Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products
Abstract
:1. Introduction
2. The Chemical Composition of Laurus nobilis L. Essential Oil
3. Quality and Authenticity Aspects
4. Assessment of the Preservative Properties
5. Applications to Olive Industry Products
5.1. Applications to Olive Oil Industry
5.2. Applications to Table Olive Industry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, M.; Craker, L.E. Medicinal and aromatic plants—Uses and functions. In Plants for People and Places Horticulture; Dixon, G.R., Aldous, D.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 645–669. [Google Scholar]
- Vicentini, A.; Liberatore, L.; Mastrocola, D. Functional foods: Trends and development of the global market. Ital. J. Food Sci. 2016, 28, 338–351. [Google Scholar]
- Carrubba, A.; Scalenghe, R. The scent of Mare Nostrum: Medicinal and aromatic plants in Mediterranean soils. J. Sci. Food Agric. 2012, 92, 1150–1170. [Google Scholar] [CrossRef] [PubMed]
- Bower, A.; Marquez, S.; de Mejia, E.G. The health benefits of selected culinary herbs and spices found in the traditional Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2016, 56, 2728–2746. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Fitó, M.; de la Torre, R. Minor bioactive olive oil components and health: Key data for their role in providing health benefits in humans. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 31–52. [Google Scholar]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table olives more than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Dinsmore, S.; Grams, M.K.; Couris, R.R. Bay leaf: Leaf of the European laurel. Nutr. Today 2018, 53, 47–55. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, J.; Kumar, S. Bay leaves. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing Limited: Sawston, UK, 2012; Volume 1, pp. 73–81. [Google Scholar]
- Conforti, F.; Statti, G.; Uzunov, D.; Menichini, F. Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biol. Pharm. Bull. 2006, 29, 2056–2064. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, C.; Fourasté, I.; David, B.; Bessière, J.M. Composition of the flower, leaf and stem essential oils from Laurus nobilis L. Flavour Fragr. J. 1997, 12, 91–93. [Google Scholar] [CrossRef]
- Caredda, A.; Marongiu, B.; Porcedda, S.; Soro, C. Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. J. Agric. Food Chem. 2002, 50, 1492–1496. [Google Scholar] [CrossRef]
- Akgül, A.; Kivanç, M.; Bayrak, A. Chemical composition and antimicrobial effect of Turkish laurel leaf oil. J. Essent. Oil Res. 1989, 1, 277–280. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Kokkini, S.; Tsimidou, M.Z. Diagnostic potential of FT-IR fingerprinting in botanical origin evaluation of Laurus nobilis L. essential oil is supported by GC-FID-MS Data. Molecules 2020, 25, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pino, J.; Borges, P.; Roncal, E. The chemical composition of laurel leaf oil from various origins. Food/Nahrung 1993, 37, 592–595. [Google Scholar] [CrossRef]
- Marzouki, H.; Piras, A.; Salah, K.B.H.; Medini, H.; Pivetta, T.; Bouzid, S.; Marongiu, B.; Falconieri, D. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Nat. Prod. Res. 2009, 23, 343–354. [Google Scholar] [CrossRef]
- Moghtader, M.; Salari, H. Comparative survey on the essential oil composition from the leaves and flowers of Laurus nobilis L. from Kerman province. J. Ecol. Nat. Environ. 2012, 4, 150–153. [Google Scholar] [CrossRef]
- Hadjibagher Kandi, M.N.; Sefidkon, F. The influense of drying methods on essential oil content and composition of Laurus nobilis L. J. Essent. Oil-Bearing Plants 2011, 14, 302–308. [Google Scholar] [CrossRef]
- Amin, G.; Sourmaghi, M.H.S.; Jaafari, S.; Hadjagaee, R.; Yazdinezha, A. Influence of phenological stages and method of distillation on Iranian cultivated Bay Leaves volatile oil. Pakistan J. Biol. Sci. 2007, 10, 2895–2899. [Google Scholar] [CrossRef] [Green Version]
- Taban, A.; Saharkhiz, M.J.; Niakousari, M. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm. 2018, 9, 12–18. [Google Scholar] [CrossRef]
- Stefanova, G.; Stefanov, L.; Damianova, S.; Stoyanova, A. Changes in the essential oil of laurel (Laurus nobilis L.) during its vegetation. J. Pharm. Sci. Res. 2018, 10, 134–137. [Google Scholar]
- Shokoohinia, Y.; Yegdaneh, A.; Amin, G.; Ghannadi, A. Seasonal variations of Laurus nobilis L. leaves volatile oil components in Isfahan, Iran. Res. J. Pharmacogn. 2014, 1, 1–6. [Google Scholar]
- Roque, O.R. Seasonal Variation in Oil Composition of Laurus nobilis Grown in Portugal. J. Essent. Oil Res. 1989, 1, 199–200. [Google Scholar] [CrossRef]
- Sellami, I.H.; Wannes, W.A.; Bettaieb, I.; Berrima, S.; Chahed, T.; Marzouk, B.; Limam, F. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem. 2011, 126, 691–697. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Marzouki, H.; Mighri, H.; Salah, K.B.; Falconieri, D.; Piras, A. Morphological, chemical and antibacterial characteristics of Laurus nobilis L. growing in Tunisia. Asian J. Chem. 2015, 27, 3838–3842. [Google Scholar] [CrossRef]
