Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables
Abstract
:1. Introduction
2. Vitamins
3. Gamma-Aminobutyric Acid
4. Bioactive Peptides
5. Phenolic Compounds
6. Organosulfur Compounds
7. Biogenic Amines
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ijarotimi, O.S.; Keshinro, O.O. Protein quality, hematological properties and nutritional status of albino rats fed complementary foods with fermented popcorn, African locust bean, and bambara groundnut flour blends. Nutr. Res. Pract. 2012, 6, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyewole, O.B. Lactic fermented foods in Africa and their benefits. Food Control 1997, 8, 289–297. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.-S.; Paramithiotis, S.; Sivamaruthi, B.S.; Wijaya, C.H.; Suharta, S.; Sanlier, N.; Patra, J.K. Traditional fermented foods with anti-aging effect: A concentric review. Food Res. Int. 2020, 134, 109269. [Google Scholar] [CrossRef]
- Ishida, Y.; Nakamura, F.; Kanzato, H.; Sawada, D.; Yamamoto, N.; Kagata, H.; Oh-Ida, M.; Takeuchi, H.; Fujiwara, S. Effect of milk fermented with Lactobacillus acidophilus strain L-92 on symptoms of Japanese cedar pollen allergy: A randomized placebo-controlled trial. Biosci. Biotechnol. Biochem. 2005, 69, 1652–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, D.D.; Dias, M.M.; Grześkowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Maria do Carmo, G.P. Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef]
- Mun, E.-G.; Sohn, H.-S.; Kim, M.-S.; Cha, Y.-S. Antihypertensive effect of Ganjang (traditional Korean soy sauce) on Sprague-Dawley rats. Nutr. Res. Pract. 2017, 11, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.; Li, Z.; Ji, G.E. Anti-Obesity effects of a mixture of fermented ginseng, Bifidobacterium longum BORI, and Lactobacillus paracasei CH88 in high-fat diet-fed mice. J. Microbiol. Biotechnol. 2018, 28, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-J.; Li, D.; Zou, L.; Dong Chen, X.; Cheng, Y.-Q.; Yamaki, K.; Li, L.-T. Antioxidative activity of douchi (a Chinese traditional salt-fermented soybean food) extracts during its processing. Int. J. Food Prop. 2007, 10, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Blana, V.A.; Grounta, A.; Tassou, C.C.; Nychas, G.J.; Panagou, E.Z. Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol. 2014, 38, 208–218. [Google Scholar] [CrossRef]
- Al-Shawi, S.G.; Swadi, W.A.; Hussein, A.A. Production of probiotic (Turshi) pickled vegetables. J. Pure Appl. Microbiol. 2019, 13, 2287–2293. [Google Scholar] [CrossRef] [Green Version]
- Benitez-Cabello, A.; Torres-Maravilla, E.; Bermúdez-Humarán, L.; Langella, P.; Martín, R.; Jiménez-Díaz, R.; Arroyo-López, F.N. Probiotic properties of Lactobacillus strains isolated from table olive biofilms. Probiot. Antimicrob. 2020, 12, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Touret, T.; Oliveira, M.; Semedo-Lemsaddek, T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS ONE 2018, 13, e0203501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, C.-H.; Sohn, H.; Hwang, H.; Lee, H.-J.; Kim, T.-W.; Kim, D.-S.; Kim, C.-S.; Han, S.-G.; Hong, S.-W. Comparison of the probiotic potential between Lactiplantibacillus plantarum isolated from kimchi and standard probiotic strains isolated from different sources. Foods 2021, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Paramithiotis, S.; Shin, H.S. Kimchi and other widely consumed traditional fermented foods of Korea: A review. Front. Microbiol. 2016, 7, 1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.M.; Smid, E.J.; Rutten, G.; van Sinderen, D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb. Cell Factories 2006, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Ewe, J.-A.; Wan-Abdullah, W.-N.; Liong, M.-T. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins. Int. J. Food Sci. Nutr. 2010, 61, 87–107. [Google Scholar] [CrossRef]
- Capozzi, V.; Menga, V.; Digesu, A.M.; De Vita, P.; Van Sinderen, D.; Cattivelli, L.; Fares, C.; Spano, G. Biotechnological production of vitamin B2-enriched bread and pasta. J. Agric. Food Chem. 2011, 59, 8013–8020. [Google Scholar] [CrossRef]
- Juarez del Valle, M.; Laino, J.E.; Savoy de Giori, G.; LeBlanc, J.G. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bioenriched soymilk. Food Res. Int. 2014, 62, 1015–1019. [Google Scholar] [CrossRef]
- Thakur, K.; Lule, V.K.; Rajni, C.S.; Kumar, N.; Mandal, S.; Anand, S.; Kumari, V.; Tomar, S.K. Riboflavin producing probiotic Lactobacilli as a biotechnological strategy to obtain riboflavin-enriched fermented foods. J. Pure Appl. Microbiol. 2016, 10, 161–166. [Google Scholar]
- Hati, S.; Patel, M.; Mishra, B.K.; Das, S. Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. Ann. Microbiol. 2019, 69, 1191–1199. [Google Scholar] [CrossRef]
- Yepez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. In situ riboflavin fortification of different kefir-like cereal-based beverges using selected andean LAB strains. Food Microbiol. 2019, 77, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sabo, S.S.; Mendes, M.A.; Araújo, E.S.; Muradian, L.B.A.; Makiyama, E.N.; LeBlanc, J.G.; Borelli, P.; Fock, R.A.; Knobl, T.; Oliveira, R.P.S. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci. Rep. 2020, 10, 7235. [Google Scholar] [CrossRef] [PubMed]
- Gangadharan, D.; Nampoothiri, K. Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. LWT-Food Sci. Technol. 2011, 44, 1859–1864. [Google Scholar] [CrossRef]
- Laino, J.E.; LeBlanc, J.G.; Savoy de Giori, G. Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Can. J. Microbiol. 2012, 58, 581–588. [Google Scholar] [CrossRef]
- Carrizo, S.L.; Montes de Oca, C.E.; Hebert, M.E.; Saavedra, L.; Vignolo, G.; LeBlanc, J.G.; Rollan, G.C. Lactic acid bacteria from andean grain amaranth: A source of vitamins and functional value enzymes. J. Mol. Microbiol. Biotechnol. 2017, 27, 289–298. [Google Scholar] [CrossRef]
- Meucci, A.; Rossetti, L.; Zago, M.; Monti, L.; Giraffa, G.; Carminati, D.; Tidona, F. Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol. 2018, 69, 116–122. [Google Scholar] [CrossRef]
- Tamene, A.; Baye, K.; Kariluoto, S.; Edelmann, M.; Bationo, F.; Leconte, N.; Humblot, C. Lactobacillus plantarum P2R3FA isolated from traditional cereal-based fermented food increase folate status in deficient rats. Nutrients 2019, 11, 2819. [Google Scholar] [CrossRef] [Green Version]
- Taranto, M.; Vera, J.; Hugenholtz, J.; De Valdez, G.; Sesma, F. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 2003, 185, 5643–5647. [Google Scholar] [CrossRef] [Green Version]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production potency of folate, vitamin B12 and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef] [Green Version]
