, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Zmysłowski, A.; Szterk, A. Oxysterols as a biomarker in diseases. Clin. Chim. Acta 2019, 491, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Zerbinati, C.; Iuliano, L. Cholesterol and related sterols autoxidation. Free. Rad. Biol. Med. 2017, 111, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Biasi, F.; Leonarduzzi, G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013, 1, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Kloudova, A.; Guengerich, F.P.; Soucek, P. The role of oxysterols in human cancer. Trends Endocrinol. Metab. 2017, 28, 485–496. [Google Scholar] [CrossRef]
- Stawarska, A.; Czerwonka, M.; Wyrebiak, R.; Wrzesien, R.; Bobrowska-Korczak, B. Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum. Nutrients 2021, 13, 1563. [Google Scholar] [CrossRef]
- Yun, J.M.; Surh, J. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Prev. Nutr. Food Sci. 2012, 17, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Do, H.J.; Chung, H.K.; Moon, J.; Shin, M.J. Relationship between the estimates of desaturase activities and cardiometabolic phenotypes in Koreans. J. Clin. Biochem. Nutr. 2011, 49, 131–135. [Google Scholar] [PubMed] [Green Version]
- Kumie, G.; Melak, T.; Wondifraw Baynes, H. The Association of Serum Lipid Levels with Breast Cancer Risks Among Women with Breast Cancer at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. Breast Cancer 2020, 12, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Song, B.; Xu, C. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat. Metab. 2020, 2, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Kloudova-Spalenkova, A.; Holy, P.; Soucek, P. Oxysterols in cancer management: From therapy to biomarkers. Br. J. Pharmacol. 2020, 178, 3235–3247. [Google Scholar] [CrossRef]
- Katya-Katya, M.; Ensminger, A.; Méjean, L.; Debry, G. The effect of zinc supplementation on plasma cholesterol levels. Nutr. Res. 1984, 4, 633–638. [Google Scholar] [CrossRef]
- Soto-Rodríguez, I.; Alexander-Aguilera, A.; Zamudio-Pérez, A.; Camara-Contreras, M.; Hernandez-Diaz, G.; Garcia, H.S. Alteration of Some Inflammatory Biomarkers by Dietary Oxysterols in Rats. Inflammation 2021, 35, 1302–1307. [Google Scholar] [CrossRef]
- Orczewska, D.S.; Bederska-Łojewska, D.; Pieszka, M.; Pietras, M.P. Cholesterol and lipid peroxides in animal products and health implications—A review. Ann. Anim. Sci. 2012, 12, 25–52. [Google Scholar] [CrossRef]
- Kloudova-Spalenkova, A.; Ueng, Y.F.; Wei, S.; Kopeckova, K.; Guengerich, P.; Soucek, P. Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. J. Steroid Biochem. Mol. Biol. 2020, 197, 1–20. [Google Scholar] [CrossRef]