- Müller-Riebau, F.J.; Berger, B.M.; Yegen, O.; Cakir, C. Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 1997, 45, 4821–4825. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Maquet, A.; Lievens, A.; Paracchini, V.; Kaklamanos, G.; de la Calle, B.; Garlant, L.; Papoci, S.; Pietretti, D.; Zdiniakova, T.; Breidbach, A.; et al. Results of an EU Wide Coordinated Control Plan to Establish the Prevalence of Fraudulent Practices in the Marketing of Herbs and Spices; EUR30877EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Jankowski, J.; Protzen, J.-A.; Protzen, K.-D. Storage, labeling, and transport of essential oils. In Handbook of Essential Oils; Baser, H.C.K., Buchbauer, G., Eds.; CRC Press—Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 1041–1053. [Google Scholar]
- Ng, T.B.; Fang, E.F.; Bekhit, A.E.-D.A.; Wong, J.H. Methods for the characterization, authentication, and adulteration of essential oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 11–17. [Google Scholar]
- Schmidt, E.; Wanner, J. Adulteration of Essential Oils. In Handbook of Essential Oils; Baser Husnu Can, K., Buchbauer, G., Eds.; CRC Press—Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 543–580. [Google Scholar]
- Arigò, A.; Zoccali, M.; Sciarrone, D.; Tranchida, P.Q.; Dugo, P.; Mondello, L. Analysis of essential oils. In Handbook of Essential Oils; Buchbauer, G., Can Başer, H., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 191–228. [Google Scholar]
- Cagliero, C.; Bicchi, C.; Marengo, A.; Rubiolo, P.; Sgorbini, B. Gas chromatography of essential oil: State of the art, recent advances and perspectives. J. Sep. Sci. 2021, 45, 94–112. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; El, M.; Bouklouze, A.; Vander, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef]
- Franca, A.S.; Nollet, L.M.L. (Eds.) Spectroscopic Methods in Food Analysis; CRC Press—Taylor and Francis Group: Abingdon, UK, 2018; ISBN 9781498754613. [Google Scholar]
- Bounaas, K.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; De Guardia, M.; Hattab, M. El Essential oil counterfeit identification through middle infrared spectroscopy. Microchem. J. 2018, 139, 347–356. [Google Scholar] [CrossRef]
- Ercioglu, E.; Velioglu, H.M.; Boyaci, I.H. Chemometric evaluation of discrimination of aromatic plants by using NIRS, LIBS. Food Anal. Methods 2018, 11, 1656–1667. [Google Scholar] [CrossRef]
- Wang, M.; Raman, V.; Zhao, J.; Avula, B.; Wang, Y.; Wylie, P.L.; Khan, I.A. Application of GC/Q-ToF combined with advanced data mining and chemometric tools in the characterization and quality control of bay leaves. Planta Med. 2018, 84, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Socrates, G., Ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2004; Volume 35, ISBN 978-0-470-09307-8. [Google Scholar]
- Larkin, P.J. IR and Raman Spectroscopy. Principles and Spectral Interpretation; Elsevier Inc.: Waltham, MA, USA, 2011; ISBN 978-0-12-386984-5. [Google Scholar]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Chahal, K.; Kumar Singh, D.; Panchbhaiya, A.; Singh, N.; Chahal, C.K.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A review on chemistry and biological activities of Laurus nobilis L. essential oil. J. Pharmacogn. Phytochem. JPP 2017, 6, 1153–1161. [Google Scholar]
- Simic, A.; Sokovic, M.D.; Ristic, M.; Grujic-Jovanovic, S.; Vukojevic, J.; Marin, P.D. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phyther. Res. 2004, 18, 713–717. [Google Scholar] [CrossRef]
- Dadalioǧlu, I.; Evrendilek, G.A. Chemical compositions and antibacterial effects of essential oils of Turkish Oregano (Origanum minutiflorum), Bay Laurel (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on common foodborne pathogens. J. Agric. Food Chem. 2004, 52, 8255–8260. [Google Scholar] [CrossRef]
- Ivanovic, J.; Misic, D.; Ristic, M.; Pesic, O.; Zizovic, I. Supercritical CO2 extract and essential oil of bay (Laurus nobilis L.): Chemical composition and antibacterial activity. J. Serbian Chem. Soc. 2010, 75, 395–404. [Google Scholar] [CrossRef]
- Ozcan, B.; Esen, M.; Sangun, M.K.; Coleri, A.; Caliskan, M. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. J. Environ. Biol. 2010, 31, 637–641. [Google Scholar]
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev. 2022, 1–51. [Google Scholar] [CrossRef]
- European Commission. Commission implementing regulation (EU) No 872/2012. Off. J. Eur. Union 2012, L 267, 161. [Google Scholar]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, C.; Neng, N.R.; Nogueira, J.M.F.; Nunes, M.L.; Marques, A. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Politeo, O.; Jukić, M.; Miloš, M. Chemical composition and antioxidant activity of free volatile aglycones from laurel (Laurus nobilis L.) compared to its essential oil. Croat. Chem. Acta 2007, 80, 121–126. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Muhlemann, J.K.; Woodworth, B.D.; Morgan, J.A.; Dudareva, N. The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytol. 2014, 204, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Yahyaa, M.; Berim, A.; Nawade, B.; Ibdah, M.; Dudareva, N.; Ibdah, M. Biosynthesis of methyleugenol and methylisoeugenol in Daucus carota leaves: Characterization of eugenol/isoeugenol synthase and O-Methyltransferase. Phytochemistry 2019, 159, 179–189. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans A Review of Human Carcinogens: Some Chemicals in Industrial and Consumer Products, Food Contaminants and Flavourings, and Water Chlorination By- Products. IARC Monogr. Eval. Carcinog. Risks Humans 2013, 101, 407–433.