- de Angelis, M.; Bottacini, F.; Fosso, B.; Kelleher, P.; Calasso, M.; Di Cagno, R.; Ventura, M.; Picardi, E.; van Sinderen, D.; Gobbetti, M. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLoS ONE 2014, 9, e107232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.C.; Vannini, V.; Bonacina, J.; Font, G.; Saavedra, L.; Taranto, M.P. Cobalamin production by Lactobacillus coryniformis: Biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster. BMC Microbiol. 2016, 16, 240. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Gu, Q.; Wang, Y.; Yu, Y.; Yang, L.; Chen, J.V. Novel vitamin B12-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials. Appl. Microbiol. Biotechnol. 2017, 101, 6155–6164. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Gu, Q.; Yang, L.; Yu, Y.; Wang, Y. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chem. 2017, 234, 494–501. [Google Scholar] [CrossRef]
- Hati, S.; Patel, N.; Sakure, A.; Mandal, S. Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. Int. J. Pept. Res. Ther. 2018, 24, 87–98. [Google Scholar] [CrossRef]
- Hamzehlou, P.; Sepahy, A.A.; Mehrabian, S.; Hosseini, F. Production of vitamins B3, B6 and B9 by Lactobacillus isolated from traditional yogurt samples from 3 cities in Iran, winter 2016. Appl. Food Biotechnol. 2018, 5, 107–120. [Google Scholar]
- Liu, Y.; van Bennekom, E.O.; Zhang, Y.; Abee, T.; Smid, E.J. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Microb. Cell Factories 2019, 18, 129. [Google Scholar] [CrossRef] [Green Version]
- Teran, M.M.; LeBlanc, A.M.; Giori, G.S.; LeBlanc, J.G. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl. Microbiol. Biotechnol. 2021, 105, 2097–2107. [Google Scholar] [CrossRef]
- Delchier, N.; Herbig, A.-L.; Rychlik, M.; Renard, C.M.G.C. Folates in fruits and vegetables: Contents, processing, and stability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 506–528. [Google Scholar] [CrossRef] [Green Version]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef]
- Jagerstad, M.; Jastrebova, J.; Svensson, U. Folates in fermented vegetables—A pilot study. LWT-Food Sci. Technol. 2004, 37, 603–611. [Google Scholar] [CrossRef]
- Thompson, H.O.; Onning, G.; Holmgren, K.; Strandler, H.S.; Hultberg, M. Fermentation of cauliflower and white beans with Lactobacillus plantarum—Impact on levels of riboflavin, folate, vitamin B12 and amino acid composition. Plant Foods Hum. Nutr. 2020, 75, 236–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinnersley, A.M.; Turano, F.J. Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 2000, 19, 479–509. [Google Scholar] [CrossRef]
- Podlesakova, K.; Ugena, L.; Spichal, L.; Dolezal, K.; De Diego, N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol. 2019, 48, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ruiz, R.; Martinez, F.; Knauf-Beiter, G. The effects of GABA in plants. Cogent Food Agric. 2019, 5, 1670553. [Google Scholar] [CrossRef]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and immunity enhancement effects of gamma aminobutyric acid (GABA) administration in humans. Biofactors 2006, 26, 201–208. [Google Scholar] [CrossRef]
- Yoto, A.; Murao, S.; Motoki, M.; Yokoyama, Y.; Horie, N.; Takeshima, K.; Masuda, K.; Kim, M.; Yokogoshi, H. Oral intake of g-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids 2012, 43, 1331–1337. [Google Scholar] [CrossRef]
- Yamatsu, A.; Yamashita, Y.; Pandharipande, T.; Maru, I.; Kim, M. Effect of oral gamma-aminobutyric acid (GABA) administration on sleep and its absorption in humans. Food Sci. Biotechnol. 2016, 25, 547–551. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Schmit, J.C. Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa. Biochem. J. 1993, 293, 735–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foester, C.W.; Foester, H.F. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J. Bacteriol. 1973, 114, 1090–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Tun, H.M.; Law, Y.-S.; Khafipour, E.; Shah, N.P. Common distribution of gad operon in Lactobacillus brevis and its GadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH. Front. Microbiol. 2017, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.S.; Cha, I.-T.; Roh, S.W.; Shin, H.-H.; Seo, M.-J. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 2017, 27, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Liao, W.-Y.; Wu, S.-M.; Gong, X.; Bai, C. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. J. Dairy Sci. 2020, 103, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 2018, 4, 1534323. [Google Scholar] [CrossRef]
- Stines, A.P.; Grubb, J.; Gockowiak, H.; Henschke, P.A.; Høj, P.B.; Heeswijck, R. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine Res. 2000, 6, 150–158. [Google Scholar] [CrossRef]
- Oh, S.-H.; Moon, Y.-J.; Oh, C.-H. γ-aminobutyric acid (GABA) content of selected uncooked foods. Nutraceutical Food 2003, 8, 75–78. [Google Scholar] [CrossRef]
- Zazzeroni, R.; Homan, A.; Thain, E. Determination of gamma-Aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry. J. Chromatogr. Sci. 2009, 47, 564–568. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, E.O.; Lee, Y.J.; Leem, H.H.; Seo, I.H.; Yu, M.H.; Kang, D.H. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberrys from seven different Morus alba L. cultivars. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1467–1475. [Google Scholar]
- Sanchez-Hernandez, L.; Marina, M.L.; Crego, A.L. A capillary electrophoresis–Tandem mass spectrometry methodology for the determination of non-protein amino acids in vegetable oils as novel markers for the detection of adulterations in olive oils. J. Chromatogr. A 2011, 1218, 4944–4951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosati, A.; Cafiero, C.; Paoletti, A.; Alfei, B.; Caporali, S.; Casciani, L.; Valentini, M. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem. 2014, 159, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.-S.; Oh, S.-H. Investigation of γ-aminobutyric acid in Chinese cabbages and effects of the cabbage diets on lipid metabolism and liver function of rats administered with ethanol. J. Korean Soc. Food Sci. Nutr. 2000, 29, 500–505. [Google Scholar]
- Moore, J.F.; DuVivier, R.; Johanningsmeier, S.D. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid fermentation of cucumber. J. Food Compos. Anal. 2021, 96, 103711. [Google Scholar] [CrossRef]
- Bonatsou, S.; Iliopoulos, V.; Mallouchos, A.; Gogou, E.; Oikonomopoulou, V.; Krokida, M.; Taoukis, P.; Panagou, E.Z. Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives. Food Microbiol. 2017, 63, 72–83. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, S.H.; Jung, J.Y.; Choi, E.J.; Jeon, C.O. Microbial succession and metabolite changes during long-term storage of Kimchi. J. Food Sci. 2013, 78, M763–M769. [Google Scholar] [CrossRef]
