The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Stock Solutions and Emulsions
2.3. Fatty Acid Profile of Pork Lard and Emulsions
2.4. Structural Properties
2.4.1. Measurement of Droplet Size and Size Distribution
2.4.2. Confocal Laser Scanning Microscopy
2.5. Rheological Measurements
2.5.1. Dynamic Viscoelastic Properties
2.5.2. Steady Shear Rheological Measurements
2.6. Texture Measurements
2.7. In Vitro Digestion
2.8. Extent of Lipolysis during In Vitro Digestion
2.8.1. Fat Extraction
2.8.2. High-Performance Size-Exclusion Liquid Chromatography (HPSEC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Profile of Pork Lard and Emulsions
3.2. General Appearance and Structural Properties
3.3. Dynamic Viscoelastic Properties
3.3.1. Stress Sweep Tests
3.3.2. Frequency Sweep Tests
3.3.3. Temperature Sweep Tests
3.4. Flow Behavior
3.5. Three-Step Shear Rate Tests
3.6. Texture Measurements
3.7. Extent of Lipolysis during In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; McClements, D.J.; Decker, E.A. Design of Foods with Bioactive Lipids for Improved Health. Annu. Rev. Food Sci. Technol. 2013, 4, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Lorenzo, J.M. Use of olive oil as fat replacer in meat emulsions. Curr. Opin. Food Sci. 2021, 40, 179–186. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- McClements, D.J. Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity. Adv. Nutr. 2015, 6, 338S–352S. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.-H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Crit. Rev. Food Sci. Nutr. 2017, 57, 2636–2679. [Google Scholar] [CrossRef]
- Dickinson, E. Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 2008, 4, 932–942. [Google Scholar] [CrossRef]
- Rodriguez Patino, J.M.; Pilosof, A.M.R. Protein-polysaccharide interactions at fluid interfaces. Food Hydrocoll. 2011, 25, 1925–1937. [Google Scholar] [CrossRef]
- Erni, P.; Windhab, E.J.; Gunde, R.; Graber, M.; Pfister, B.; Parker, A.; Fischer, P. Interfacial rheology of surface-active biopolymers: Acacia senegal gum versus hydrophobically modified starch. Biomacromolecules 2007, 8, 3458–3466. [Google Scholar] [CrossRef]
- Camino, N.A.; Pérez, O.E.; Sanchez, C.C.; Rodriguez Patino, J.M.; Pilosof, A.M.R. Hydroxypropylmethylcellulose surface activity at equilibrium and adsorption dynamics at the air-water and oil-water interfaces. Food Hydrocoll. 2009, 23, 2359–2368. [Google Scholar] [CrossRef]
- Wollenweber, C.; Makievski, A.V.; Miller, R.; Daniels, R. Adsorption of hydroxypropyl methylcellulose at the liquid/liquid interface and the effect on emulsion stability. Colloids Surf. A Physicochem. Eng. Asp. 2000, 172, 91–101. [Google Scholar] [CrossRef]
- Gustafsson, E.; Pelton, R.; Wågberg, L. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive. ACS Appl. Mater. Interfaces 2016, 8, 24161–24167. [Google Scholar] [CrossRef] [PubMed]