- Marzouki, H.; Khaldi, A.; Chamli, R.; Bouzid, S.; Piras, A.; Falconieri, D.; Marongiu, B. Biological activity evaluation of the oils from Laurus nobilis of Tunisia and Algeria extracted by supercritical carbon dioxide. Nat. Prod. Res. 2009, 23, 230–237. [Google Scholar] [CrossRef]
- Marzouki, H.; Khaldi, A.; Marongiu, B.; Piras, A.; Harzallah-Skhiri, F. Chemical polymorphism of essential oils from populations of Laurus nobilis grown on Tunisia, Algeria and France. Nat. Prod. Commun. 2011, 6, 1934578X1100601. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D.; Yangüela, J.; Gómez, D.; Roncalés, P. Perspectives on the use of essential oils as antimicrobials against Campylobacter jejuni cect 7572 in retail chicken meats packaged in microaerobic atmosphere. J. Food Saf. 2012, 32, 37–47. [Google Scholar] [CrossRef]
- Mediouni Ben Jemâa, J.; Tersim, N.; Toudert, K.T.; Khouja, M.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J. Stored Prod. Res. 2012, 48, 97–104. [Google Scholar] [CrossRef]
- Toudert-Taleb, K.; Hedjal-Chebheb, M.; Hami, H.; Debras, J.-F.; Kellouche, A. Composition of essential oils extracted from six aromatic plants of Kabylian origin (Algeria) and evaluation of their bioactivity on Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). African Entomol. 2014, 22, 417–427. [Google Scholar] [CrossRef]
- Bendjersi, F.Z.; Tazerouti, F.; Belkhelfa-Slimani, R.; Djerdjouri, B.; Meklati, B.Y. Phytochemical composition of the Algerian Laurus nobilis L. leaves extracts obtained by solvent-free microwave extraction and investigation of their antioxidant activity. J. Essent. Oil Res. 2016, 28, 202–210. [Google Scholar] [CrossRef]
- Guenane, H.; Gherib, A.; Carbonell-Barrachina, A.A.; Cano-Lamadrid, M.; Krika, F.; Berrabah, M.; Maatallah, M.; Bakchiche, B. Minerals analysis, antioxidant and chemical composition of extracts of Laurus nobilis from southern Algeria. J. Mater. Environ. Sci. 2016, 7, 4253–4261. [Google Scholar]
- Nabila, B.; Piras, A.; Fouzia, B.; Falconieri, D.; Kheira, G.; Fedoul, F.-F.; Majda, S.-R. Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Nat. Prod. Res. 2020, 36, 989–993. [Google Scholar] [CrossRef]
- Nagah, N.; Mostafa, I.; Dora, G.; El-Sayed, Z.; Ateya, A.-M. Essential oil composition, cytotoxicity against hepatocellular carcinoma, and macro and micro-morphological fingerprint of Laurus nobilis cultivated in Egypt. Egypt. J. Bot. 2021, 61, 521–540. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Dina, E.I. The influence of aromatic plants on microbial biomass and respiration in a natural ecosystem. Isr. J. Ecol. Evol. 2010, 56, 181–196. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Antonopoulou, V.; Vlassi, A.; Antonatos, S.; Michaelakis, A.; Papachristos, D.P.; Tzakou, O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J. Pest Sci. 2004 2018, 91, 873–886. [Google Scholar] [CrossRef]
- Stefanova, G.; Girova, T.; Gochev, V.; Stoyanova, M.; Petkova, Z.; Stoyanova, A.; Zheljazkov, V.D. Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon 2020, 6, e05491. [Google Scholar] [CrossRef]
- Macchioni, F.; Perrucci, S.; Cioni, P.; Morelli, I.; Castilho, P.; Cecchi, F. Composition and acaricidal activity of Laurus novocanariensis and Laurus nobilis essential oils against Psoroptes cuniculi. J. Essent. Oil Res. 2006, 18, 111–114. [Google Scholar] [CrossRef]
- Yalçın, H.; Anık, M.; Şanda, M.A.; Çakır, A. Gas Chromatography/Mass Spectrometry analysis of Laurus nobilis essential oil composition of Northern Cyprus. J. Med. Food 2007, 10, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Saab, A.M.; Tundis, R.; Loizzo, M.R.; Lampronti, I.; Borgatti, M.; Gambari, R.; Menichini, F.; Esseily, F.; Menichini, F. Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Nat. Prod. Res. 2012, 26, 1741–1745. [Google Scholar] [CrossRef] [PubMed]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical composition and antibacterial activity of Leaves essential oil of Laurus nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, N.A.; Meier, M.; Kohlenberg, B.; Hammerschmidt, F.-J. δ-Terpinyl acetate. A new natural component from the essential leaf oil of Laurus nobilis L. (Lauraceae). J. Essent. Oil Res. 2001, 13, 95–97. [Google Scholar] [CrossRef]
- Özcan, M.; Chalchat, J.-C. Effect of different locations on the chemical composition of essential oils of Laurel (Laurus nobilis L.) leaves growing wild in Turkey. J. Med. Food 2005, 8, 408–411. [Google Scholar] [CrossRef]