- Seok, J.-H.; Park, K.-B.; Kim, Y.-H.; Bae, M.-O.; Lee, M.-K.; Oh, S.-H. Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci. Biotechnol. 2008, 17, 940–946. [Google Scholar]
- Cho, S.Y.; Park, M.J.; Kim, K.M.; Ryu, J.-H.; Park, H.J. Production of high γ-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Sci. Biotechnol. 2011, 20, 403–408. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Yao, Z.; Kim, J.A.; Kim, J.H. Properties of kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol. 2018, 28, 534–541. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Rutella, G.S.; Tagliazucchi, D.; Solieri, L. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food. Food Microbiol. 2016, 60, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Toala, J.E.; Santiago-Lopez, L.; Peres, C.M.; Peres, C.; Garcia, H.S.; Vallejo-Cordoba, B.; Gonzalez-Cordova, A.F.; Hernandez-Mendoza, A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 2017, 100, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, K.W.; Gustaw, W.Z.; Jabłonska-Ryś, E.D.; Michalak-Majewska, M.; Sławińska, A.; Radzki, W.P.; Gustaw, K.M.; Waśko, A.D. Antioxidative properties of milk protein preparations fermented by Polish strains of Lactobacillus helveticus. Acta Sci. Pol. Technol. Aliment. 2017, 16, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Taha, S.; El Abd, M.; De Gobba, C.; Abdel-Hamid, M.; Khalil, E.; Hassan, D. Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Sci. Biotechnol. 2017, 26, 1325–1332. [Google Scholar] [CrossRef]
- El-Fattah, A.A.; Sakr, S.; El-Dieb, S.; Elkashef, H. Developing functional yogurt rich in bioactive peptides and gamma aminobutyric acid related to cardiovascular health. LWT-Food Sci. Technol. 2018, 98, 390–397. [Google Scholar] [CrossRef]
- Ayyash, M.; Liu, S.Q.; Al Mheiri, A.; Aldhaheri, M.; Raeisi, B.; Al-Nabulsi, A.; Osaili, T.; Olaimat, A. In vitro investigation of health-promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages. LWT-Food Sci. Technol. 2019, 99, 346–354. [Google Scholar] [CrossRef]
- Cao, C.C.; Feng, M.Q.; Sun, J.; Xu, X.L.; Zhou, G.H. Screening of lactic acid bacteria with high protease activity from fermented sausages and antioxidant activity assessment of its fermented sausages. CyTA-J. Food 2019, 17, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lopez, F.; Robles-Olvera, V.J.; Hidalgo-Morales, M.; Tsopmo, A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J. Cereal Sci. 2020, 95, 103075. [Google Scholar] [CrossRef]
- Worsztynowicz, P.; Białas, W.; Grajek, W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem. 2020, 312, 126035. [Google Scholar] [CrossRef]
- Luti, S.; Mazzoli, L.; Ramazzotti, M.; Galli, V.; Venturi, M.; Marino, G.; Lehmann, M.; Guerrini, S.; Granchi, L.; Paoli, P.; et al. Antioxidant and anti-inflammatory properties of sourdoughs containing selected Lactobacilli strains are retained in breads. Food Chem. 2020, 322, 126710. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oboh, G. Angiotensin I-converting enzyme inhibitory activity and hypocholesterolemic effect of some fermented tropical legumes in streptozotocin-induced diabetic rats. Int. J. Diabetes Dev. Ctries. 2015, 35, 493–500. [Google Scholar] [CrossRef]
- Ebner, J.; Aşci Arslan, A.; Fedorova, M.; Hoffmann, R.; Kucukcetin, A.; Pischetsrieder, M. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J. Proteom. 2015, 117, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Citerne, F.; Tian, T.; Silva, V.L.M.; Kalanetra, K.M.; Frese, S.A.; Robinson, R.C.; Mills, D.A.; Barile, D. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem. 2016, 197, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells. Int. Dairy J. 2016, 63, 99–106. [Google Scholar] [CrossRef]
- Izquierdo-Gonzalez, J.J.; Amil-Ruiz, F.; Zazzu, S.; Sanchez-Lucas, R.; Fuentes-Almagro, C.A.; Rodriguez-Ortega, M.J. Proteomic analysis of goat milk kefir: Profiling the fermentation time dependent protein digestion and identification of potential peptides with biological activity. Food Chem. 2019, 295, 456–465. [Google Scholar] [CrossRef]
- Mushtaq, M.; Gani, A.; Masoodi, F.A. Himalayan cheese (Kalari/Kradi) fermented with different probiotic strains: In vitro investigation of nutraceutical properties. LWT-Food Sci. Technol. 2019, 104, 53–60. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Escudero, E.; Toldra, F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int. J. Food Microbiol. 2018, 276, 71–78. [Google Scholar] [CrossRef]
- Wu, H.; Rui, X.; Li, W.; Xiao, Y.; Zhou, J.; Dong, M. Whole grain oats (Avena sativa L.) as a carrier of lactic acid bacteria and a supplement rich in angiotensin I-converting enzyme inhibitory peptides through solid-state fermentation. Food Funct. 2018, 9, 2270–2281. [Google Scholar] [CrossRef]
- Ayyash, M.; Johnson, S.K.; Liu, S.Q.; Mesmari, N.; Dahmani, S.; Al Dhaheri, A.S.; Kizhakkayil, J. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp. Food Chem. 2019, 275, 50–58. [Google Scholar] [CrossRef]
- Sosalagere, C.; Kehinde, B.A.; Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A review. Food Chem. 2022, 366, 130494. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Villanueva, R.; Muñoz-Moreno, L.; Carmena, M.J.; Marina, M.L.; García, M.C. In vitro antitumor and hypotensive activity of peptides from olive seeds. J. Funct. Foods 2018, 42, 177–184. [Google Scholar] [CrossRef]
- Fideler, J.; Johanningsmeier, S.D.; Ekelof, M.; Muddiman, D.C. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS. Food Chem. 2019, 271, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.-P.; Huang, D.; Ong, C.N. Antioxidant activity and profiles of common vegetables in Singapore. Food Chem. 2010, 120, 993–1003. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Fındık, S.; AlJuhaimi, F.; Ghafoor, K.; Babiker, E.E.; Adiamo, O.Q. The effect of harvest time and varieties on total phenolics, antioxidant activity and phenolic compounds of olive fruit and leaves. J. Food Sci. Technol. 2019, 56, 2373–2385. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Babenko, L.M.; Smirnov, O.E.; Romanenko, K.O.; Trunova, O.K.; Kosakivska, I.V. Phenolic compounds in plants: Biogenesis and functions. Ukr. Biochem. J. 2019, 91, 5–18. [Google Scholar] [CrossRef]
- Landete, J.M. Updated knowledge about polyphenols: Functions, bioavailability, metabolism, and health. Crit. Rev. Food Sci. Nutr. 2012, 52, 936–948. [Google Scholar] [CrossRef]
- Ciniviz, M.; Yildiz, H. Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. J. Food Process. Preserv. 2020, 44, e14542. [Google Scholar] [CrossRef]
- Munoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: London, UK, 2017; pp. 63–83. [Google Scholar]
