Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef
Abstract
:1. Introduction
2. Beef Production Principles and Standards
2.1. Concentrate vs. Forage-Based Diets
2.2. Definitions for Feeding Systems in the Present Paper
- Intensive (INT) refers to conventional management with extremely limited access to preserved forage (excluding cereal straw, which is often the main ‘forage’ in the diet), animals are fed ad-lib concentrate feeds to appetite (typically composed of soya, grains and molasses) and kept exclusively indoors or in feedlots.
- Conventional (CON) refers to non-organic management adhering to country-specific animal welfare standards, but otherwise not restricted by regulations for minimum proportion of forage in diet (majority concentrate feeding, but typically ~30% roughage or forage- could be mixed crop, grass or maize) and/or outdoor access.
- Organic (ORG) refers to management adhering to country-specific standards, including organically certified feed (concentrate, silage or hay and pasture). Any other feed requirements regarding forage consumption are specified based on source material.
- Pasture-based (PB) refers to management centred on access to pasture/forage, including: 100% forage feeding with most consumed by grazing. Unless otherwise stated, PB is used to discuss cattle that have been reared and finished on pasture/forage.
3. Beef Quality
4. Fatty Acids
4.1. Saturated Fatty Acids
4.2. Monounsaturated Fatty Acids
4.3. Polyunsaturated Fatty Acids
4.3.1. Omega-3 Fatty Acids
4.3.2. Omega-6 Fatty Acids
4.3.3. Omega-6:Omega-3 Ratios
4.3.4. CLA
5. Origins of Fatty Acids in Meat
6. Effect of Feed System on Meat Fatty Acid Profile
6.1. Saturated Fatty Acids
6.2. Monounsaturated Fatty Acids
6.3. Polyunsaturated Fatty Acids
6.3.1. Omega-3 Fatty Acids
6.3.2. Omega-6 Fatty Acids
6.3.3. Omega-6:Omega-3 Ratio
6.3.4. CLA
7. Human Health Implications
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lang, T.; Barling, D. Nutrition and sustainability: An emerging food policy discourse. Proc. Nutr. Soc. 2013, 72, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050; The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Metz, B.; Davidson, O.; Bosch, P. Climate Change 2007 Mitigation of Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J. Impacts of 1.5 C Global Warming on Natural and Human Systems. Global warming of 1.5 C; An IPCC Special Report. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf (accessed on 18 February 2022).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Grassian, D.T. The Dietary Behaviors of Participants in UK-Based Meat Reduction and Vegan Campaigns–A Longitudinal, Mixed-Methods Study. Appetite 2020, 154, 104788. [Google Scholar] [CrossRef] [PubMed]
- Prache, S.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Clinquart, A.; Feidt, C.; Fourat, E.; Gautron, J.; Girard, A.; et al. Review: Quality of animal-source foods. Animal 2021, 100376. [Google Scholar] [CrossRef] [PubMed]
- DEFRA. National Statistics. Organic Farming Statistics 2020. Annual Statistics about the UK Organic Farming Sector. Available online: https://www.gov.uk/government/statistics/organic-farming-statistics-2020 (accessed on 7 July 2021).
- USDA. Census of Agriculture. Available online: https://www.nass.usda.gov/AgCensus/index.php (accessed on 11 November 2021).