- Sangun, M.K.; Aydin, E.; Timur, M.; Karadeniz, H.; Caliskan, M.; Ozkan, A. Comparison of chemical composition of the essential oil of Laurus nobilis L. leaves and fruits from different regions of Hatay, Turkey. J. Environ. Biol. 2007, 28, 731–733. [Google Scholar]
- Günes, M.; Alma, M.H. The effects of microwave irradiation power on the chemical composition of essential oil from the leaves of Turkish bay laurel. J. Electromagn. Waves Appl. 2008, 22, 2205–2216. [Google Scholar] [CrossRef]
- Uysal, B.; Sozmen, F.; Buyuktas, B.S. Solvent–free microwave extraction of essential oils from Laurus nobilis and Melissa officinalis: Comparison with conventional hydro-distillation and ultrasound extraction. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef] [Green Version]
- De Morais, L.A.S.; Gonçalves, G.G.; Castanha, R.F. Phytochemical characterization of essential oils from laurel from Brazil and Turkey. Acta Hortic. 2011, 57–59. [Google Scholar] [CrossRef]
- Karabörklü, S.; Ayvaz, A.; Yilmaz, S.; Akbulut, M. Chemical Composition and Fumigant Toxicity of Some Essential Oils Against Ephestia kuehniella. J. Econ. Entomol. 2011, 104, 1212–1219. [Google Scholar] [CrossRef]
- Özek, T. Distillation parameters for pilot plant production of Laurus nobilis essential oil. Rec. Nat. Prod. 2012, 6, 135–143. [Google Scholar]
- Basak, S.S.; Candan, F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J. Pharm. Res. 2013, 12, 367–379. [Google Scholar]
- Akdemir Evrendilek, G. Empirical prediction and validation of antibacterial inhibitory effects of various plant essential oils on common pathogenic bacteria. Int. J. Food Microbiol. 2015, 202, 35–41. [Google Scholar] [CrossRef]
- Bayar, Y.; Onaran, A.; Yilar, M.; Gul, F. Determination of the essential oil composition and the antifungal activities of Bilberry (Vaccinium myrtillus L.) and Bay Laurel (Laurus nobilis L.). J. Essent. Oil Bear. Plants 2018, 21, 548–555. [Google Scholar] [CrossRef]
- Elkiran, O.; Akbaba, E.; Bagci, E. Constituents of essential oils from leaves and seeds of Laurus nobilis L.: A chemotaxonomic approach. Bangladesh J. Bot. 2018, 47, 893–901. [Google Scholar] [CrossRef]
- Sevindik, E.; Aydin, S.; Apaydin, E.; Okan, K.; Efe, F. Antibacterial and antifungal activities of essential oils from Laurus nobilis L. flowers and leaves grown in the west anatolian area. Fresenius Environ. Bull. 2019, 28, 6555–6559. [Google Scholar]
- Demirbolat, I.; Karik, Ü.; Erçin, E.; Kartal, M. Gender dependent differences in composition, antioxidant and antimicrobial activities of wild and cultivated Laurus nobilis L. leaf and flower essential oils from Aegean region of Turkey. J. Essent. Oil Bear. Plants 2020, 23, 1084–1094. [Google Scholar] [CrossRef]
- Göksen, G.; Fabra, M.J.; Ekiz, H.I.; López-Rubio, A. Phytochemical-loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control 2020, 112, 107133. [Google Scholar] [CrossRef]
- Kara, M.; Soylu, S.; Türkmen, M.; Alpaslan Kaya, D. Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Tekirdağ Ziraat Fakültesi Derg. 2020, 17, 264–275. [Google Scholar] [CrossRef]
- Tomar, O.; Akarca, G.; Gök, V.; Ramadan, M.F. Composition and antibacterial effects of Laurel (Laurus nobilis L.) leaves essential oil. J. Essent. Oil Bear. Plants 2020, 23, 414–421. [Google Scholar] [CrossRef]
- Bouzouita, N.; Nafti, A.; Chaabouni, M.M.; Lognay, G.C.; Marlier, M.; Zghoulli, S.; Thonart, P. Chemical Composition of Laurus nobilis Oil from Tunisia. J. Essent. Oil Res. 2001, 13, 116–117. [Google Scholar] [CrossRef]
- Bouzouita, N.; Kachouri, F.; Hamdi, M.; Chaabouni, M.M. Antimicrobial activity of essential oils from Tunisian aromatic plants. Flavour Fragr. J. 2003, 18, 380–383. [Google Scholar] [CrossRef]
- Maatallah, S.; Nasri, N.; Hajlaoui, H.; Albouchi, A.; Elaissi, A. Evaluation changing of essential oil of laurel (Laurus nobilis L.) under water deficit stress conditions. Ind. Crops Prod. 2016, 91, 170–178. [Google Scholar] [CrossRef]
- Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016, 64, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Snuossi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; De Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules 2016, 21, 1414. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Ben Nasr, S.; El Beyrouthy, M.; Mnif, W. Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis. Pak. J. Pharm. Sci. 2018, 31, 2397–2402. [Google Scholar]
- Dammak, I.; Hamdi, Z.; Kammoun El Euch, S.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S. Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1,8-cineole against Aspergillus carbonarius. Ind. Crops Prod. 2019, 128, 85–93. [Google Scholar] [CrossRef]