- Donkor, O.N.; Shah, N. Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food Sci. 2008, 73, M15–M20. [Google Scholar] [CrossRef] [PubMed]
- Rekha, C.R.; Vijayalakshmi, G. Isoflavone phytoestrogens in soymilk fermented with betaglucosidase producing probiotic lactic acid bacteria. Int. J. Food Sci. Nutr. 2011, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Lanza, B.; Rossetti, L.; Muzzalupo, I.; Carminati, D.; Giraffa, G. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. Food Microbiol. 2013, 34, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Barthelmebs, L.; Divies, C.; Cavin, J.-F. Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl. Environ. Microbiol. 2000, 66, 3368–3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, H.; Landete, J.M.; Curiel, J.A.; de las Rivas, B.; Mancheno, J.M.; Munoz, R. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748T. J. Agric. Food Chem. 2008, 56, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Mendes, P.; Fernandes, F.; Rodrigues, N.; Bento, A.; Pereira, J.A. Bioactivity and phenolic composition from natural fermented table olives. Food Funct. 2014, 5, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Kaltsa, A.; Papaliaga, D.; Papaioannou, E.; Kotzekidou, P. Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Food Microbiol. 2015, 48, 58–62. [Google Scholar] [CrossRef]
- Pistarino, E.; Aliakbarian, B.; Casazza, A.A.; Paini, M.; Cosulich, M.E.; Perego, P. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem. 2013, 138, 2043–2049. [Google Scholar] [CrossRef]
- Benincasa, C.; Muccilli, S.; Amenta, M.; Perri, E.; Romeo, F.V. Phenolic trend and hygienic quality of green table olives fermented with Lactobacillus plantarum starter culture. Food Chem. 2015, 186, 271–276. [Google Scholar] [CrossRef]
- Durante, M.; Tufariello, M.; Tommasi, L.; Lenucci, M.S.; Bleve, G.; Mita, G. Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. J. Sci. Food Agric. 2018, 98, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-M.; Shin, J.-H.; Gu, J.-G.; Yoon, S.-J.; Song, J.-C.; Jeon, W.-M.; Suh, H.-J.; Chang, U.-J.; Yang, C.-Y.; Kim, J.-M. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 2011, 112, 356–359. [Google Scholar] [CrossRef]
- Park, S.-Y.; Jang, H.-L.; Lee, J.-H.; Choi, Y.; Kim, H.; Hwang, J.; Seo, D.; Kim, S.; Nam, J.-S. Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. Food Sci. Biotechnol. 2017, 26, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Tsukamoto, C.; Kim, K.W.; Choi, M.R. Investigation of glucosinolates, and the antioxidant activity of Dolsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS. J. Food Biochem. 2017, 41, e12366. [Google Scholar] [CrossRef]
- Jung, S.J.; Kim, M.J.; Chae, S.W. Quality and functional characteristics of kimchi made with organically cultivated young Chinese cabbage (olgari-baechu). J. Ethn. Foods 2016, 3, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Ciska, E.; Karamac, M.; Kosinska, A. Antioxidant activity of extracts of white cabbage and sauerkraut. Pol. J. Food Nutr. Sci. 2005, 55, 367–373. [Google Scholar]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of package type on selected parameters of nutritional quality of chill-stored white sauerkraut. Pol. J. Food Nutr. Sci. 2017, 67, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Degrain, A.; Manhivi, V.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in African Nightshade. Microorganisms 2020, 8, 1324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.J.; Critchley, C.; Pun, S.; Chaliha, M.; O’Hare, T.J. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochemistry 2009, 70, 1401–1409. [Google Scholar] [CrossRef]
- Lee, M.-K.; Chun, J.-H.; Byeon, D.H.; Chung, S.-O.; Park, S.U.; Park, S.; Arasu, M.V.; Al-Dhabi, N.A.; Lim, Y.-P.; Kim, S.-J. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Sci. Technol. 2014, 58, 93–101. [Google Scholar] [CrossRef]
- Martinez-Ballesta, M.C.; Moreno, D.A.; Carvajal, M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 2013, 14, 11607–11625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, K. Glucosinolates and organosulfur compounds. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 113–119. [Google Scholar]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Villaluenga, C.; Peñas, E.; Frias, J.; Ciska, E.; Honke, J.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J. Food Sci. 2009, 74, C62–C67. [Google Scholar] [CrossRef]
- Palani, K.; Harbaum-Piayda, B.; Meske, D.; Keppler, J.K.; Bockelmann, W.; Heller, K.J.; Schwarz, K. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem. 2016, 190, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, M.; Taipale, M.; Viander, B.; Pihlava, J.-M.; Korhonen, H.; Ryhanen, E.-L. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 2002, 50, 6798–6803. [Google Scholar] [CrossRef]
- Ciska, E.; Honke, J.; Drabinska, N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice. Food Chem. 2021, 365, 130498. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, J.A.; Kelly, W.J.; McGhie, T.K.; Ansell, J.; Heyes, J.A. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from Enterobacteriaceae. J. Agric. Food Chem. 2013, 61, 3039–3046. [Google Scholar] [CrossRef]
- Luang-In, V.; Deeseenthum, S.; Udomwong, P.; Saengha, W.; Gregori, M. Formation of sulforaphane and iberin products from Thai cabbage fermented by myrosinase-positive bacteria. Molecules 2018, 23, 955. [Google Scholar] [CrossRef] [Green Version]
- Ciska, E.; Pathak, D.R. Glucosinolate Derivatives in stored fermented cabbage. J. Agric. Food Chem. 2004, 52, 7938–7943. [Google Scholar] [CrossRef]
- Penas, E.; Pihlava, J.M.; Vidal-Valverde, C.; Frias, J. Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. LWT-Food Sci. Technol. 2012, 48, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Penas, E.; Limón, R.I.; Vidal-Valverde, C.; Frias, J. Effect of storage on the content of indole-glucosinolate breakdown products and vitamin C of sauerkrauts treated by high hydrostatic pressure. LWT-Food Sci. Technol. 2013, 53, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.X.; Augustin, M.A.; Jegasothy, H.; Wanga, J.H.; Terefe, N.S. Mild heat combined with lactic acid fermentation: A novel approach for enhancing sulforaphane yield in broccoli puree. Food Funct. 2020, 11, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-H.; Huang, L.-Y.; Terefe, N.S.; Augustin, M.A. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 2019, 286, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bi, S.; Lao, F.; Chen, F.; Liao, X.; Wu, J. Induced changes in bioactive compounds of broccoli juices after fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chem. 2021, 357, 129767. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, H.B.; Markedal, K.E.; Martin-Belloso, O.; Sanchez-Vega, R.; Soliva-Fortuny, R.; Sorensen, H.; Sorensen, S.; Sorensen, J.C. Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Pol. J. Food Nutr. Sci. 2014, 64, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.F.; Yuan, G.F.; Wang, Q.M. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ. Sci. B 2013, 14, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Nugrahedi, P.Y.; Widianarko, B.; Dekker, M.; Verkerk, R.; Oliviero, T. Retention of glucosinolates during fermentation of Brassica juncea: A case study on production of sayur asin. Eur. Food Res. Technol. 2015, 240, 559–565. [Google Scholar] [CrossRef]