- Pieper, M.; Michalke, A.; Gaugler, T. Calculation of external climate costs for food highlights inadequate pricing of animal products. Nat. Commun. 2020, 11, 6117. [Google Scholar] [CrossRef] [PubMed]
- van Wagenberg, C.P.A.; de Haas, Y.; Hogeveen, H.; van Krimpen, M.M.; Meuwissen, M.P.M.; van Middelaar, C.E.; Rodenburg, T.B. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability. Animal 2017, 11, 1839–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenza, F.D.; Kronberg, S.L.; Gregorini, P. Is Grassfed Meat and Dairy Better for Human and Environmental Health? Front. Nutr. 2019, 6, 26. [Google Scholar] [CrossRef]
- Tallowin, J.R.B.; Rook, A.J.; Rutter, S.M. Impact of grazing management on biodiversity of grasslands. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Zani, C.F.; Gowing, J.; Abbott, G.D.; Taylor, J.A.; Lopez-Capel, E.; Cooper, J. Grazed temporary grass-clover leys in crop rotations can have a positive impact on soil quality under both conventional and organic agricultural systems. Eur. J. Soil Sci. 2021, 72, 1513–1529. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef]
- Wyness, L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016, 75, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Vranken, L.; Avermaete, T.; Petalios, D.; Mathijs, E. Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environ. Sci. Policy 2014, 39, 95–106. [Google Scholar] [CrossRef]
- Wang, Y.; Beydoun, M.A.; Caballero, B.; Gary, T.L.; Lawrence, R. Trends and correlates in meat consumption patterns in the US adult population. Public Health Nutr. 2010, 13, 1333–1345. [Google Scholar] [CrossRef] [Green Version]
- Frank, J. Meat as a bad habit: A case for positive feedback in consumption preferences leading to lock-in. Rev. Soc. Econ. 2007, 65, 319–348. [Google Scholar] [CrossRef]
- Erickson, P.S.; Kalscheur, K.F. Chapter 9-Nutrition and feeding of dairy cattle. In Animal Agriculture; Bazer, F.W., Lamb, G.C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 157–180. [Google Scholar]
- Toldrá, F. Lawrie’s Meat Science, 8th ed.; Elsevier: Duxford, UK, 2017. [Google Scholar]
- Wyness, L.; Weichselbaum, E.; O’Connor, A.; Williams, E.B.; Benelam, B.; Riley, H.; Stanner, S. Red meat in the diet: An update: Red meat update. Nutr. Bull. 2011, 36, 34–77. [Google Scholar] [CrossRef]
- RSPCA. Welfare Standards for Beef Cattle; RSPCA: Southwater, UK, 2020. [Google Scholar]
- DEFRA. Code of Recommendations for the Welfare of Livestock: Cattle; Defra Publications: London, UK, 2003. [Google Scholar]
- Red Tractor. Our Beef and Lamb Standards. Available online: https://redtractor.org.uk/our-standards/beef-lamb/ (accessed on 10 November 2021).
- European Commission. Organic farming. Policy, Rules, Organic Certifications, Support and Criteria for Organic Farming. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming (accessed on 18 February 2022).
- Soil Association. Soil Association Organic Standards, Farming and Growing; Soil Association: Bristol, UK, 2021. [Google Scholar]
- OF&G. OF&G Organic Standards and Certification Manual. Available online: https://ofgorganic.org/useful-info/organic-standards (accessed on 18 February 2022).
- PFLA. Pasture for Life Certification Standards for Ruminant Livestock; Pasture for Life: Cirencester, UK, 2020. [Google Scholar]
- Rosa, H.J.D.; Rego, O.A.; Silva, C.C.G.; Alves, S.P.; Alfaia, C.M.M.; Prates, J.A.M.; Bessa, R.J.B. Effect of corn supplementation of grass finishing of Holstein bulls on fatty acid composition of meat lipids1. J. Anim. Sci. 2014, 92, 3701–3714. [Google Scholar] [CrossRef] [Green Version]
- Noci, F.; Monahan, F.J.; French, P.; Moloney, A.P. The fatty acid composition of muscle fat and subcutaneous adipose tissue of pasture-fed beef heifers: Influence of the duration of grazing. J. Anim. Sci. 2005, 83, 1167–1178. [Google Scholar] [CrossRef]
- Łozicki, A.; Dymnicka, M.; Arkuszewska, E.; Pustkowiak, H. Effect of Pasture or Maize Silage Feeding on the Nutritional Value of Beef. Ann. Anim. Sci. 2012, 12, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, J.-B.E. Dynamics in consumer behavior with respect to agricultural and food products. In Agricultural Marketing and Consumer Behavior in a Changing World; Springer: Berlin/Heidelberg, Germany, 1997; pp. 143–188. [Google Scholar]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s composition of foods integrated dataset. Nutr. Bull. 2015, 40, 36–39. [Google Scholar]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Díaz, I.; Sárraga, C.; García-Regueiro, J.A.; Castellari, M. Nutritional properties of organic and conventional beef meat at retail. J. Sci. Food Agric. 2019, 99, 4218–4225. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.-H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle-A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, H.E.; Scollan, N.D.; Enser, M.; Hughes, S.; Richardson, R.I.; Wood, J.D. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 2008, 78, 256–269. [Google Scholar] [CrossRef]