- Haouel-Hamdi, S.; Ben Hamedou, M.; Bachrouch, O.; Boushih, E.; Zarroug, Y.; Sriti, J.; Messaoud, C.; Hammami, M.; Abderraba, M.; Limam, F.; et al. Susceptibility of Tribolium castaneum to Laurus nobilis essential oil and assessment on semolina quality. Int. J. Trop. Insect Sci. 2020, 40, 667–675. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1334/2008 on flavourings. Off. J. Eur. Union 2008, L 354/34, 34–50. [Google Scholar]
- Marques, A.; Teixeira, B.; Nunes, M.L. Bay Laurel (Laurus nobilis) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 239–246. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Nenadis, N.; Tsimidou, M.Z. DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) radical scavenging mixed-mode colorimetric assay(s). In Measurement of Antioxidant Activity & Capacity; Apak, R., Çapanoğlu, E., Shahidi, F., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 141–164. [Google Scholar]
- Haenen, G.R.M.M.; Arts, M.J.T.J.; Bast, A.; Coleman, M.D. Structure and activity in assessing antioxidant activity in vitro and in vivo. Environ. Toxicol. Pharmacol. 2006, 21, 191–198. [Google Scholar] [CrossRef]
- Cherrat, L.; Espina, L.; Bakkali, M.; García-Gonzalo, D.; Pagán, R.; Laglaoui, A. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J. Sci. Food Agric. 2014, 94, 1197–1204. [Google Scholar] [CrossRef]
- Nenadis, N.; Papapostolou, M.; Tsimidou, M.Z. Suggestions on the contribution of methyl eugenol and eugenol to Bay Laurel (Laurus nobilis L.) essential oil preservative activity through radical scavenging. Molecules 2021, 26, 2342. [Google Scholar] [CrossRef]
- Yakoubi, R.; Megateli, S.; Hadj Sadok, T.; Bensouici, C.; Bağci, E. A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. Biocatal. Agric. Biotechnol. 2021, 31, 101891. [Google Scholar] [CrossRef]
- Boulila, A.; Hassen, I.; Haouari, L.; Mejri, F.; Ben Amor, I.; Casabianca, H.; Hosni, K. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind. Crops Prod. 2015, 74, 485–493. [Google Scholar] [CrossRef]
- Rafiq, R.; Hayek, S.; Anyanwu, U.; Hardy, B.; Giddings, V.; Ibrahim, S.; Tahergorabi, R.; Kang, H. Antibacterial and antioxidant activities of essential oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L. Foods 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J. Biol. Sci. 2018, 26, 906–912. [Google Scholar] [CrossRef]
- Taoudiat, A.; Djenane, D.; Ferhat, Z.; Spigno, G. The effect of Laurus nobilis L. essential oil and different packaging systems on the photo-oxidative stability of Chemlal extra-virgin olive oil. J. Food Sci. Technol. 2018, 55, 4212–4222. [Google Scholar] [CrossRef]
- Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Aït Ouahioune, L.; Montañes, L.; Ariño, A.; Djenane, D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): Potential use as wheat preservative. Food Sci. Nutr. 2020, 8, 4717–4729. [Google Scholar] [CrossRef] [PubMed]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical composition, antioxidant activity, and antifungal effects of essential oil from Laurus nobilis L. flowers growing in Morocco. J. Food Qual. 2020, 2020, 8819311. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Riabov, P.A.; Micić, D.; Božović, R.B.; Jovanović, D.V.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Ostojić, S.; Blagojević, S.; et al. The chemical, biological and thermal characteristics and gastronomical perspectives of Laurus nobilis essential oil from different geographical origin. Ind. Crops Prod. 2020, 151, 112498. [Google Scholar] [CrossRef]
- Ovidi, E.; Laghezza Masci, V.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis essential oils and hydrolates: Evaluation of liquid and vapor phase chemical composition and biological activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef]
- Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 2013, 31, 189–195. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Barba, F.J. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Froiio, F.; Mosaddik, A.; Morshed, M.T.; Paolino, D.; Fessi, H.; Elaissari, A. Edible polymers for essential oils encapsulation: Application in food preservation. Ind. Eng. Chem. Res. 2019, 58, 20932–20945. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of starch microcapsules containing essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2020, 60, 2825–2836. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A.; Gottardi, D.; Guerzoni, M.E. Essential oil vapour and negative air ions: A novel tool for food preservation. Trends Food Sci. Technol. 2012, 26, 99–113. [Google Scholar] [CrossRef]