- Walker, M.A.; Roberts, D.R.; Shih, C.Y.; Dumbroff, E.B. A requirement for polyamines during the cell division phase of radicle emergence in seeds of Acer saccharum. Plant Cell Physiol. 1985, 26, 967–972. [Google Scholar]
- Baraldi, R.; Bertazza, G.; Bregoli, A.M.; Fasolo, F.; Rotondi, A.; Predieri, S.; Serafini-Fracassini, D.; Slovin, J.P.; Cohen, J.D. Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. J. Plant Growth Regul. 1995, 11, 21–31. [Google Scholar] [CrossRef]
- Bais, H.P.; George, J.; Ravishankar, G.A. Influence of polyamines on growth of hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local) and formation of coumarins. J. Plant Growth Regul. 1999, 18, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Sudha, G.; Ravishankar, G.A. Putrescine influences growth and production of coumarins in hairy root cultures of Cichorium intybus L. cv. Lucknow local (witloof chicory). J. Plant Growth Regul. 1999, 18, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Bhagyalakshmi, N.; Rajasekaran, T.; Ravishankar, G.A. Influence of polyamines on growth and production of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiol. Plant. 2000, 22, 151–158. [Google Scholar] [CrossRef]
- Jirage, D.B.; Ravishankar, G.A.; Suvarnalatha, G.; Venkataraman, L.V. Profile of polyamines during sprouting and growth of saffron (Crocus sativus L.) corms. J. Plant Growth Regul. 1994, 13, 69–72. [Google Scholar] [CrossRef]
- Lee, T.M.; Lin, Y.H. Opposite effects of Fusicoccin and IAA on putrescine synthesis of rice coleoptiles. Physiol. Plant. 1996, 97, 63–68. [Google Scholar] [CrossRef]
- Torrigiani, P.; Altamura, M.M.; Pasqua, G.; Monacelli, B.; Serafini-Fracassini, D.; Bagni, N. Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiol. Plant. 1987, 70, 453–460. [Google Scholar] [CrossRef]
- Gerats, A.G.M.; Kaye, C.; Collins, C.; Malmberg, R.L. Polyamine levels in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol. 1988, 86, 390–393. [Google Scholar] [CrossRef] [Green Version]
- Bais, H.P.; Sudha, G.; Ravishankar, G.A. Putrescine and silver nitrate influences shoot multiplication, in vitro flowering and endogenous titres of polyamines in Cichorium intybus L. cv. Lucknow local. J. Plant Growth Regul. 2000, 19, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Teitel, D.C.; Cohen, E.; Arad, S.; Birnbaum, E.; Mizrahi, Y. The possible involvement of polyamines in the development of tomato fruits in vitro. Plant Growth Regul. 1985, 3, 309–317. [Google Scholar] [CrossRef]
- Biasi, R.; Costa, G.; Bagni, N. Polyamine metabolism is related to fruit set and growth. Plant Physiol. Biochem. 1991, 29, 497–506. [Google Scholar]
- Alabadi, D.; Aguero, M.S.; Perez-Amador, M.A.; Carbonell, J. Arginase, arginine decarboxylase, ornithine decarboxylase and polyamines in tomato ovaries: Changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin. Plant Physiol. 1996, 112, 1237–1244. [Google Scholar] [CrossRef] [Green Version]
- Alabadi, D.; Carbonell, J. Expression of ornithine decarboxylase is transiently increased by pollination, 2,4-dichlorophenoxyacetic acid, and gibberellic acid in tomato ovaries. Plant Physiol. 1998, 118, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Kusano, T.; Yamaguchi, K.; Berberich, T.; Takahashi, Y. Advances in polyamine research in 2007. J. Plant Res. 2007, 120, 345–350. [Google Scholar] [CrossRef]
- Kusano, T.; Yamaguchi, K.; Berberich, T.; Takahashi, Y. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal. Behav. 2007, 2, 250–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capell, T.; Bassie, L.; Christou, P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. USA 2004, 101, 9909–9914. [Google Scholar] [CrossRef] [Green Version]
- Urano, K.; Yoshiba, Y.; Nanjo, T.; Ito, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem. Biophys. Res. Commun. 2004, 313, 369–375. [Google Scholar] [CrossRef]
- Kasukabe, Y.; He, L.; Nada, K.; Misawa, S.; Ihara, I.; Tachibana, S. Over-expression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 2004, 45, 712–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasukabe, Y.; He, L.; Watakabe, Y.; Otani, M.; Shimada, T.; Tachibana, S. Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol. 2006, 23, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Navakoudis, E.; Lutz, C.; Langebartels, C.; Lutz-Meindl, U.; Kotzabasis, K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim. Biophys. Acta 2003, 1621, 160–169. [Google Scholar] [CrossRef]
- Wen, X.P.; Pang, X.M.; Matsuda, N.; Kita, M.; Inoue, H.; Hao, Y.-J.; Honda, C.; Moriguchi, T. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res. 2007, 17, 251–263. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Miyazaki, A.; Takahashi, T.; Michael, A.; Kusano, T. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 2006, 580, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Takahashi, T.; Michael, A.; Kusano, T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2007, 352, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Berberich, T.; Miyazaki, A.; Seo, S.; Ohashi, Y.; Kusano, T. Spermine signalling in tobacco: Activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J. 2003, 36, 820–829. [Google Scholar] [CrossRef]
- Cona, A.; Rea, G.; Angelini, R.; Federico, R.; Tavladoraki, P. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 2006, 11, 80–88. [Google Scholar] [CrossRef]
- Tun, N.N.; Santa-Catarina, C.; Begum, T.; Silveira, V.; Handro, W.; Floh, E.I.; Scherer, G.F. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006, 47, 346–354. [Google Scholar] [CrossRef]
- Yamasaki, H.; Cohen, M.F. No signal at the crossroads: Polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci. 2006, 11, 522–524. [Google Scholar] [CrossRef]
- Jancewicz, A.L.; Gibbs, N.M.; Masson, P.H. Cadaverine’s functional role in plant development and environmental response. Front. Plant Sci. 2016, 7, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Gao, T.; Liu, W.; Liu, Y.; Zhao, Y.; Liu, Y.; Li, W.; Ding, K.; Ma, F.; Li, C. Functions of dopamine in plants: A review. Plant Signal. Behav. 2020, 15, e1827782. [Google Scholar] [CrossRef]