- Wang, S.; Wu, D.; Matthan, N.R.; Lamon-Fava, S.; Lecker, J.L.; Lichtenstein, A.H. Reduction in dietary omega-6 poly-unsaturated fatty acids: Eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 2009, 204, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Yu, R.; Xiong, Y.; Du, F.; Zhu, S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 2017, 16, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao To, N.; Nguyen, Y.T.K.; Moon, J.Y.; Ediriweera, M.K.; Kim, C.S. Pentadecanoic Acid, an Odd-Chain Fatty Acid, Suppresses the Stemness of MCF-7/SC Human Breast Cancer Stem-Like Cells through JAK2/STAT3 Signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef]
- Amézaga, J.; Ugartemendia, G.; Larraioz, A.; Bretaña, N.; Iruretagoyena, A.; Camba, J.; Urruticoechea, A.; Ferreri, C.; Tueros, I. Altered Levels of Desaturation and ω-6 Fatty Acids in Breast Cancer Patients’ Red Blood Cell Membranes. Nutrients 2020, 10, 469. [Google Scholar] [CrossRef]
- Amézaga, J.; Arranz, S.; Urruticoechea, A.; Ugartemendia, G.; Larraioz, A.; Louka, M.; Uriarte, M.; Ferreri, C.; Tueros, I. Altered Red Blood Cell Membrane Fatty Acid Profile in Cancer Patients. Nutrients 2018, 10, 1853. [Google Scholar] [CrossRef] [Green Version]
- Azrad, M.; Turgeon, C.; Demark-Wahnefried, W. Current Evidence Linking Polyunsaturated Fatty Acids with Cancer Risk and Progression. Front. Oncol. 2013, 3, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamaria, N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutr. Dev. 2004, 44, 273–282. [Google Scholar] [CrossRef]
DLS Parameter | Size (d nm) a | Z-Average (d nm) | Zeta Potential b (mV) | Đ c |
---|---|---|---|---|
Genistein nanoparticles | 92 ± 41 | 158 | −17.2 ± 5.5 | 1.000 |
Genistein microparticles | 587 ± 83 | 1467 | −30.2 ± 6.0 | 0.873 |
Supplementation | Tumor Incidence (%) (Week 20) | The Week When First Tumor Occurred | Number of Tumors Per Animal (Week 20) | Tumor Weight (g) (Week 20) Mean ± SD | The Mean Number of Mitoses in the Field of View Area (Week 20) * | Tumor Grade |
---|---|---|---|---|---|---|
Standard | 100% (8/8) | 16 (2/8) | (2–9) | 0.93 ± 1.34 (0.10–7.80) a | 1.79 ± 1.25 abc | Adenocarcinoma 2 grade |
Macrogenistein | 100% (8/8) | 17 (5/8) | (1–6) | 1.27 ± 1.52 (0.14–6.39) | 4.46 ± 2.38 ad | Adenocarcinoma 2 grade |
Microgenistein | 88% (7/8) | 17 (1/8) | (0–3) | 1.99 ± 1.75 (0.11–6.11) a | 7.33 ± 1.57 bd | Adenocarcinoma 3 grade |
Nanogenistein | 100% (8/8) | 14 (1/8) | (2–5) | 1.59 ± 2.64 (0.06–9.50) | 5.82 ± 1.57 c | Adenocarcinoma 3 grade |
Supplementation | The Animals’ Body Weight Gain (g) (Week 10–21) |
---|---|
standard | 99.0 ± 10.9 |
macrogenistein | 99.1 ± 8.8 |
microgenistein | 107.4 ± 8.5 |
nanogenistein | 96.5 ± 8.72 |
(μg/mL) | Standard | Macro | Micro | Nano | p Value |