- Maisanaba, S.; Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Puerto, M.; Prieto, A.I.; Jos, A.; Cameán, A.M. New advances in active packaging incorporated with essential oils or their main components for food preservation. Food Rev. Int. 2017, 33, 447–515. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ariffin, F.; Karim, A.A. Plant extracts as packaging aids. In Plant Extracts: Applications in the Food Industry; Mir, S., Manickavasagan, A., Shah, M., Eds.; Academic Press, Inc.: London, UK, 2022; pp. 225–268. ISBN 9780128224755. [Google Scholar]
- Tsimidou, M.Z. Flavoured olive oil specialties: From the domestic practice to retail market. In Olive Oil at the Core of the Mediterranean Diet; Greek Lipid Forum: Athens, Greece; SEVITEL AMKEPE: Athens, Greece, 2016; pp. 34–45. [Google Scholar]
- Baiano, A.; Gambacorta, G.; La Notte, E. Aromatization of Olive Oil; Pandalai, S.G., Ed.; Transworld Research Network: Trivandrum, India, 2010; ISBN 978-81-7895-462-2. [Google Scholar]
- Antoun, N.; Tsimidou, M. Gourmet olive oils: Stability and consumer acceptability studies. Food Res. Int. 1997, 30, 131–136. [Google Scholar] [CrossRef]
- Antoun, N.; Tsimidou, M. Olive oil herb and spice specialities: Preconceived ideas of potential consumers about their nutritional and sensorial attributes. Olivae 1998, 71, 56–62. [Google Scholar]
- Moldão-Martins, M.; Beirão-da-Costa, S.; Neves, C.; Cavaleiro, C.; Salgueiro, L.; Luísa Beirão-da-Costa, M. Olive oil flavoured by the essential oils of Mentha × piperita and Thymus mastichina L. Food Qual. Prefer. 2004, 15, 447–452. [Google Scholar] [CrossRef]
- Damechki, M.; Sotiropoulou, S.; Tsimidou, M. Antioxidant and pro-oxidant factors in oregano and rosemary gourmet olive oils. Grasas y Aceites 2001, 52, 207–213. [Google Scholar]
- Ciafardini, G.; Zullo, B.A. Virgin olive oil yeasts: A review. Food Microbiol. 2018, 70, 245–253. [Google Scholar] [CrossRef]
- Kiralan, S.S.; Karagoz, S.G.; Ozkan, G.; Kiralan, M.; Ketenoglu, O. Changes in volatile compounds of virgin olive oil flavored with essential oils during thermal and photo-oxidation. Food Anal. Methods 2021, 14, 883–896. [Google Scholar] [CrossRef]
- Asensio, C.M.; Nepote, V.; Grosso, N.R. Consumers’ acceptance and quality stability of olive oil flavoured with essential oils of different oregano species. Int. J. Food Sci. Technol. 2013, 48, 2417–2428. [Google Scholar] [CrossRef]
- Saavedra, T.; Dandlen, S.A.; Neves, M.A.; Martins, D.; Antunes, M.D.; Figueiredo, A.C.; Pedro, L.; Barroso, J.S.; Miguel, M.G. Agro Food Industry Hi-Tech; TKS TeknoScienze: Milan, Italy, 2015; pp. 61–65. [Google Scholar]
- Fares, N.; Karoui, I.; Sifi, S.; Abderrabba, M.; Jouini, N. The effect of extra virgin olive oil enrichment by rosemary leaves and lemon peels on its sensorial characteristics, chemical composition, and oxidative stability under storage conditions. Riv. Ital. Sostanze Grasse 2018, 95, 261–273. [Google Scholar]
- Benkhoud, H.; M’Rabet, Y.; Gara ali, M.; Mezni, M.; Hosni, K. Essential oils as flavoring and preservative agents: Impact on volatile profile, sensory attributes, and the oxidative stability of flavored extra virgin olive oil. J. Food Process. Preserv. 2021, e15379. [Google Scholar] [CrossRef]
- Cherif, M.; Rodrigues, N.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Kinetic study of the microwave-induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil. J. Am. Oil Chem. Soc. 2021, 98, 1021–1032. [Google Scholar] [CrossRef]
- Sousa, A.; Casal, S.; Malheiro, R.; Lamas, H.; Bento, A. Aromatized olive oils: Influence of flavouring in quality, composition, stability, antioxidants, and antiradical potential. LWT—Food Sci. Technol. 2015, 60, 22–28. [Google Scholar] [CrossRef]
- Trabelsi, N.; Nalbone, L.; Marotta, S.M.; Taamali, A.; Abaza, L.; Giarratana, F. Effectiveness of five flavored Tunisian olive oils on Anisakis larvae type 1: Application of cinnamon and rosemary oil in industrial anchovy marinating process. J. Sci. Food Agric. 2019, 99, 4808–4815. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Trade Standard Applying to Table Olives; International Olive Council: Madrid, Spain, 2004. [Google Scholar]
- Rocha, J.; Borges, N.; Pinho, O. Table olives and health: A review. J. Nutr. Sci. 2020, 9, e57. [Google Scholar] [CrossRef]
- International Olive Council (IOC). World Olive Oil and Table Olive Figures. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion (accessed on 2 February 2022).