- Pettignano, A.; Daunay, A.; Moreau, C.; Cathala, B.; Charlot, A.; Fleury, E. Sustainable Modification of Carboxymethyl Cellulose by Passerini Three-Component Reaction and Subsequent Adsorption onto Cellulosic Substrates. ACS Sustain. Chem. Eng. 2019, 7, 14685–14696. [Google Scholar] [CrossRef]
- Ray, M.; Rousseau, D. Stabilization of oil-in-water emulsions using mixtures of denatured soy whey proteins and soluble soybean polysaccharides. Food Res. Int. 2013, 52, 298–307. [Google Scholar] [CrossRef]
- Malinauskyte, E.; Leskauskaite, D. The influence of technological parameters on the properties of O/W emulsions stabilized by whey proteins and carboxymethylcellulose. J. Food Agric. Environ. 2013, 11, 93–96. [Google Scholar]
- Cai, Y.; Huang, L.; Tao, X.; Su, J.; Chen, B.; Zhao, M.; Zhao, Q.; Van der Meeren, P. Carboxymethyl cellulose/okara protein influencing microstructure, rheological properties and stability of O/W emulsions. J. Sci. Food Agric. 2021, 101, 3685–3692. [Google Scholar] [CrossRef]
- Zhu, X.; Zhan, F.; Zhao, Y.; Han, Y.; Chen, X.; Li, B. Improved foaming properties and interfacial observation of sodium caseinate-based complexes: Effect of carboxymethyl cellulose. Food Hydrocoll. 2020, 105, 105758. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Q.; Liu, T.; Kong, J.; Long, Z.; Zhao, M. Sodium caseinate/carboxymethylcellulose interactions at oil-water interface: Relationship to emulsion stability. Food Chem. 2012, 132, 1822–1829. [Google Scholar] [CrossRef]
- Reiffers-Magnani, C.K.; Cuq, J.L.; Watzke, H.J. Depletion flocculation and thermodynamic incompatibility in whey protein stabilised O/W emulsions. Food Hydrocoll. 2000, 14, 521–530. [Google Scholar] [CrossRef]
- Malinauskyte, E.; Ramanauskaite, J.; Leskauskaite, D.; Devold, T.G.; Schüller, R.B.; Vegarud, G.E. Effect of human and simulated gastric juices on the digestion of whey proteins and carboxymethylcellulose-stabilised O/W emulsions. Food Chem. 2014, 165, 104–112. [Google Scholar] [CrossRef]
- Bellesi, F.A.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R. Lipolysis of soy protein and HPMC mixed emulsion as modulated by interfacial competence of emulsifiers. Food Hydrocoll. 2020, 99, 105328. [Google Scholar] [CrossRef]
- Santiaguín-Padilla, A.J.; Peña-Ramos, E.A.; Pérez-Gallardo, A.; Rascón-Chu, A.; González-Ávila, M.; González-Ríos, H.; González-Noriega, J.A.; Islava-Lagarda, T. In Vitro Digestibility and Quality of an Emulsified Meat Product Formulated with Animal Fat Encapsulated with Pectin. J. Food Sci. 2019, 84, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Lee, S.J. Effects of Biopolymers Encapsulations on the Lipid Digestibility of Emulsion-Type Sausages Using a Simulated Human Gastrointestinal Digestion Model. Food Bioprocess Technol. 2014, 7, 2198–2206. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Herrero, A.M.; Herranz, B.; Álvarez, M.D.; Jiménez-Colmenero, F.; Cofrades, S. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocoll. 2019, 87, 960–969. [Google Scholar] [CrossRef]