- Servillo, L.; Castaldo, D.; Giovane, A.; Casale, R.; D’Onofrio, N.; Cautela, D.; Balestrieri, M.L. Tyramine pathways in citrus plant defense: Glycoconjugates of tyramine and its N-methylated derivatives. J. Agric. Food Chem. 2017, 65, 892–899. [Google Scholar] [CrossRef]
- Desgagne-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2021, 20, 409–431. [Google Scholar] [CrossRef]
- Nawaz, K.; Chaudhary, R.; Sarwar, A.; Ahmad, B.; Gul, A.; Hano, C.; Abbasi, B.H.; Anjum, S. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: Current status and future perspectives. Sustainability 2021, 13, 294. [Google Scholar] [CrossRef]
- Pastre, D.; Pietrement, O.; Landousy, F.; Hamon, L.; Sorel, I.; David, M.O.; Delain, E.; Zozime, A.; Le Cam, E. A new approach to DNA bending by polyamines and its implication in DNA condensation. Eur. Biophys. J. 2006, 35, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Lindemose, S.; Nielsen, P.E.; Mollegaard, N.E. Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res. 2005, 33, 1790–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, H.C.; Sirisoma, N.S.; Kuppusamy, P.; Zweier, J.L.; Woster, P.M.; Casero, R.A., Jr. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 1998, 95, 11140–11145. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.G.; Oh, T.J. SOS induction of the recA gene by UV-, γ-irradiation and mitomycin C is mediated by polyamines in Escherichia coli K-12. Toxicol. Lett. 2000, 116, 143–149. [Google Scholar] [CrossRef]
- Tkachenko, A.; Nesterova, L.; Pshenichnov, M. The role of the natural polyamine putrescine in defence against oxidative stress in Escherichia coli. Arch. Microbiol. 2001, 176, 155–157. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K.; Tabor, C.W.; Tabor, H. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 2003, 100, 2261–2265. [Google Scholar] [CrossRef] [Green Version]
- Karatan, E.; Duncan, T.R.; Watnick, P.I. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J. Bacteriol. 2005, 187, 7434–7443. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.N.; Wortham, B.W.; Lines, J.L.; Fetherston, J.D.; Perry, R.D.; Oliveira, M.A. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 2006, 188, 2355–2363. [Google Scholar] [CrossRef] [Green Version]
- Sturgill, G.; Rather, P.N. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 2004, 51, 437–446. [Google Scholar] [CrossRef]
- Stevenson, L.G.; Rather, P.N. A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J. Bacteriol. 2006, 188, 7830–7839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polissi, A.; Pontiggia, A.; Feger, G.; Altieri, M.; Mottl, H.; Ferrari, L.; Simon, D. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 1998, 66, 5620–5629. [Google Scholar] [CrossRef] [Green Version]
- Ware, D.; Jiang, Y.; Lin, W.; Swiatlo, E. Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect. Immun. 2006, 74, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, D.; Bosscher, J.S.; Ten Brink, B.; Driessen, A.J.M.; Konings, W.N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 1993, 175, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393–2486. [Google Scholar] [CrossRef] [Green Version]
- Soksawatmaekhin, W.; Kuraishi, A.; Sakata, K.; Kashiwagi, K.; Igarashi, K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 2004, 51, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Wolken, W.A.; Lucas, P.M.; Lonvaud-Funel, A.; Lolkema, J.S. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J. Bacteriol. 2006, 188, 2198–2206. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Perez, S.; Comas-Baste, O.; Rabell-Gonzalez, J.; Veciana-Nogues, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic amines in plant-origin foods: Are they frequently underestimated in low-histamine diets? Foods 2018, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Dala-Paula, B.M.; Starling, M.F.V.; Beatriz, M.; Gloria, A. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. Food Biosci. 2021, 40, 100856. [Google Scholar] [CrossRef]
- Cipolla, B.G.; Havouis, R.; Moulinoux, J.P. Polyamine contents in current foods: A basis for polyamine reduced diet and a study of its long-term observance and tolerance in prostate carcinoma patients. Amino Acids 2007, 33, 203–212. [Google Scholar] [CrossRef]
- Nishibori, N.; Fujihara, S.; Akatuki, T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007, 100, 491–497. [Google Scholar] [CrossRef]
- Moret, S.; Smela, D.; Populin, T.; Conte, L.S. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005, 89, 355–361. [Google Scholar] [CrossRef]
- Simon-Sarkadi, L.; Holzapfel, W.H. Determination of biogenic amines in leafy vegetables by amino acid analyser. Z. Lebensm.-Unters. Forsch. 1994, 198, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Bardocz, S.; Grant, G.; Brown, D.S.; Ralph, A.; Pusztai, A. Polyamines in food—Implications for growth and health. J. Nutr. Biochem. 1993, 4, 66–71. [Google Scholar] [CrossRef]
- Eliassen, K.A.; Reistad, R.; Risøen, U.; Rønning, H.F. Dietary polyamines. Food Chem. 2002, 78, 273–280. [Google Scholar] [CrossRef]
- Nishimura, K.; Shiina, R.; Kashiwagi, K.; Igarashi, K. Decrease in polyamines with aging and their ingestion from food and drink. J. Biochem. 2006, 139, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, P.; Brenes-Balbuena, M.; Hornero-Mendez, D.; Garcia-Borrego, A.; Garrido-Fernandez, A. Content of biogenic amines in table olives. J. Food Prot. 2000, 63, 111–116. [Google Scholar] [CrossRef]
- Swider, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-Dietary Risk Evaluation. J. Agric. Food Chem. 2020, 68, 856–868. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Kung, H.-F.; Lin, Q.-L.; Hwang, J.-H.; Cheng, S.-H.; Wei, C.-I.; Hwang, D.-F. Occurrence of histamine and histamine-forming bacteria in kimchi products in Taiwan. Food Chem. 2005, 90, 635–641. [Google Scholar] [CrossRef]
- Cho, T.-Y.; Han, G.-H.; Bahn, K.-N.; Son, Y.-W.; Jang, M.-R.; Lee, C.-H.; Kim, S.-H.; Kim, D.-B.; Kim, S.-B. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol. 2006, 38, 730–737. [Google Scholar]
- Jin, Y.H.; Lee, J.H.; Park, Y.K.; Lee, J.-H.; Mah, J.-H. The occurrence of biogenic amines and determination of biogenic amine-producing lactic acid bacteria in Kkakdugi and Chonggak Kimchi. Foods 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Jin, Y.H.; Park, Y.K.; Yun, S.J.; Mah, J.-H. Formation of biogenic amines in Pa (green onion) Kimchi and Gat (mustard leaf) Kimchi. Foods 2019, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, K.H.; Kim, S.H.; Kim, S.-H.; Kim, J.G.; Sung, N.-J.; Lim, H.; Chung, M.J. Analysis and risk assessment of N-nitrosodimethylamine and its precursor concentrations in Korean commercial kimchi. J. Korean Soc. Food Sci. Nutr. 2017, 46, 244–250. [Google Scholar] [CrossRef]