- Campus, M.; Değirmencioğlu, N.; Comunian, R. Technologies and trends to improve table olive quality and safety. Front. Microbiol. 2018, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Mastralexi, A.; Mantzouridou, F.T.; Tsimidou, M.Z. Evolution of safety and other quality parameters of the Greek PDO table olives “Prasines Elies Chalkidikis” during industrial scale processing and storage. Eur. J. Lipid Sci. Technol. 2019, 121, 1800171. [Google Scholar] [CrossRef]
- Council of the European Union. Council conclusions of 8 June 2010 on ‘Action to reduce population salt intake for better health’—Adoption of the conclusions. Off. J. Eur. Union 2010, 53, 1–23. [Google Scholar]
- Medina, E.; Brenes, M.; Romero, C.; Ramírez, E.; de Castro, A. Survival of foodborne pathogenic bacteria in table olive brines. Food Control 2013, 34, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A study on the implications of NaCl reduction in the fermentation profile of Conservolea natural black olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Arroyo-Lopez, F.N.; Durán-Quintana, M.C.; Garrido-Fernandez, A. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth. J. Food Prot. 2008, 71, 1412–1421. [Google Scholar] [CrossRef]
- Mantzouridou, F.T.; Mastralexi, A.; Filippidou, M.; Tsimidou, M.Z. Challenges in the processing line of Spanish style cv. Chalkidiki green table olives spontaneously fermented in reduced NaCl content brines. Eur. J. Lipid Sci. Technol. 2020, 122, 1900453. [Google Scholar] [CrossRef]
- Abriouel, H.; Benomar, N.; Gálvez, A.; Pérez Pulido, R. Preservation of Manzanilla Aloreña cracked green table olives by high hydrostatic pressure treatments singly or in combination with natural antimicrobials. LWT—Food Sci. Technol. 2014, 56, 427–431. [Google Scholar] [CrossRef]
- Öztürk Güngör, F.; Özdestan Ocak, Ö.; Ünal, M.K. Effects of different preservation methods and storage on Spanish-style domat olives fermented with different chloride salts. J. Food Process. Preserv. 2021, e15236. [Google Scholar] [CrossRef]
- Moreno-Baquero, J.M.; Bautista-Gallego, J.; Garrido-Fernández, A.; López-López, A. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures. Food Chem. 2013, 138, 1–8. [Google Scholar] [CrossRef]
- Pires-Cabral, P.; Barros, T.; Mateus, T.; Prata, J.; Quintas, C. The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives. AIMS Agric. Food 2018, 3, 521–534. [Google Scholar] [CrossRef]
- Papapostolou, M.; Mantzouridou, F.T.; Tsimidou, M.Z. Flavored olive oil as a preservation means of reduced salt spanish style green table olives (Cv. chalkidiki). Foods 2021, 10, 392. [Google Scholar] [CrossRef]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef]
Identified Compounds Content (%) | Geographical Origin of the Plant Material | Reference |
---|---|---|
Leaf | ||
α-pinene (2.2), sabinene (4.4), β-pinene (1.7), 1,8-cineole (39.1), limonene (2.6), linalool (10.0), terpinen-4-ol (1,4), α-terpineol (1.3), α-terpinyl acetate (18.2), methyleugenol (11.8), β-caryophyllene (1.6) etc. | France | [12] |
α-pinene (2.8–3.2), sabinene (4.2–4.3), β-pinene (2.6–2.7), limonene (1.2), 1,8-cineole (22.8–23.5), linalool (10.6–12.5), terpinen-4-ol (2.6–3.3), α-terpineol (3.4–3.9), terpinyl acetate (10.8-11.4), eugenol (1.8–2.6), methyleugenol (8.1–9.4) etc. | Italy | [13] |
α-pinene (4.3–6.5), β-pinene (2.0–4.2), sabinene (9.2–10.2), limonene (0.4–1.1), 1,8-cineole (45.1–53.0), linalool (1.4–3.7), terpinen-4-ol (1.1–2.1), α-terpineol (1.2–3.5), terpinyl acetate (11.4–13.1), eugenol (1.2–4.5), methyleugenol (2.3–4.6) etc. | Turkey | [14] |