- Wood, J.; Enser, M.; Fisher, A.; Nute, G.; Sheard, P.; Richardson, R.; Hughes, S.; Whittington, F. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Sexten, A.; Krehbiel, C.; Dillwith, J.; Madden, R.; McMurphy, C.; Lalman, D.; Mateescu, R. Effect of muscle type, sire breed, and time of weaning on fatty acid composition of finishing steers. J. Anim. Sci. 2012, 90, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Lapitan, R.M.; Del Barrio, A.N.; Katsube, O.; BAN-TOKUDA, T.; Orden, E.A.; Robles, A.Y.; Cruz, L.C.; Kanai, Y.; Fujihara, T. Comparison of carcass and meat characteristics of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis) fed on high roughage diet. Anim. Sci. J. 2008, 79, 210–217. [Google Scholar] [CrossRef]
- Irie, M.; Kouda, M.; Matono, H. Effect of ursodeoxycholic acid supplementation on growth, carcass characteristics, and meat quality of Wagyu heifers (Japanese Black cattle). J. Anim. Sci. 2011, 89, 4221–4226. [Google Scholar] [CrossRef] [Green Version]
- Pethick, D.W.; Harper, G.S.; Oddy, V.H. Growth, development and nutritional manipulation of marbling in cattle: A review. Anim. Prod. Sci. 2004, 44, 705–715. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enteral. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Goyens, P.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 2006, 84, 44–53. [Google Scholar] [CrossRef] [Green Version]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Stein, O.; Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144, 285–301. [Google Scholar] [CrossRef]
- Garg, M.L.; Blake, R.J.; Wills, R.B.H. Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholesterolemic men. J. Nutr. 2003, 133, 1060–1063. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.J. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Khaw, K.-T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar] [CrossRef] [Green Version]
- Field, C.J.; Blewett, H.H.; Proctor, S.; Vine, D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 2009, 34, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Finelli, C. Lipids, Low-Grade Chronic Inflammation and NAFLD: A Ménage À Trois? In Handbook of Lipids in Human Function; Elsevier: Amsterdam, The Netherlands, 2016; pp. 731–759. [Google Scholar]
- Mensink, R.P.; Katan, M.B. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb. A J. Vasc. Biol. 1992, 12, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Vafeiadou, K.; Weech, M.; Altowaijri, H.; Todd, S.; Yaqoob, P.; Jackson, K.G.; Lovegrove, J.A. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am. J. Clin. Nutr. 2015, 102, 40–48. [Google Scholar] [CrossRef]
- Jahreis, G.; Dawczynski, C. Milk and Dairy Foods: Their Functionality in Human Health and Disease. In Trans and Conjugated Fatty Acids in Dairy Products: Cause for Concern? Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63, S5–S21. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Wang, Q.; Liu, W.; Xu, T.C.; Liu, L.N.; Zong, A.Z.; Jia, M.; Li, J.; Du, F.L. Biological effects of trans fatty acids and their possible roles in the lipid rafts in apoptosis regulation. Cell Biol. Int. 2018, 42, 904–912. [Google Scholar] [CrossRef]
- Nestel, P. Trans fatty acids: Are its cardiovascular risks fully appreciated? Clin. Ther. 2014, 36, 315–321. [Google Scholar] [CrossRef]
- Scientific Advisory Committee on Nutrition. Saturated Fats and Health; Scientific Advisory Committee on Nutrition: London, UK, 2019. [Google Scholar]
- Russo, G.L. Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Goyens, P.L.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Compartmental modeling to quantify α-linolenic acid conversion after longer term intake of multiple tracer boluses. J. Lipid Res. 2005, 46, 1474–1483. [Google Scholar] [CrossRef] [Green Version]
- Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef]