- Herranz, B.; Canet, W.; Alvarez, M.D. Corn starch and egg white enriched gluten-free chickpea flour batters: Rheological and structural properties. Int. J. Food Prop. 2017, 20, S489–S506. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Dobarganes, M.C.; Velasco, J.; Dieffenbacher, A. Determination of polar compounds, polymerized and oxidized triacylglycerols, and diacylglycerols in oils and fats: Results of collaborative studies and the standardized method (Technical report). Pure Appl. Chem. 2000, 72, 1563–1575. [Google Scholar] [CrossRef]
- Chang, Y.; McClements, D.J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocoll. 2016, 61, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, E.; Golding, M.; Povey, M.J.W. Creaming and flocculation of oil-in-water emulsions containing sodium caseinate. J. Colloid Interface Sci. 1997, 185, 515–529. [Google Scholar] [CrossRef]
- Chang, Y.; McClements, D.J. Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocoll. 2015, 51, 252–260. [Google Scholar] [CrossRef]
- Palazolo, G.G.; Sorgentini, D.A.; Wagner, J.R. Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocoll. 2005, 19, 595–604. [Google Scholar] [CrossRef]
- McClements, D.J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 2005, 21, 9777–9785. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, L.S.; Schmitt, C.; Leser, M.E.; Murray, B.S.; Dickinson, E. Mixed Layers of Sodium Caseinate + Dextran Sulfate: Influence of Order of Addition to Oil−Water Interface. Langmuir 2009, 25, 10026–10037. [Google Scholar] [CrossRef] [PubMed]
- Solo-de-Zaldívar, B.; Tovar, C.A.; Borderías, A.J.; Herranz, B. Effect of deacetylation on the glucomannan gelation process for making restructured seafood products. Food Hydrocoll. 2014, 35, 59–68. [Google Scholar] [CrossRef]
- Nishinari, K. Texture and rheology in food and health. Food Sci. Technol. Res. 2009, 15, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Blijdenstein, T.B.J.; Winden, A.J.M.V.; Vliet, T.V.; Linden, E.V.D.; Van Aken, G.A. Serum separation and structure of depletion- and bridging-flocculated emulsions: A comparison. Colloids Surf. A Physicochem. Eng. Asp. 2004, 245, 41–48. [Google Scholar] [CrossRef]
- Pal, R. Shear viscosity behavior of emulsions of two immiscible liquids. J. Colloid Interface Sci. 2000, 225, 359–366. [Google Scholar] [CrossRef]
- Diftis, N.; Kiosseoglou, V. Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose. Food Chem. 2003, 81, 1–6. [Google Scholar] [CrossRef]
- Albano, K.M.; Cavallieri, Â.L.F.; Nicoletti, V.R. Electrostatic Interaction between Soy Proteins and Pectin in O/W Emulsions Stabilization by Ultrasound Application. Food Biophys. 2020, 15, 297–312. [Google Scholar] [CrossRef]
