Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Rheological Properties
2.3.1. Small Amplitude Oscillatory Shear (SAOS) Testing
2.3.2. Large Amplitude Oscillatory Shear (LAOS) Testing
2.4. Gel Solubility
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Water Holding Capacity (WHC)
2.7. Confocal Laser Scanning Microscopy (CLSM)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Rheology Properties
3.1.1. Linear Rheology Properties
3.1.2. Nonlinear Rheological Properties
LAOS Behaviors Analysis
Lissajous Plots Analysis
Fourier-Transform Rheology Analysis
Chebyshev Coefficients Analysis
3.2. Chemical Interaction Forces Analysis
3.3. FTIR Spectroscopy Analysis
3.4. Water Holding Capacity (WHC)
3.5. Confocal Laser Scanning Microscope (CLSM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, X.T.; Rioux, L.; Turgeon, S.L. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 2017, 239, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, T. Gelation of food protein-protein mixtures. Adv. Colloid Interface Sci. 2019, 270, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Zhu, F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci. Technol. 2021, 107, 491–508. [Google Scholar] [CrossRef]
- Dickinson, E. Stability and rheological implications of electrostatic milk protein-polysaccharide interactions. Trends Food Sci. Technol. 1998, 9, 347–354. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Bai, Y.; Zhao, Y.; Zhang, Y.; Li, J.; Zhang, H.; Zhao, D. Effect of bamboo shoot dietary fiber on gel quality, thermal stability and secondary structure changes of pork salt-soluble proteins. CyTA—J. Food. 2019, 17, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, Y.; Li, W.; Qin, F.; Chen, J. Effects of oligosaccharides and soy soluble polysaccharide on the rheological and textural properties of calcium sulfate-induced soy protein gels. Food Bioprocess Technol. 2017, 10, 556–567. [Google Scholar] [CrossRef]
- Mirarab Razi, S.; Motamedzadegan, A.; Shahidi, A.; Rashidinejad, A. The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat induced egg albumin gels. Food Hydrocoll. 2018, 82, 268–277. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B., Jr.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Maklakova, A.A.; Kondratyuk, Y.V. The rheological properties of gelatin gels containing κ-carrageenan. The role of polysaccharide. Colloid J. 2014, 76, 146–152. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’Ko, N.G.; Kuchina, Y.A.; Kolotova, D.S.; Gordeeva, A.M.; Faizullin, D.A.; Gusev, Y.A.; Zuev, Y.F.; Makshakova, O.N. Molecular structure and properties of κ-carrageenan-gelatin gels. Carbohydr. Polym. 2018, 197, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Neieynck, N.; Van der Meeren, K.; Dewettinck, K.; Van der Meeren, P. Influence of pH and biopolymer ratio on sodium caseinate-guar gum interactions in aqueous solutions and in O/W emulsions. Food Hydrocoll. 2007, 21, 862–869. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydr. Polym. 2012, 90, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, X.; Ahmad, I.; Jiang, Y.; Wang, X.; Wu, L. Effect of guar gum on the rheological, thermal and textural properties of soybean β-conglycinin gel. Int. J. Food Sci. Technol. 2009, 44, 1314–1322. [Google Scholar] [CrossRef]
- Da Prates, D.F.; Radmann, E.M.; Duarte, J.H.; de Morais, M.G.; Costa, J.A.V. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresour. Technol. 2018, 256, 38–43. [Google Scholar] [CrossRef]