- Hornero-Mendez, D.; Garrido-Fernandez, A. Rapid High-Performance Liquid Chromatography analysis of biogenic amines in fermented vegetable brines. J. Food Prot. 1997, 60, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, P.; Brenes-Balbuena, M.; Romero-Barranco, C.; Garrido-Fernandez, A. Biogenic amines in packed table olives and pickles. J. Food Prot. 2001, 64, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-W.; Kim, Y.-S.; Kim, Y.-H.; Kim, H.-T.; Eum, K.-S.; Hong, S.-R.; Kang, H.-J.; Park, K.-H.; Yoon, M.-H. Biogenic-amine contents of korean commercial salted fishes and cabbage kimchi. Korean J. Fish. Aquat. Sci. 2019, 52, 13–18. [Google Scholar]
- Kalac, P.; Spicka, J.; Krizek, M.; Steidlova, S.; Pelikanova, T. Concentrations of seven biogenic amines in sauerkraut. Food Chem. 1999, 67, 275–280. [Google Scholar] [CrossRef]
- Tofalo, R.; Schirone, M.; Perpetuini, G.; Angelozzi, G.; Suzzi, G.; Corsetti, A. Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Antonie Van Leeuwenhoek 2012, 102, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majcherczyk, J.; Surowka, K. Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chem. 2019, 298, 125083. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical composition and sensory quality of sauerkraut produced from different cabbage varieties. LWT-Food Sci. Technol. 2021, 136, 110325. [Google Scholar] [CrossRef]
- Restuccia, D.; Loizzo, M.R.; Spizzirri, U.G. Accumulation of biogenic amines in wine: Role of alcoholic and malolactic fermentation. Fermentation 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Rabie, M.A.; Siliha, H.; el-Saidy, S.; el-Badawy, A.A.; Malcata, F.X. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chem. 2011, 129, 1778–1782. [Google Scholar] [CrossRef]
- Kalac, P.; Spicka, J.; Krizek, M.; Pelikanova, T. The effects of lactic acid bacteria inoculants on biogenic amines formation in sauerkraut. Food Chem. 2000, 70, 355–359. [Google Scholar] [CrossRef]
- Kalac, P.; Spicka, J.; Krizek, M.; Pelikanova, T. Changes in biogenic amine concentrations during sauerkraut storage. Food Chem. 2000, 69, 309–314. [Google Scholar] [CrossRef]
- Kosson, R.; Elkner, K. Effect of storage period on biogenic amine content in sauerkraut. Veg. Crop. Res. Bull. 2010, 73, 151–160. [Google Scholar] [CrossRef]
- Penas, E.; Frias, J.; Sidro, B.; Vidal-Valverde, C. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chem. 2010, 123, 143–150. [Google Scholar] [CrossRef]
- Spicka, J.; Kalac, P.; Bover-Cid, S.; Krízek, M. Application of lactic acid bacteria starter cultures for decreasing the biogenic amine levels in sauerkraut. Eur. Food Res. Technol. 2002, 215, 509–514. [Google Scholar]
- Mah, J.-H.; Kim, Y.J.; No, H.-K.; Hwang, H.-J. Determination of biogenic amines in kimchi, Korean traditional fermented vegetable products. Food Sci. Biotechnol. 2004, 13, 826–829. [Google Scholar]
- Kang, H.-W. Characteristics of kimchi added with anchovy sauce from heat and non-heat treatments. Culin. Sci. Hosp. Res. 2013, 19, 49–58. [Google Scholar]
- Alan, Y. Culture fermentation of Lactobacillus in traditional pickled gherkins: Microbial development, chemical, biogenic amine and metabolite analysis. J. Food Sci. Technol. 2019, 56, 3930–3939. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, P.; Romero Barranco, C.; Duran Quintana, M.C.; Garrido Fernandez, A. Biogenic amine formation and “zapatera” spoilage of fermented green olives: Effect of storage temperature and debittering process. J. Food Prot. 2004, 67, 117–123. [Google Scholar] [CrossRef] [PubMed]
Product. | N | AGM | CAD | HIS | PHE | PUT | SPD | SPM | TRP | TYR |
---|---|---|---|---|---|---|---|---|---|---|
Kimchi types | ||||||||||
Kkakdugi kimchi 1 | 5 | 27.28 (54.44) [<0.1–124.60] | 55.94 (44.45) [18.75–127.78] | 3.61 (6.55) [<0.1–15.24] | 334.64 (427.97) [10.85–982.32] | 9.40 (6.68) [<0.1–16.76] | 1.03 (1.31) [<0.1–3.10] | <0.1 | 25.42 (29.59) [2.97–76.95] | |
Chonggak kimchi 1 | 5 | 64.08 (65.51) [2.00–148.50] | 58.73 (46.02) [8.24–131.20] | 0.78 (1.23) [<0.1–2.80] | 269.07 (349.93) [3.89–853.70] | 9.06 (2.99) [6.10–14.00] | 6.23 (8.79) [<0.1–20.74] | 9.02 (9.86) [<0.1–23.70] | 8.49 (6.80) [0.79–18.70] | |
Pa kimchi 2 | 13 | 44.07 (42.85) [<0.1–123.29] | 155.85 (139.26) [8.67–386.03] | 1.77 (2.04) [<0.1–5.97] | 78.79 (79.00) [<0.1–158.33] | 9.91 (4.89) [2.32–18.74] | 21.75 (8.94) [<0.1–33.84] | 6.99 (5.74) [<0.1–14.92] | 66.88 (74.91) [<0.1–181.10] | |
Gat kimchi 2 | 13 | 20.5 (18.52) [2.12–48.60] | 58.44 (75.77) [3.30–232.10] | 3.44 (4.30) [<0.1–15.75] | 134.96 (220.53) [1.89–720.82] | 20.31 (6.35) [12.26–28.49] | 31.30 (22.35) [<0.1–58.57] | 11.22 (8.23) [<0.1–26.74] | 76.15 (65.91) [1.28–149.77] | |
Cabbage kimchi (Korean) 3 | 10 | 15.2 [3.6–44.9] | 50.0 [3.4–142.3] | 3.0 [nd–6.8] | 69.7 [15.1–44.9] | 12.0 [7.8–16.5] | 2.4 [1.2–3.7] | 12.3 [2.3–22.6] | 49.4 [9.7–118.2] | |
Cabbage kimchi (Chinese) 3 | 10 | 12.5 [3.7–31.0] | 2.7 [0.6–8.5] | 4.4 [2.1–6.7] | 70.6 [16.0–240.4] | 11.9 [7.7–15.2] | 2.1 [nd–3.7] | 12.1 [2.4–20.0] | 35.1 [10.7–76.0] | |
Baechu kimchi 4 | 14 | 18.0 (18.6) [nd–45.0] | 64.6 (73.1) [nd–245.9] | 7.8 (5.8) [nd–14.9] | 15.0 (16.1) [tr–43.9] | 44.0 (35.8) [tr–103.6] | ||||
Kkakduki 4 | 5 | 31.0 (26.8) [nd–56.2] | 30.3 (21.7) [nd–51.6] | 6.7 (10.3) [nd–21.8] | 14.2 (6.1) [5.5–18.6] | 4.8 (5.6) [nd–10.8] | ||||
Chonggak kimchi 4 | 3 | 28.6 (49.5) [nd–85.7] | 10.7 (10.2) [nd–20.3] | nd | 7.3 (6.9) [2.3–15.2] | 45.4 (21.9) [20.2–58.1] | ||||
Matkimchi 4 | 4 | 30.5 (35.3) [nd–64.2] | 72.1 (27.7) [40.2–104.6] | 5.2 (4.5) [nd–10.8] | 32.3 (26.9) [nd–60.5] | 78.0 (22.0) [54.3–105.1] | ||||
Ripened Baechu kimchi 4 | 4 | 55.7 (18.9) [28.0–63.3] | 110.3 (44.4) [57.2–154.6] | 24.6 (34.0) [tr–74.8] | 5.5 (6.7) [nd–13.6] | 46.6 (39.6) [nd–95.6] | ||||
Baek kimchi 4 | 3 | 18.5 (7.1) [11.5–25.6] | 20.7 (18.9) [1.9–39.6] | 0.8 (0.9) [nd–1.7] | tr | 36.4 (28.6) [7.8–64.9] | ||||
Super market kimchi 5 | 20 | <0.1 | 14.3 (9.2) [<0.1–155] | 49.8 (32.5) [<0.1–535] | <0.1 | 2.06 (1.33) [<0.1–7.3] | 0.65 (0.51) [<0.1–8.8] | 1.96 (1.31) [<0.1–12.1] | 1.0 (1.05) [<0.1–11.4] | 0.46 (0.48) [<0.1–4.2] |
Retail market kimchi 5 | 17 | <0.1 | 1.59 (1.44) [<0.1–4.8] | 5.59 (4.57) [<0.1–18.6] | <0.1 | 0.67 (0.79) [<0.1–5.1] | 0.48 (0.52) [<0.1–8.2] | <0.1 | <0.1 | 0.40 (0.65) [<0.1–3.5] |
Cabbage kimchi 6 | 20 | 8.3 [0.9–39.8] | 6.3 [nd–21.8] | 0.5 [nd–2.0] | 47.6 [2.3–148.6] | 2.9 [nd–6.7] | 1.1 [nd–5.1] | 11.6 [nd–74.8] | 8.3 [1.1–27.9] | |
Kimchi 7 | ud | 16.81 (30.81) [<0.14–86.00] | 63.51 (69.81) [1.13–193.00] | 18.53 (28.07) [<0.09–74.94] | 2.59 (1.27) [0.94–4.50] | 208.70 (186.90) [2.25–475.06] | 10.35 (4.49) [5.55–18.25] | 1.38 (0.68) [0.56–2.38] | 4.75 (9.41) [<0.29–24.88] | 59.11 (44.70) [1.25–98.31] |
Sauerkaut | ||||||||||