- Augood, C.; Chakravarthy, U.; Young, I.; Vioque, J.; de Jong, P.T.; Bentham, G.; Rahu, M.; Seland, J.; Soubrane, G.; Tomazzoli, L.; et al. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am. J. Clin. Nutr. 2008, 88, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.J. Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health? Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Bauch, A.; Lindtner, O.; Mensink, G.B.; Niemann, B. Dietary intake and sources of long-chain n-3 PUFAs in German adults. Eur. J. Clin. Nutr. 2006, 60, 810–812. [Google Scholar] [CrossRef]
- Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial. Pediatr. Res. 2007, 62, 689. [Google Scholar] [CrossRef] [Green Version]
- Janssen, C.I.F.; Kiliaan, A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014, 53, 1–17. [Google Scholar] [CrossRef]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Gleissman, H.; Johnsen, J.I.; Kogner, P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp. Cell Res. 2010, 316, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease. Nutrients 2013, 5, 2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Et Biophys. Acta Mol. Cell Biol. Lipids 2014, 1841, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Camandola, S.; Leonarduzzi, G.; Musso, T.; Varesio, L.; Carini, R.; Scavazza, A.; Chiarpotto, E.; Baeuerle, P.A.; Poli, G. Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 1996, 229, 643–647. [Google Scholar] [CrossRef]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 2009, 119, 902–907. [Google Scholar]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Donahue, S.M.A.; Rifas-Shiman, S.L.; Gold, D.R.; Jouni, Z.E.; Gillman, M.W.; Oken, E. Prenatal fatty acid status and child adiposity at age 3 y: Results from a US pregnancy cohort. Am. J. Clin. Nutr. 2011, 93, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Czernichow, S.; Thomas, D.; Bruckert, E. n-6 Fatty acids and cardiovascular health: A review of the evidence for dietary intake recommendations. Br. J. Nutr. 2010, 104, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.X.; Weylandt, K.H. Modulation of inflammatory cytokines by omega-3 fatty acids. In Lipids in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2008; pp. 133–143. [Google Scholar]
- Simopoulos, A.P. Evolutionary aspects of diet and essential fatty acids. World Rev. Nutr. Diet. 2001, 88, 18–27. [Google Scholar]
- Tricon, S.; Burdge, G.C.; Williams, C.M.; Calder, P.C.; Yaqoob, P. The effects of conjugated linoleic acid on human health-related outcomes. Proc. Nutr. Soc. 2005, 64, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef]
- Benjamin, S.; Spener, F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.; Martinez, K.; Schmidt, S.; Mandrup, S.; LaPoint, K.; McIntosh, M. Antiobesity mechanisms of action of conjugated linoleic acid. J. Nutr. Biochem. 2010, 21, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Pearson Education: London, UK, 2011. [Google Scholar]
- Walker, G.P.; Francis, S.A.; Heard, J.W.; Doyle, P.T. Fatty acid composition of pastures. Sci. Access 2004, 1, 192–195. [Google Scholar]
- Clapham, W.M.; Foster, J.G.; Neel, J.P.S.; Fedders, J.M. Fatty Acid Composition of Traditional and Novel Forages. J. Agric. Food Chem. 2005, 53, 10068–10073. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’connor, T.P.; Maguire, A.R.; O’brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Wojtkowiak, K.; Stepien, A.; Pietrzak-Fiecko, R.; Werechowska, M. Effects of nitrogen fertilisation on the yield, micronutrient content and fatty acid profiles of winter wheat (Triticum aestivum L.) varieties. J. Elem. 2018, 23, 483–495. [Google Scholar]
- Berthelot, V.; Gruffat, D. Fatty acid composition of muscles. INRA Feeding System for Ruminants, Wageningen Academic Publishers. 2018. Available online: https://hal.inrae.fr/hal-02928115/document (accessed on 18 February 2022).
- Stergiadis, S.; Cabeza-Luna, I.; Mora-Ortiz, M.; Stewart, R.D.; Dewhurst, R.J.; Humphries, D.J.; Watson, M.; Roehe, R.; Auffret, M.D. Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches. Front. Microbiol. 2021, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, Rumen-Derived Bioactive Fatty Acids, and the Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef]
- Destaillats, F.; Trottier, J.P.; Galvez, J.M.G.; Angers, P. Analysis of α-Linolenic Acid Biohydrogenation Intermediates in Milk Fat with Emphasis on Conjugated Linolenic Acids. J. Dairy Sci. 2005, 88, 3231–3239. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.; Steer, T.; Maplethorpe, N.; Cox, L.; Meadows, S.; Nicholson, S.; Page, P.; Swan, G. National Diet and Nutrition Survey: Results from Years 7 and 8 (Combined) of the Rolling Programme (2014/2015–2015/2016); Public Health England: London, UK, 2018.