- Neves, M.I.L.; Silva, E.K.; Meireles, M.A.A. Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci. Technol. 2021, 112, 163–173. [Google Scholar] [CrossRef]
- Han, P.; Li, J.; Zhong, H.; Xie, J.; Zhang, P.; Lu, Q.; Li, J.; Xu, P.; Chen, P.; Leng, L.; et al. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res. 2021, 55, 102240. [Google Scholar] [CrossRef]
- Fernández-Rojas, B.; Hernández-Juárez, J.; Pedraza-Chaverri, J. Nutraceutical properties of phycocyanin. J. Funct. Foods 2014, 11, 375–392. [Google Scholar] [CrossRef]
- Tong, K.; Xiao, G.; Cheng, W.; Chen, J.; Sun, P. Large amplitude oscillatory shear behavior and gelation procedure of high and low acyl gellan gum in aqueous solution. Carbohydr. Polym. 2018, 199, 397–405. [Google Scholar] [CrossRef]
- Carmona, J.A.; Ramírez, P.; Calero, N.; Muñoz, J. Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration. J. Food Eng. 2014, 126, 165–172. [Google Scholar] [CrossRef]
- Sun, W.; Yang, Y.; Wang, T.; Liu, X.; Wang, C.; Zhen, T. Large amplitude oscillatory shear rheology for nonlinear viscoelasticity in hectorite suspensions containing poly (ethylene glycol). Polymer 2011, 52, 1402–1409. [Google Scholar] [CrossRef]
- Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.J.; Ewoldt, R.H.; McKinley, G.H. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753. [Google Scholar] [CrossRef]
- Ma, Y.; Su, D.; Wang, Y.; Li, D.; Wang, L. Effects of concentration and NaCl on rheological behaviors of konjac glucomannan solution under large amplitude oscillatory shear (LAOS). LWT Food Sci. Technol. 2020, 128, 109466. [Google Scholar] [CrossRef]
- Melito, H.S.J. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018, 21, 7–14. [Google Scholar] [CrossRef]
- Bi, C.; Li, D.; Wang, L.; Adhikari, B. Effect of LBG on the gel properties of acid-induced SPI gels. LWT Food Sci. Technol. 2017, 75, 1–8. [Google Scholar] [CrossRef]
- Agoda-Tandjawa, G.; Garnec, C.L.; Boulenguer, P.; Gilles, M.; Langendorff, V. Rheological behavior of starch/carrageenan/milk proteins mixed systems: Role of each biopolymer type and chemical characteristics. Food Hydrocoll. 2017, 73, 300–312. [Google Scholar] [CrossRef]
- Cao, L.; Lu, W.; Ge, J.; Fang, Y. Modulation of oligoguluronate on the microstructure and properties of Ca-dependent soy protein gels. Carbohydr. Polym. 2020, 250, 116920. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Li-Sha, Y.; Chen, H. The effects of basil seed gum on the physicochemical and structural properties of arachin gel. Food Hydrocoll. 2020, 110, 106189. [Google Scholar] [CrossRef]
- Chang, Y.; Li, D.; Wang, L. Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels. Carbohydr. Polym. 2014, 108, 183–191. [Google Scholar] [CrossRef]
- Brito-Oliveira, T.C.; Cavini, A.; Ferreira, L.S.; Moraes, I.; Pinho, S.C. Microstructural and rheological characterization of nacl-induced gels of soy protein isolate and the effects of incorporating different galactomannans. Food Struct. 2020, 26, 100158. [Google Scholar] [CrossRef]
- Jiao, B.; Shi, A.; Liu, H.; Sheng, X.; Liu, L.; Hu, H.; Adhikari, B.; Wang, Q. Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocoll. 2018, 77, 329–335. [Google Scholar] [CrossRef]
- Zhu, Y.; Bhandari, B.; Prakash, S. Tribo-rheology characteristics and microstructure of a protein solution with varying casein to whey protein ratios and addition of hydrocolloids. Food Hydrocoll. 2019, 89, 874–884. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, P.; Nicolai, T. Effect of Kappa carrageenan on acid-induced gelation of whey protein aggregates. Part I: Potentiometric titration, rheology and turbidity. Food Hydrocoll. 2020, 102, 105589. [Google Scholar] [CrossRef]