- Sánchez-Muniz, F.J.; Benedi, J.; Bastida, S.; Olivero-David, R.; González-Muñoz, M.J. Enzymes and Thermally Oxidized Oils and Fats. In Frying of Food; Boskou, D., Elmadfa, I., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 115–166. ISBN 9781439806838. [Google Scholar]
- Malaki Nik, A.; Wright, A.J.; Corredig, M. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models. Colloids Surf. B Biointerfaces 2011, 83, 321–330. [Google Scholar] [CrossRef]
- Torcello-Gómez, A.; Foster, T.J. Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems. Carbohydr. Polym. 2014, 113, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Pizones Ruiz-Henestrosa, V.M.; Bellesi, F.A.; Camino, N.A.; Pilosof, A.M.R. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll. 2017, 62, 251–261. [Google Scholar] [CrossRef]
mg Fatty Acid/g Sample | Pork Lard | Emulsions * |
---|---|---|
Palmitic C16:0 | 245 ± 2.0 a | 96.0 ± 0.23 b |
Estearic C18:0 | 154 ± 0.70 a | 50.9 ± 0.16 b |
Other SFA | 18.7 | 8.10 |
∑SFA | 419 | 155 |
Oleic C18:1n9 | 408 ± 5.2 a | 162 ± 0.52 b |
Other MUFA | 49.7 | 23.6 |
∑MUFA | 458 | 186 |
Linoleic C18:2n6 | 65.4 ± 0.71 a | 28.1 ± 0.081 b |
Other PUFA | 13.3 ± 0.14 a | 5.60 ± 0.046 b |
∑PUFA | 78.8 | 33.7 |
∑PUFA/∑SFA | 0.188 | 0.217 |
Emulsion | D[4,3] (μm) | D[3,2] (μm) |
---|---|---|
SPC | 52.9 ± 1.1 a | 11.6 ± 0.43 a |
SPC/CMC–sim | 23.8 ± 0.65 d | 4.23 ± 0.035 c |
SPC/CMC–seq | 15.7 ± 0.35 e | 3.46 ± 0.12 d |
SPC/MC–sim | 38.1 ± 2.0 b | 6.74 ± 0.10 b |
SPC/MC–seq | 26.8 ± 0.17 c | 4.50 ± 0.029 c |
Emulsion | G′ (Pa) | G″ (Pa) | tan δ |
---|---|---|---|
At 5 °C | |||
SPC | 168,300 ± 42,500 a | 32,670 ± 3240 a | 0.199 ± 0.032 c |
SPC/CMC–sim | 2468 ± 59 c | 974 ± 28 d | 0.393 ± 0.0020 a |
SPC/CMC–seq | 3671 ± 227 c | 1211 ± 54 d | 0.330 ± 0.0058 b |
SPC/MC–sim | 89,260 ± 270 b | 17,995 ± 405 b | 0.202 ± 0.0051 c |
SPC/MC–seq | 16,190 ± 1886 c | 6789 ± 337 c | 0.426 ± 0.029 a |
At 37 °C | |||
SPC | 133 ± 16 c | 28.3 ± 0.0035 c | 0.214 ± 0.0075 c |
SPC/CMC–sim | 745 ± 31 b | 240 ± 13 a | 0.322 ± 0.0047 b |
SPC/CMC–seq | 948 ± 75 a | 268 ± 0.015 a | 0.285 ± 0.038 b |
SPC/MC–sim | 133 ± 0.20 c | 70.9 ± 1.2 b | 0.533 ± 0.0079 a |
SPC/MC–seq | 128 ± 11 c | 72. ± 3.3 b | 0.566 ± 0.023 a |
Emulsion | K (Pa sn) | n (-) | R2 |
---|---|---|---|
SPC | 1.12 ± 0.058 c | 0.360 ± 0.0070 d | 0.967 ± 0.0061 |
SPC/CMC–sim | 64.8 ± 1.1 b | 0.390 ± 0.00035 c | 0.998 ± 0.000050 |
SPC/CMC–seq | 81.9 ± 4.9 a | 0.226 ± 0.0056 e | 0.998 ± 0.00080 |
SPC/MC–sim | 2.35 ± 0.13 c | 0.450 ± 0.016 b | 0.963 ± 0.0021 |
SPC/MC–seq | 2.04 ± 0.10 c | 0.565 ± 0.012 a | 0.990 ± 0.0045 |
ηo (Pa s) | ηf (Pa s) | Viscosity Recovery (%) | |
---|---|---|---|
SPC | 5.04 ± 0.35 c | 3.49 ± 0.41 d | 69.0 ± 3.5 a |
SPC/CMC–sim | 645 ± 24 b | 403 ± 8.1 b | 64.6 ± 11 a |