Czech 8 | 53 | 64.8 (56.8) [1.9–293] | 12.1 (31.6) [nd–229] | 181 (108) [2.8–529] | 8.2 (7.3) [nd–47.0] | 4.6 (9.0) [nd–36.5] | 235 (213) [nd–951] | |||
Austrian 8 | 10 | 43.4 (21.0) [19.3–77.4] | 2.1 (2.4) [nd–8.0] | 179 (80.2) [51.0–295] | 6.5 (5.5) [nd–16.9] | 2.4 (3.2) [nd–7.7] | 130 (71.3) [14.0–214] | |||
Household 8 | 29 | 29.8 (23.0) [nd–82.7] | 4.6 (6.8) [nd–32.4] | 87.3 (72.2) [4.3–260] | 10.2 (7.5) [nd–28.3] | 4.7 (7.9) [nd–28.1] | 117 (113) [nd–384] | |||
Sterilized 8 | 29 | 45.5 (40.1) [6.9–167] | 4.9 (6.4) [nd–26.4] | 132 (81.5) [18.4–359] | 6.8 (4.0) [nd–15.2] | 7.2 (10.2) [nd–37.5] | 134 (90.4) [26.3–345] | |||
Sauerkraut 9 | 3.9 | 1.5 | tr | 9.2 | 0.5 | 0.2 | nd | 4.8 | ||
Cucumbers | ||||||||||
Fermented cucumber brine 10 | 1 | 3.19 | 45.11 | 3.07 | 1.83 | 61.70 | 21.16 | 9.77 | 7.37 | 5.24 |
Pickled cucumbers 11 | 11 | nd | nd | 4.5 (5.0) | 2.9 (4.2) | 0.7 (0.8) | ||||
Cucumber 7 | ud | 0.65 (1.05) [<0.14–2.88] | 82.14 (44.03) [39.60–179.19] | 31.54 (7.43) [18.50–40.85] | 3.10 (1.64) [1.15–6.31] | 171.30 (55.46) [103.13–286.88] | 8.08 (3.77) [2.25–14.05] | 1.28 (0.71) [0.56–2.65] | 14.49 (5.82) [6.00–22.88] | 62.24 (20.12) [28.38–86.75] |
Olives | ||||||||||
Fermented olive brine 10 | 1 | 0.81 | 15.62 | 1.14 | 1.78 | 42.94 | 0.51 | 6.93 | ||
Olives 7 | ud | <0.14 | 2.54 (3.28) [<0.06–6.25] | 1.71 (1.58) [<0.09–3.13] | 0.23 (0.40) [<0.35–0.70] | 17.13 (15.00) [5.75–34.13] | 1.21 (0.85) [0.25–1.88] | 1.58 (0.85) [0.60–2.13] | 3.33 (5.77) [<0.29–10.00] | 2.56 (1.29) [1.75–4.05] |
Olives 12 | 7 | 0.80 (0.00) [<0.4–0.8] | nd | 5.00 (2.96) [<0.5–7.8] | nd | |||||
Various products | ||||||||||
Beetroot 7 | ud | 0.48 (0.94) [<0.14–2.50] | 5.45 (7.96) [0.10–20.50] | 6.84 (12.84) [<0.09–31.25] | 0.63 (0.96) [<0.35–2.25] | 21.25 (33.98) [1.80–80.65] | 2.31 (0.54) [1.35–3.00] | 0.80 (0.84) [0.45–2.88] | 2.46 (5.08) [<0.29–14.20] | 16.76 (20.18) [1.20–47.80] |
Broccoli 7 | ud | 0.93 (1.85) [<0.14–3.70] | 119.42 (127.40) [6.80–302.50] | 36.86 (42.95) [<0.09–98.95] | 2.40 (0.56) [1.88–3.06] | 173.32 (121.1) [72.00–326.38] | 15.52 (8.31) [9.38–27.13] | 5.27 (4.77) [1.13–10.25] | 0.69 (0.80) [<0.29–1.50] | 93.04 (62.71) [47.25–181.88] |
Brussel sprout 7 | ud | 0.45 (0.78) [<0.14–1.35] | 115.05 (174.71) [1.60–316.25] | 37.39 (43.78) [1.31–86.10] | 9.41 (4.20) [4.60–12.38] | 252.58 (150.91) [114.31–413.56] | 17.08 (7.97) [10.50–25.94] | 2.97 (2.65) [<0.08–5.10] | 10.59 (12.63) [<0.29–24.56] | 166.58 (43.09) [119.50–204.06] |
Carrot 7 | ud | 0.90 (1.60) [<0.14–3.69] | 12.13 (16.88) [<0.06–41.25] | 7.03 (9.26) [<0.09–17.50] | 1.88 (1.93) [<0.35–4.38] | 64.66 (83.96) [4.25–186.63] | 5.52 (1.60) [3.10–7.50] | 1.67 (0.86) [0.44–2.38] | 5.39 (8.90) [<0.29–20.50] | 23.35 (31.95) [<0.07–61.19] |
Cauliflower 7 | ud | 0.52 (0.25) [0.38–0.80] | 91.98 (110.97) [0.06–215.25] | 32.22 (50.23) [0.94–90.15] | 1.38 (2.40) [<0.35–4.15] | 80.24 (69.17) [26.75–158.35] | 21.27 (5.15) [17.44–27.13] | 5.58 (0.84) [4.60–6.06] | 21.58 (37.38) [<0.29–64.75] | 46.23 (77.28) [0.31–135.45] |
Celery 7 | ud | 0.33 (0.58) [<0.14–1.00] | 58.29 (20.18) [35.50–73.88] | 25.33 (21.94) [<0.09–38.38] | 2.13 (0.87) [1.63–3.13] | 93.17 (19.77) [70.50–106.88] | 6.73 (1.29) [5.38–7.94] | 1.46 (0.69) [1.00–2.25] | 1.17 (1.02) [<0.29–1.88] | 51.69 (13.23) [36.44–60.13] |
Champignon 7 | ud | 6.73 (1.03) [5.60–8.15] | 1.40 (3.07) [<0.06–6.90] | <0.09 | 0.52 (0.48) [<0.35–0.90] | 1.93 (1.59) [0.45–4.45] | 74.58 (18.71) [58.65–106.65] | 2.10 (0.55) [1.40–2.65] | <0.29 | 38.56 (37.11) [0.50–85.20] |
Fermented lupine brine 10 | 1 | 0.05 | 0.40 | 0.67 | nd | 13.14 | 2.90 | 5.48 | 0.21 | |
Garlic 7 | ud | 1.75 (2.06) [<0.14–4.50] | 8.46 (7.84) [<0.06–17.69] | 3.04 (4.83) [<0.09–11.25] | 0.69 (1.22) [<0.35–2.81] | 67.65 (105.29) [4.25–249.44] | 18.62 (9.21) [8.31–33.06] | 6.44 (2.06) [3.94–9.40] | 1.47 (2.51) [<0.29–5.80] | 8.44 (7.75) [1.06–21.45] |
Pepper 7 | ud | 2.48 (0.50) [2.00–3.10] | 0.08 (0.15) [<0.06–0.30] | <0.09 | 0.88 (0.09) [0.75–0.95] | 9.29 (3.17) [6.45–13.80] | 1.21 (0.14) [1.10–1.40] | 0.99 (0.11) [0.90–1.15] | <0.29 | 18.98 (2.92) [15.65–22.75] |
Pickled caperberries 11 | 9 | 3.2 (3.1) | 14.7 (17.2) | 13.1 (8.5) | 4.9 (4.4) | 1.6 (2.6) | ||||
Pickled capers 11 | 8 | nd | 8.2 (6.7) | 2.3 (1.3) | 2.3 (2.4) | 0.2 (0.6) | ||||
Pumpkin 7 | ud | 1.08 (1.29) [<0.14–2.75] | 20.97 (0.76) [20.00–21.69] | 29.58 (31.13) [2.88–73.94] | 1.13 (1.44) [<0.35–3.00] | 136.98 (54.51) [55.44–169.13] | 8.68 (1.23) [7.06–9.75] | 49.63 (34.89) [2.00–83.20] | 4.88 (3.95) [<0.29–9.25] | 62.61 (39.09) [20.06–111.69] |
Radish 7 | ud | 0.32 (0.55) [<0.14–0.95] | 14.18 (20.27) [0.88–37.50] | 22.37 (22.04) [<0.09–44.06] | 1.77 (0.93) [0.75–2.56] | 32.08 (22.78) [6.38–49.80] | 6.40 (2.92) [4.40–9.75] | 0.93 (0.62) [0.45–1.63] | 10.25 (11.38) [<0.29–22.50] | 22.50 (11.33) [15.25–35.56] |
Red cabbage 7 | ud | 3.76 (4.60) [0.85–9.06] | 90.22 (61.65) [34.75–156.60] | 32.00 (52.03) [0.44–92.05] | 1.11 (1.56) [<0.35–2.90] | 124.17 (140.70) [4.00–278.95] | 10.75 (4.77) [6.25–15.75] | 3.23 (0.64) [2.70–3.94] | 9.90 (17.15) [<0.29–29.70] | 59.65 (56.04) [0.19–111.50] |
Sunchoke 7 | ud | <0.14 | 4.50 (3.48) [1.50–8.31] | 0.46 (0.79) [<0.09–1.38] | 0.67 (1.15) [<0.35–2.00] | 28.90 (18.15) [16.69–49.75] | 7.83 (2.07) [5.88–10.00] | 3.50 (0.22) [3.38–3.75] | <0.29 | 0.58 (0.71) [<0.07–1.38] |
Tomato 7 | ud | 0.06 (0.11) [<0.14–0.19] | 1.58 (1.00) [0.75–2.69] | 1.65 (2.21) [0.15–4.19] | 2.09 (2.47) [<0.35–4.81] | 42.05 (29.97) [10.95–70.75] | 3.79 (1.18) [2.50–4.81] | 1.21 (1.02) [0.50–2.38] | 1.21 (2.09) [<0.29–3.63] | 8.34 (13.30) [0.45–23.69] |
White cabbage 7 | ud | 3.14 (3.05) [<0.14–8.05] | 35.76 (45.14) [<0.06–125.44] | 55.60 (21.14) [32.55–83.81] | 1.92 (0.95) [0.90–3.69] | 190.59 (163.47) [57.50–524.63] | 9.08 (2.48) [5.81–11.85] | 2.55 (1.78) [0.69–5.38] | 11.27 (5.89) [3.10–17.19] | 60.69 (29.30) [29.05–105.13] |
White turnip 7 | ud | <0.14 | 4.57 (4.31) [1.13–10.70] | 0.02 (0.03) [<0.09–0.06] | 1.31 (2.63) [<0.35–5.25] | 15.49 (12.96) [2.25–32.63] | 6.38 (2.41) [4.31–9.69] | 1.44 (1.37) [<0.08–3.00] | <0.29 | 16.26 (15.57) [<0.07–35.31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramithiotis, S.; Das, G.; Shin, H.-S.; Patra, J.K. Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022, 11, 733. https://doi.org/10.3390/foods11050733
Paramithiotis S, Das G, Shin H-S, Patra JK. Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods. 2022; 11(5):733. https://doi.org/10.3390/foods11050733
Chicago/Turabian StyleParamithiotis, Spiros, Gitishree Das, Han-Seung Shin, and Jayanta Kumar Patra. 2022. "Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables" Foods 11, no. 5: 733. https://doi.org/10.3390/foods11050733
APA StyleParamithiotis, S., Das, G., Shin, H. -S., & Patra, J. K. (2022). Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods, 11(5), 733. https://doi.org/10.3390/foods11050733