- Dev, A.; Mohanbhai, S.J.; Kushwaha, A.C.; Sood, A.; Karmakar, S. κ-carrageenan-c-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomater. 2020, 109, 121–131. [Google Scholar] [CrossRef]
- Lozober, H.S.; Okun, Z.; Shpigelman, A. The impact of high-pressure homogenization on thermal gelation of Arthrospira platensis (Spirulina) protein concentrate. Innov. Food Sci. Emerg. Technol. 2021, 74, 102857. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, C.; Chen, X.; Li, P.; Ma, F.; Lu, Q. Contribution of three ionic types of polysaccharides to the thermal gelling properties of chicken breast myosin. J. Agric. Food Chem. 2014, 61, 2655–2662. [Google Scholar] [CrossRef]
- Hasanvand, E.; Rafe, A. Rheological and structural properties of rice bran protein-flaxseed (Linum usitatissimum L.) gum complex coacervates. Food Hydrocoll. 2018, 83, 296–307. [Google Scholar] [CrossRef]
- Gahrooee, T.R.; Moud, A.A.; Danesh, M.; Hatzikiriakos, S.G. Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydr. Polym. 2021, 257, 117552. [Google Scholar] [CrossRef]
- Yang, J.; Thielen, I.; Berton-Carabin, C.C.; van der Linden, E.; Sagis, L.M.C. Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents. Food Hydrocoll. 2020, 101, 105466. [Google Scholar] [CrossRef]
- Wang, W.; Shen, M.; Liu, S.; Jiang, L.; Song, Q.; Xie, J. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydr. Polym. 2018, 192, 193–201. [Google Scholar] [CrossRef]
- Qin, X.; Chen, S.; Li, X.; Luo, S.; Zhong, X.; Jiang, S.; Zhao, Y.; Zheng, Z. Gelation properties of transglutaminase-induced soy protein isolate and wheat gluten mixture with ultrahigh pressure pretreatment. Food Bioprocess Technol. 2017, 10, 866–874. [Google Scholar] [CrossRef]
- Zhang, S.; Hsieh, F.; Vardhanabhuti, B. Acid-induced gelation properties of heated whey protein-pectin soluble complex (Part I): Effect of initial pH. Food Hydrocoll. 2014, 36, 76–84. [Google Scholar] [CrossRef]
- Cavallieri, A.L.F.; Garcez, M.M.; Takeuchi, K.P.; da Cunha, R.L. Heat-induced gels of soy protein and κ-carrageenan at different pH values. Int. J. Food Sci. Technol. 2010, 45, 1130–1137. [Google Scholar] [CrossRef]
- Fitzsimons, S.M.; Mulvihill, D.M.; Morris, E.R. Large enhancements in thermogelation of whey protein isolate by incorporation of very low concentrations of guar gum. Food Hydrocoll. 2008, 22, 576–586. [Google Scholar] [CrossRef]
- Hyun, K.; Kim, S.H.; Ahn, K.H.; Lee, S.J. Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newton. Fluid Mech. 2002, 107, 51–65. [Google Scholar] [CrossRef]
- Kornet, R.; Veenemans, J.; Venema, P.; van der Goot, A.J.; Meinders, M.; Sagis, L.; van der Linden, E. Less is more: Limited fractionation yields stronger gels for pea proteins. Food Hydrocoll. 2021, 112, 106285. [Google Scholar] [CrossRef]
- Yang, D.; Gao, S.; Yang, H. Effects of sucrose addition on the rheology and structure of iota-carrageenan. Food Hydrocoll. 2020, 99, 105317. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Zhang, Y.; Lin, P.; Apostolidis, P.; Erkens, S.; Li, M.; Xu, J. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods. Constr. Build. Mater. 2021, 287, 123058. [Google Scholar] [CrossRef]
- Haramagatti, C.R.; Nikam, P.; Bhavsar, R.; Kamath, V.; Sawant, V.S. Stability assessment of iron oxide yellow pigment dispersions and temperature dependent implications of rheological measurements. Prog. Org. Coat. 2020, 144, 105669. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Li, D.; Wang, L. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll. 2022, 123, 107113. [Google Scholar] [CrossRef]