---|---|---|---|---|---|
Squalene | 19.79 ± 12.39 | 9.31 ± 2.90 | 10.53 ± 6.78 | 20.60 ± 13.54 | n.s. |
Cholesterol | 2007 ± 1092 ab | 949 ± 259 a | 940 ± 425 a | 3643 ± 2727 b | 0.0213 |
7K-Ch | 5.12 ± 2.60 ab | 2.64 ± 0.68 a | 3.05 ± 0.90 a | 8.04 ± 5.05 b | 0.012 |
7α-OH-Ch | 1.81 ± 1.00 a | 1.10 ± 0.55 a | 0.88 ± 0.14 a | 3.57 ± 2.68 b | 0.017 |
7β-OH-Ch | 4.69 ± 2.25 | 2.82 ± 0.52 | 3.17 ± 1.34 | 6.32 ± 4.7 | n.s. |
5,6βE-Ch | 5.84 ± 3.03 a | 5.00 ± 0.48 a | 5.14 ± 0.91 a | 16.65 ± 11.99 b | 0.014 |
∑ COPs | 17.45 ± 8.53 ab | 11.55 ± 1.18 a | 12.23 ± 2.87 a | 34.59 ± 24.16 b | 0.02 |
COPs/Ch (%) | 0.94 ± 0.33 | 1.35 ± 0.56 | 1.68 ± 1.04 | 0.98 ± 0.14 | n.s. |
Fatty Acid (μg/mL) | Standard | Macro | Micro | Nano | p Value |
---|---|---|---|---|---|
SFAs | |||||
C12:0 Lauric acid | 12.57 ± 8.52 | 13.53 ± 3.43 | 16.24 ± 3.69 | 14.69 ± 5.27 | n.s. |
C14:0 Myristic acid | 24.64 ± 25.68 | 18.28 ± 4.55 | 24.73 ± 3.82 | 26.85 ± 5.17 | n.s. |
C15:0 Pentadecanoic acid | 13.58 ± 4.11 a | 15.32 ± 3.87 ab | 20.39 ± 5.09 bc | 23.64 ± 4.96 c | 0.0004 |
C16:0 Palmitic acid | 617 ± 286 | 599 ± 144 | 736 ± 205 | 776 ± 118 | n.s. |
C17:0 Heptadecanoic acid | 16.55 ± 3.55 a | 17.55 ± 2.81 ab | 21.97 ± 3.64 bc | 23.55 ± 4.60 c | 0.0015 |
C18:0 Stearic acid | 359 ± 67 | 312 ± 55 | 412 ± 94 | 389 ± 71 | n.s. |
∑ SFAs | 1043 ± 373 | 976 ± 199 | 1231 ± 299 | 1254 ± 193 | n.s. |
MUFAs | |||||
C16:1 n-7 Palmitoleic acid | 60.33 ± 13.61 a | 78.30 ± 15.47 ab | 102.31 ± 12.99 b | 98.13 ± 34.12 b | 0.0013 |
C16:1 n-9 9-Hexadecenoic acid | 9.83 ± 3.10 a | 13.55 ± 3.42 a | 17.30 ± 4.25 b | 18.73 ± 4.37 b | 0.0003 |
C18:1 n-9 Oleic acid | 230 ± 117 | 279 ± 77 | 338 ± 139 | 341 ± 89 | n.s. |
C18:1 n-11 Vaccenic acid | 33.90 ± 10.94 a | 41.21 ± 9.51 ab | 53.65 ± 17.28 b | 57.91 ± 14.79 b | 0.0047 |
∑ MUFAs | 334 ± 140 | 412 ± 95 | 511 ± 170 | 516 ± 137 | n.s. |
PUFAs | |||||
C18:2 n-6 LA | 588 ± 207 a | 676 ± 168 ab | 854 ± 241 ab | 861 ± 166 b | 0.023 |
C18:3 n-6 GLA | 18.55 ± 5.07 a | 22.97 ± 6.08 ab | 30.20 ± 2.65 c | 27.79 ± 3.58 bc | 0.0001 |
C18:3 n-3 ALA | 46.69 ± 15.30 ab | 37.01 ± 4.01 a | 51.78 ± 9.05 b | 53.91 ± 10.26 b | 0.015 |
C20:3 n-6 DGLA | 6.30 ± 3.28 | 7.08 ± 2.25 | 7.49 ± 2.07 | 5.71 ± 1.96 | n.s. |
C20:4 n-6 AA | 879 ± 167 ab | 824 ± 168 a | 1226 ± 197 c | 1114 ± 207 bc | 0.0004 |
C20:5 n-3 EPA | 54.67 ± 24.89 b | 31.17 ± 7.81 a | 45.72 ± 10.28 ab | 50.72 ± 11.61 ab | 0.024 |
C22:6 n-3 DHA | 170 ± 44.6 ab | 149 ± 30 a | 218 ± 52.5 b | 202 ± 36.3 ab | 0.0116 |
∑ PUFAs | 1764 ± 410 a | 1748 ± 348 a | 2432 ± 412 b | 2314 ± 399 b | 0.0015 |
Fatty Acids (μg/mL) | Standard | Macro | Micro | Nano | p Value |
---|---|---|---|---|---|
SFAs | |||||
C12:0 Lauric acid | 0.39 ± 0.19 | 0.45 ± 0.13 | 0.42 ± 0.18 | 0.36 ± 0.14 | n.s. |