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and human health—Current knowledge and research gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef]
- Clinquart, A.; Ellies-Oury, M.P.; Hocquette, J.F.; Guillier, L.; Santé-Lhoutellier, V.; Prache, S. Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal 2022, in press. [CrossRef]
- Bjorklund, E.A.; Heins, B.J.; DiCostanzo, A.; Chester-Jones, H. Fatty acid profiles, meat quality, and sensory attributes of organic versus conventional dairy beef steers. J. Dairy Sci. 2014, 97, 1828–1834. [Google Scholar] [CrossRef]
- Lenighan, Y.M.; Nugent, A.P.; Moloney, A.P.; Monahan, F.J.; Walton, J.; Flynn, A.; Roche, H.M.; McNulty, B.A. A modelling approach to investigate the impact of consumption of three different beef compositions on human dietary fat intakes. Public Health Nutr. 2020, 23, 2373–2383. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Kamihiro, S.; Stergiadis, S.; Leifert, C.; Eyre, M.; Butler, G. Meat quality and health implications of organic and conventional beef production. Meat Sci. 2015, 100, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Butler, G.; Ali, A.M.; Oladokun, S.; Wang, J.; Davis, H. Forage-fed cattle point the way forward for beef? Futur. Foods 2021, 3, 100012. [Google Scholar] [CrossRef]
- Alfaia, C.P.; Alves, S.P.; Martins, S.I.; Costa, A.S.; Fontes, C.M.; Lemos, J.P.; Bessa, R.J.; Prates, J.A. Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem. 2009, 114, 939–946. [Google Scholar] [CrossRef]
- Descalzo, A.M.; Insani, E.; Biolatto, A.; Sancho, A.; García, P.; Pensel, N.; Josifovich, J. Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Sci. 2005, 70, 35–44. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, J.A.; Millington, K.J. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. J. Hum. Nutr. Diet. 2007, 20, 275–285. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.-F.; Moloney, A.P. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Fearon, A.M.; Moss, B.W.; Beattie, J.A.M.; Wallace, J.M.W.; Bonham, M.P.; Strain, J.J. Red meat from animals offered a grass diet increases plasma and platelet n-3 PUFA in healthy consumers. Br. J. Nutr. 2011, 105, 80–89. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Nutrition Claims. Available online: https://ec.europa.eu/food/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en (accessed on 19 November 2021).
- Kraft, J.; Kramer, J.K.; Schoene, F.; Chambers, J.R.; Jahreis, G. Extensive analysis of long-chain polyunsaturated fatty acids, CLA, trans-18: 1 isomers, and plasmalogenic lipids in different retail beef types. J. Agric. Food Chem. 2008, 56, 4775–4782. [Google Scholar] [CrossRef]
- Khan, N.; Cone, J.; Fievez, V.; Hendriks, W. Causes of variation in fatty acid content and composition in grass and maize silages. Anim. Feed. Sci. Technol. 2012, 174, 36–45. [Google Scholar] [CrossRef]
- Riuzzi, G.; Davis, H.; Lanza, I.; Butler, G.; Contiero, B.; Gottardo, F.; Segato, S. Multivariate modelling of milk fatty acid profile to discriminate the forages in dairy cows’ ration. Sci. Rep. 2021, 11, 23201. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.F.; McAuliffe, G.A.; Tweed, J.K.S.; Griffith, B.A.; Morgan, S.A.; Rivero, M.J.; Harris, P.; Takahashi, T.; Cardenas, L. Nutritional value of suckler beef from temperate pasture systems. Animal 2021, 15, 100257. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.D.; Jensen, J.; Pilfold, J.L.; Prema, D.; Donkor, K.K.; Cinel, B.; Thompson, D.J.; Dugan, M.E.; Church, J.S. Comparison of fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada. Can. J. Anim. Sci. 2015, 95, 49–58. [Google Scholar] [CrossRef]
- Bates, B.; Collins, D.; Jones, K.; Page, P.; Roberts, C.; Swan, G. National Diet and Nutrition Survey Rolling Programme Years 9 to 11 (2016/2017 to 2018/2019); Public Health England: London, UK, 2020. Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 18 February 2022).
- NHS. Red Meat and the Risk of Bowel Cancer. Available online: https://www.nhs.uk/live-well/eat-well/red-meat-and-the-risk-of-bowel-cancer (accessed on 1 December 2021).