- Cho, K.S.; Hyun, K.; Ahn, K.H.; Lee, S.J. A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 2005, 49, 747–758. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Sagis, L.M.C.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Small and large oscillatory shear properties of concentrated proteins. Food Hydrocoll. 2021, 110, 106172. [Google Scholar] [CrossRef]
- Duvarci, O.C.; Yazar, G.; Kokini, J.L. The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic networks). Trends Food Sci. Technol. 2017, 60, 2–11. [Google Scholar] [CrossRef]
- Ewoldt, R.H.; McKinley, G.H. On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol. Acta 2010, 49, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Qu, R.; Wang, Y.; Li, D.; Wang, L. Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr. Polym. 2021, 274, 118660. [Google Scholar] [CrossRef]
- Ptaszek, P.; Kabziński, M.; Ptaszek, A.; Kaczmarczyk, K.; Kruk, J.; Bieńczak, A. The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method. Food Hydrocoll. 2016, 54, 293–301. [Google Scholar] [CrossRef]
- Ptaszek, P. Advances in Food Rheology and Its Applications; Woodhead: Sawston, UK, 2017; Chapter 5; pp. 87–123. ISBN 978-0-08-100431-9. [Google Scholar]
- Hyun, K.; Nam, J.G.; Wilhellm, M.; Ahn, K.H.; Lee, S.J. Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol. Acta 2005, 45, 239–249. [Google Scholar] [CrossRef]
- Goudoulas, T.B.; Germann, N. Nonlinear rheological behavior of gelatin gels: In situ gels and individual gel layers filled with hard particles. J. Colloid Interface Sci. 2019, 556, 1–11. [Google Scholar] [CrossRef]
- Ewoldt, R.H.; Hosoi, A.E.; McKinley, G.H. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 2008, 52, 1427–1458. [Google Scholar] [CrossRef] [Green Version]
- Ptaszek, P. A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams. J. Food Eng. 2015, 146, 53–61. [Google Scholar] [CrossRef]
- Çakır, E.; Foegeding, E.A. Combining protein micro-phase separation and protein-polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll. 2011, 25, 1538–1546. [Google Scholar] [CrossRef]
- Jones, O.G.; McClements, D.J. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes. Adv. Colloid Interface Sci. 2011, 167, 49–62. [Google Scholar] [CrossRef]
- Lv, T.; Wang, Y.; Pan, D.; Cao, J.; Zhang, X.; Sun, Y.; Chen, Y.; Liu, Y. Effect of trypsin treatments on the structure and binding capacity of volatile compounds of myosin. Food Chem. 2017, 214, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ma, Y.; Wang, Y.; Wang, R.; Zeng, M. Effect of κ-carrageenan on the gelation properties of oyster protein. Food Chem. 2022, 382, 132329. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Effect of κ-carrageenan on gelation and gel characteristics of Antarctic krill (Euphausia superba) protein isolated with isoelectric solubilization/precipitation. Food Chem. 2019, 278, 644–652. [Google Scholar] [CrossRef]
- Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X.; Zhou, G. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 2018, 74, 219–226. [Google Scholar] [CrossRef]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Pietrasik, Z.; Jarmoluk, A. Effect of sodium caseinate and κ-carrageenan on binding and textural properties of pork muscle gels enhanced by microbial transglutaminase addition. Food Res. Int. 2003, 36, 285–294. [Google Scholar] [CrossRef]