C14:0 Myristic acid | 0.70 ± 0.43 | 0.58 ± 0.07 | 0.61 ±0.14 | 0.66 ± 0.06 | n.s. |
C15:0 Pentadecanoic acid | 0.43 ± 0.03 a | 0.48 ± 0.06 a | 0.49 ± 0.07 a | 0.58 ± 0.04 b | 0.0001 |
C16:0 Palmitic acid | 19.0 ± 2.93 | 18.98 ± 1.87 | 17.40 ± 1.48 | 19.08 ± 1.18 | n.s. |
C17:0 Heptadecanoic acid | 0.54 ± 0.09 | 0.57 ± 0.06 | 0.53 ± 0.06 | 0.58 ± 0.04 | n.s. |
C18:0 Stearic acid | 11.77 ± 1.83 b | 10.03 ± 1.03 a | 9.84 ± 0.55 a | 9.53 ± 0.53 a | 0.0057 |
∑ SFAs | 32.83 ± 2.04 b | 31.09 ± 1.27 ab | 29.28 ± 1.35 a | 30.78 ± 0.89 a | 0.0005 |
MUFAs | |||||
C16:1 n-7 Palmitoleic acid | 0.31 ± 0.03 a | 0.43 ± 0.06 b | 0.41 ± 0.05 b | 0.46 ± 0.06 b | 0.0001. |
C16:1 n-9 9-Hexadecenoic acid | 1.97 ± 0.40 | 2.56 ± 0.58 | 2.50 ± 0.33 | 2.37 ± 0.75 | n.s. |
C18:1 n-9 Oleic acid | 7.04 ± 1.38 | 8.80 ± 1.22 | 7.82 ± 1.93 | 8.26 ± 1.11 | n.s. |
C18:1 n-11 Vaccenic acid | 1.08 ± 0.15 a | 1.31 ± 0.15 b | 1.26 ± 0.16 ab | 1.40 ± 0.18 b | 0.0028 |
∑ MUFAs | 10.40 ± 1.33 a | 13.10 ± 1.39 b | 12.00 ± 1.91 ab | 12.48 ± 1.93 ab | 0.0201 |
PUFAs | |||||
C18:2 n-6 LA | 18.49 ± 1.71 a | 21.41 ± 2.19 b | 20.18 ± 1.89 ab | 21.04 ± 1.07 b | 0.0125 |
C18:3 n-6 GLA | 0.60 ± 0.12 | 0.76 ± 0.25 | 0.75 ± 0.17 | 0.68 ± 0.08 | n.s. |
C18:3 n-3 ALA | 1.49 ± 0.25 b | 1.21 ± 0.23 a | 1.25 ± 0.05 ab | 1.32 ± 0.16 ab | 0.0297 |
C20:3 n-6 DGLA | 0.19 ± 0.06 | 0.23 ± 0.07 | 0.19 ± 0.07 | 0.14 ± 0.06 | n.s. |
C20:4 n-6 AA | 28.70 ± 3.86 | 26.42 ± 3.20 | 29.83 ± 4.20 | 27.32 ± 2.48 | n.s. |
C20:5 n-3 EPA | 1.81 ± 0.87 b | 1.01 ± 0.21 a | 1.16 ± 0.42 ab | 1.24 ± 0.18 ab | 0.0185 |
C22:6 n-3 DHA | 5.46 ± 0.66 | 4.76 ± 0.34 | 5.34 ± 1.65 | 4.97 ± 0.54 | n.s. |
∑ PUFAs | 56.76 ± 3.15 | 55.80 ± 2.20 | 58.71 ± 3.08 | 56.73 ± 1.84 | n.s. |
(MUFAs + PUFAs)/SFAs | 2.05 ± 0.17 a | 2.22 ± 0.13 ab | 2.42 ± 0.16 c | 2.25 ± 0.09 bc | 0.0003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banyś, K.; Stawarska, A.; Wyrębiak, R.; Bielecki, W.; Bobrowska-Korczak, B. The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer. Foods 2022, 11, 605. https://doi.org/10.3390/foods11040605
Banyś K, Stawarska A, Wyrębiak R, Bielecki W, Bobrowska-Korczak B. The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer. Foods. 2022; 11(4):605. https://doi.org/10.3390/foods11040605
Chicago/Turabian StyleBanyś, Karolina, Agnieszka Stawarska, Rafał Wyrębiak, Wojciech Bielecki, and Barbara Bobrowska-Korczak. 2022. "The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer" Foods 11, no. 4: 605. https://doi.org/10.3390/foods11040605
APA StyleBanyś, K., Stawarska, A., Wyrębiak, R., Bielecki, W., & Bobrowska-Korczak, B. (2022). The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer. Foods, 11(4), 605. https://doi.org/10.3390/foods11040605