- Scientific Advisory Committee on Nutrition. Dietary Reference Values for Energy; The Stationery Office: London, UK, 2012. [Google Scholar]
Source | Feed System 1 | Meat Sources | Country | |||
---|---|---|---|---|---|---|
Alfaia, Alves, Martins, Costa, Fontes, Lemos, Bessa and Prates [118] | PB | INT | Alentejano purebred bulls | Portugal | ||
Berthelot and Gruffat [105] | PB | CON | INT | Beef cattle | France | |
Bjorklund, Heins, DiCostanzo and Chester-Jones [113] | PB | ORG | CON | Crossbred Dairy Bulls | USA | |
Butler, Ali, Oladokun, Wang and Davis [117] | PB | ORG | CON | Supermarket & Farms (grass-fed) | UK | |
Descalzo, Insani, Biolatto, Sancho, García, Pensel and Josifovich [119] | PB | INT | Crossbred Steers | Argentina | ||
Kamihiro, Stergiadis, Leifert, Eyre and Butler [116] | ORG | CON | Supermarket | UK | ||
Łozicki, Dymnicka, Arkuszewska and Pustkowiak [35] | ORG | CON | Hereford bulls | Poland | ||
Ribas-Agustí, Díaz, Sárraga, García-Regueiro and Castellari [40] | ORG | CON | Supermarket | Spain |
Recorded Beef Fat Intakes NDNS 2 (21 g/Week, 3 g/Day) | ||||
---|---|---|---|---|
% RDI | Intensive | Conventional | Organic | Pasture-Based |
SFA | 3.6 | 3.6 | 3.5 | 3.3 |
Trans | 1.5 | 1.8 | 1.2 | 1.1 |
MUFA | 2.7 | 3.2 | 3.0 | 2.5 |
cis-PUFA | 0.4 | 0.3 | 0.2 | |
n-3 | 6.7 | 5.5 | 8.0 | 20.6 |
n-6 | 1.1 | 0.4 | 0.4 | 0.7 |
ALA | 2.3 | 2.4 | 3.6 | 9.2 |
LA | 6.7 | 3.8 | 3.8 | 4.5 |
EPA + DHA | 7.3 | 4.6 | 3.7 | 16.5 |
Intakes NHS 3 (490 g beef/week, 70 g/day) | ||||
Intensive | Conventional | Organic | Pasture-based | |
SFA | 14.4 | 14.2 | 14.0 | 13.0 |
Trans | 6.2 | 7.6 | 5.0 | 4.8 |
MUFA | 11.3 | 13.5 | 12.8 | 10.5 |
cis-PUFA | 1.6 | 1.4 | 0.7 | |
n-3 | 27.1 | 22.3 | 32.0 | 82.6 |
n-6 | 4.5 | 1.9 | 1.7 | 2.9 |
ALA | 9.9 | 10.2 | 15.3 | 38.9 |
LA | 28.4 | 16.3 | 16.2 | 19.2 |
EPA + DHA | 29.4 | 18.4 | 14.9 | 66.4 |
Intakes EAT LANCET 4 (98 g beef/week, 14 g/day) | ||||
Intensive | Conventional | Organic | Pasture-Based | |
SFA | 2.9 | 2.8 | 2.8 | 2.6 |
Trans | 1.2 | 1.5 | 1.0 | 1.0 |
MUFA | 2.3 | 2.7 | 2.6 | 2.1 |
cis-PUFA | 0.3 | 0.3 | 0.1 | |
n-3 | 5.4 | 4.5 | 6.4 | 16.5 |
n-6 | 0.9 | 0.4 | 0.3 | 0.6 |
ALA | 2.0 | 2.0 | 3.1 | 7.8 |
LA | 5.7 | 3.3 | 3.2 | 3.8 |
EPA + DHA | 5.9 | 3.7 | 3.0 | 13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022, 11, 646. https://doi.org/10.3390/foods11050646
Davis H, Magistrali A, Butler G, Stergiadis S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods. 2022; 11(5):646. https://doi.org/10.3390/foods11050646
Chicago/Turabian StyleDavis, Hannah, Amelia Magistrali, Gillian Butler, and Sokratis Stergiadis. 2022. "Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef" Foods 11, no. 5: 646. https://doi.org/10.3390/foods11050646
APA StyleDavis, H., Magistrali, A., Butler, G., & Stergiadis, S. (2022). Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods, 11(5), 646. https://doi.org/10.3390/foods11050646