- Khemakhem, M.; Attia, H.; Ayadi, M.A. The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel. Food Hydrocoll. 2019, 87, 11–19. [Google Scholar] [CrossRef]
- Van den Berg, L.; Rosenberg, Y.; van Boekel, M.A.J.S.; Rosenberg, M.; van de Velde, F. Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocoll. 2009, 23, 1288–1298. [Google Scholar] [CrossRef]
- Rafe, A.; Razavi, S.M.A.; Khan, S. Rheological and structural properties of β-lactoglobulin and basil seed gum mixture: Effect of heating rate. Food Res. Int. 2012, 49, 32–38. [Google Scholar] [CrossRef]
Polysaccharide Concentration (wt.%) | Types of Polysaccharides | G′ = K′ × ωn′ | R2 | G′ = K′ × ωn″ | R2 | ||
---|---|---|---|---|---|---|---|
K′ (Pa/sn) | n′ (Dimensionless) | K″ (Pa/sn) | n″ (Dimensionless) | ||||
0 | - | 425.580 ± 13.064 Dd | 0.142 ± 0.004 Aa | 1.000 | 99.126 ± 2.723 Dd | 0.161 ± 0.009 Aa | 0.980 |
0.1 | CG | 581.754 ± 9.431 C | 0.140 ± 0.005 A | 0.998 | 135.276 ± 3.517 C | 0.142 ± 0.015 AB | 0.987 |
0.2 | CG | 869.311 ± 27.090 B | 0.129 ± 0.001 B | 0.999 | 182.768 ± 3.149 B | 0.129 ± 0.010 B | 0.985 |
0.4 | CG | 1483.286 ± 5.796 A | 0.091 ± 0.001 C | 0.998 | 201.776 ± 4.134 A | 0.119 ± 0.005 BC | 0.966 |
0.1 | GG | 886.015 ± 2.535 a | 0.144 ± 0.002 a | 0.999 | 211.169 ± 1.114 a | 0.143 ± 0.001 b | 0.989 |
0.2 | GG | 714.298 ± 19.382 b | 0.140 ± 0.001 a | 0.999 | 170.918 ± 6.235 b | 0.141 ± 0.001 b | 0.989 |
0.4 | GG | 481.074 ± 4.991 c | 0.143 ± 0.004 a | 0.999 | 115.604 ± 1.328 c | 0.148 ± 0.005 b | 0.987 |
Polysaccharide Concentrations (wt.%) | Types of Polysaccharides | Critical Strain γc (%) | G′ at Critical Strain Gcr (Pa) | Cohesive Energy Density Ec (J/m3) |
---|---|---|---|---|
0 | - | 0.63109 ± 0.001 Cb | 508.4 ± 0.100 Dd | 101.241 ± 0.010 Dd |
0.1 | CG | 1.0135 ± 0.001 B | 707.8 ± 0.100 C | 363.520 ± 0.100 C |
0.2 | CG | 1.0197 ± 0.005 A | 1035 ± 0.050 B | 531.042 ± 0.005 B |
0.4 | CG | 1.0195 ± 0.001 A | 1663 ± 0.100 A | 864.245 ± 0.010 A |
0.1 | GG | 1.0248 ± 0.001 a | 1011 ± 0.050 a | 530.884 ± 0.010 a |
0.2 | GG | 0.63199 ± 0.001 b | 839.5 ± 0.100 b | 167.653 ± 0.001 b |
0.4 | GG | 0.62868 ± 0.001 c | 649.4 ± 0.100 c | 128.334 ± 0.010 c |
Polysaccharide Concentrations (wt.%) | Types of Polysaccharides | β-Sheet (%) | Random Coil (%) | α-Helix (%) | β-Turn (%) |
---|---|---|---|---|---|
0 | - | 25.46 ± 0.01 Bb | 12.35 ± 0.02 Aa | 13.89 ± 0.01 Ab | 48.30 ± 0.01 Db |
0.1 | CG | 24.89 ± 0.01 C | 12.05 ± 0.01 B | 13.63 ± 0.02 B | 49.43 ± 0.01 B |
0.2 | CG | 24.78 ± 0.01 D | 11.81 ± 0.02 D | 13.50 ± 0.01 D | 49.91 ± 0.03 A |
0.4 | CG | 25.70 ± 0.01 A | 11.98 ± 0.03 C | 13.55 ± 0.01 C | 48.77 ± 0.02 C |
0.1 | GG | 25.76 ± 0.02 a | 12.23 ± 0.01 b | 13.75 ± 0.01 d | 48.26 ± 0.01 c |
0.2 | GG | 24.96 ± 0.03 c | 12.03 ± 0.01 c | 13.87 ± 0.02 c | 49.14 ± 0.01 a |
0.4 | GG | 24.44 ± 0.01 d | 11.48 ± 0.01 d | 23.92 ± 0.03 a | 40.16 ± 0.01 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.-c.; Zhao, X.; Li, D.; Wang, L.-j.; Wang, Y. Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods 2022, 11, 734. https://doi.org/10.3390/foods11050734
Lei Y-c, Zhao X, Li D, Wang L-j, Wang Y. Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods. 2022; 11(5):734. https://doi.org/10.3390/foods11050734
Chicago/Turabian StyleLei, Yu-chen, Xia Zhao, Dong Li, Li-jun Wang, and Yong Wang. 2022. "Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel" Foods 11, no. 5: 734. https://doi.org/10.3390/foods11050734
APA StyleLei, Y. -c., Zhao, X., Li, D., Wang, L. -j., & Wang, Y. (2022). Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods, 11(5), 734. https://doi.org/10.3390/foods11050734