SPC/CMC–seq | 1852 ± 128 a | 1209 ± 33 a | 65.7 ± 6.3 a |
SPC/MC–sim | 49.9 ± 1.1 c | 20.5 ± 0.21 c,d | 41.0 ± 0.51 b |
SPC/MC–seq | 168 ± 5.9 c | 58.8 ± 0.61 c | 35.1 ± 0.86 b |
Emulsion | Force at 10 mm (N) | AUC (N s) |
---|---|---|
SPC | 0.689 ± 0.042 b | 8.31 ± 0.62 b |
SPC/CMC–sim | 0.462 ± 0.014 c | 5.52 ± 0.15 c |
SPC/CMC–seq | 0.789 ± 0.033 a | 9.76 ± 0. 50 a |
SPC/MC–sim | 0.427 ± 0.0085 c | 5.23 ± 0.25 c |
SPC/MC–seq | 0.246 ± 0.0050 d | 3.00 ± 0.055 d |
Emulsion | TAG (g/100 g) | DAG (g/100 g) | MAG (g/100 g) | FFA (g/100 g) | MAG + FFA (g/100 g) | Digestibility (%) |
---|---|---|---|---|---|---|
Initial pork lard | 99.9 ± 0.0 | - | ||||
Digestion time: 30 min | ||||||
SPC | 41.2 ± 2.5 a | 14.9 ± 1.8 a | 11.9 ± 0.90 a | 32.0 ± 0.50 a | 43.9 ± 2.5 a,b | 58.8 ± 2.5 a |
SPC/CMC–sim | 36.6 ± 2.0 a | 16.6 ± 1.2 a | 12.1 ± 0.53 a | 34.8 ± 2.3 a | 46.9 ± 2.0 a | 63.4 ± 2.1 a |
SPC/CMC–seq | 39.5 ± 3.2 a | 15.6 ± 0.75 a | 11.5 ± 0.68 a,b | 33.4 ± 1.8 a | 44.9 ± 3.2 a,b | 60.5 ± 3.2 a |
SPC/MC–sim | 39.0 ± 0.21 a | 16.7 ± 0.14 a | 12.7 ± 0.72 a | 31.6 ± 1.1 a | 44.2 ± 0.21 a,b | 61.0 ± 0.21 a |
SPC/MC–seq | 41.2 ± 0.26 a | 17.7 ± 0.10 a | 9.77 ± 0.37 b | 31.4 ± 0.73 a | 41.1 ± 0.26 b | 58.8 ± 0.26 a |
Digestion time: 90 min | ||||||
SPC | 22.7 ± 0.53 d | 13.5 ± 2.0 a | 15.1 ± 0.69 a | 50.2 ± 0.69 a | 65.3 ± 0.00 a | 77.3 ± 0.53 a |
SPC/CMC–sim | 27.0 ± 0.69 b,c | 14.7 ± 0.39 a | 13.3 ± 0.90 a,b | 45.0 ± 0.77 b,c | 58.3 ± 0.87 b | 73.0 ± 0.69 b,c |
SPC/CMC–seq | 30.9 ± 1.6 b | 15.1 ± 0.38 a | 11.8 ± 0.71 b,c | 42.3 ± 1.2 c | 54.1 ± 1.9 c | 69.2 ± 1.6 c,d |
SPC/MC–sim | 25.9 ± 1.2 c,d | 13.2 ± 1.5 a | 14.8 ± 1.1 a | 46.2 ± 1.5 b | 61.0 ± 0.46 b | 74.1 ± 1.2 b |
SPC/MC–seq | 36.3 ± 2.4 a | 15.1 ± 1.1 a | 10.2 ± 1.3 c | 38.4 ± 1.2 d | 48.6 ± 1.8 d | 63.7 ± 2.4 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cofrades, S.; Saiz, A.; Pérez-Mateos, M.; Garcimartín, A.; Redondo-Castillejo, R.; Bocanegra, A.; Benedí, J.; Álvarez, M.D. The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods 2022, 11, 738. https://doi.org/10.3390/foods11050738
Cofrades S, Saiz A, Pérez-Mateos M, Garcimartín A, Redondo-Castillejo R, Bocanegra A, Benedí J, Álvarez MD. The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods. 2022; 11(5):738. https://doi.org/10.3390/foods11050738
Chicago/Turabian StyleCofrades, Susana, Arancha Saiz, Miriam Pérez-Mateos, Alba Garcimartín, Rocío Redondo-Castillejo, Aranzazu Bocanegra, Juana Benedí, and María Dolores Álvarez. 2022. "The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein" Foods 11, no. 5: 738. https://doi.org/10.3390/foods11050738
APA StyleCofrades, S., Saiz, A., Pérez-Mateos, M., Garcimartín, A., Redondo-Castillejo, R., Bocanegra, A., Benedí, J., & Álvarez, M. D. (2022). The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods, 11(5), 738. https://doi.org/10.3390/foods11050738