sabinene (4.5–10.6), β-pinene (1.8–4.0), limonene (1.3–1.9), 1,8-cineole (26.6–34.9), linalool (1.3–4.1), terpinen-4-ol (1.0–2.8), terpinyl acetate (15.3–31.7), eugenol (0.7–1.8), methyleugenol (1.8–6.4), bornyl acetate (0.7–1.5), spathulenol (1.9–5.3) etc. | Greece | [15] |
Flower | ||
1,8-cineole (3.3), (E)-ocimene (8.0), terpinyl acetate (2.3), methyleugenol (3.1), β-elemene (9.7), β-caryophyllene (10.0), α-humulene (1.2), germacrene-D 6.1), viridiflorene (12.2), γ-cadinene (4.3), humuladienol (2.3), germacrene-D-4-ol (1.1), viridiflorol (1.0), β-eudesmol (2.3), α-cadinol (3.4) etc. | France | [12] |
Other plant organs/parts | ||
Bark: 1,8-cineole (73.0), terpinen-4-ol (2.3), terpinyl acetate (3.8), α-cubebene (1.8), α-copaene (1.8), methyleugenol (4.7), δ-cadinene (1.0) | France | [12] |
Wood: 1,8-cineole (1.6), linalool (3.2), δ-terpineol (2.4), terpinen-4-ol (2.4), terpinyl acetate (18.6), eugenol (7.8), α-cubebene (1.2), β-cubebene (6.0), methyleugenol (16.0), β-caryophyllene (1.0), germacrene D (1.2), epicubebol (6.0), δ-cadinene (3.6), cubebol (8.1), β-eudesmol (3.4), α-cadinol (1.1) |
Compound | Content (%) 2 |
---|---|
Monoterpene hydrocarbons | |
sabinene | 0.7–12.2 |
α-pinene | traces–7.7 |
β-pinene | traces–5.0 |
α-terpinene | traces–4.1 |
γ-terpinene | traces–6.1 |
Oxygenated hydrocarbons | |
1,8-cineole | 25.7–63.2 |
linalool | traces–18.5 |
α-terpinyl acetate | traces–27.0 |
α-terpineol | traces–9.3 |
γ-terpineol | traces–1.9 |
terpinen-4-ol | traces–6.0 |
borneol | traces–12.8 |
Sesquiterpene hydrocarbons | |
β-caryophyllene | traces–1.8 |
Phenylpropanoids | |
eugenol | traces–6.5 |
methyleugenol | traces–21.4 |
Wavenumber (cm−1) | Assignment | Relevant Constituent(s) | |
---|---|---|---|
Zero Order Spectrum | 2nd Derivative Spectrum | ||
Characteristic group vibrations | |||
3440 | - | vs(OH) | linalool, terpinene-4-ol, α-terpineol |
3073; 2985 (sh) | 3075; 2986 | vs(=CH2 mono, 1,1) or vas(CH2) in cyclopropyl rings | methyleugenol α-, β-pinene, sabinene, spathulenol, linalool, limonene |
2965; 2879 | 2967; 2879–2870 | vas(CH3) | 1,8-cineole α-, β-pinene, sabinene, linalool, terpinene-4-ol |
2947–2945 | νs(CH3–C=) or (CH3)2–C–electronegative or (CH2) in cyclobutane | 1,8-cineole, other unidentified | |
2925; 2853 (sh) | 2924; 2853 | vs(CH2) | sabinene, linalool, β-pinene 1,8-cineole |
2834 (sh) | 2833 | (Ar–CH2–O) or Ar–OCH3 | methyleugenol, eugenol |
2724 | 2725 | –CHO | unidentified |
1730 | 1732 | ν(C=O) | α-terpinyl, bornyl, linalyl acetates |
1713–1695 | –C=O–OH or aryl–C(H)=O | alkyl ketones (cyclic), aryl aldehydes | |
1655–1640 (br) | 1660–1630 | v(C=C) isolated or cyclic | sabinene, linalool, methyleugenol |
1514 | 1516–1514 | v(C=C) (ring) | methyleugenol, eugenol, p-cymene |
1440–1510 | 1467–1465 | v(C=C–C) (ring) or δ(CH2) | methyleugenol, eugenol p-cymene |
Skeletal vibrations | |||
1446 | 1445;1433 | δs(CH2) cyclopropyl, cyclobutyl | sabinene, spathulenol, α-, β-pinene |
1375–1363 | 1377; 1364–1360 | vs(CH3–C=O) δs(CH3) gem | 1,8-cineole, α-terpinyl acetate |
1259; 1167–1155 | 1262–1258; 1155 | vas(C–O–C) aromatic vs(C–O–C) aromatic v(O=C–O) | methyleugenol, eugenol acetate esters |
1080 | 1080 | v(C–O–C) | 1,8-cineole |
1032 (sh) | 1033–1031 | vas(CH2–O–C=O) | acetates of primary alcohols |
1018 | 1017 | α-pinene, γ-terpinene | |
995 | 985 | δ(C–H) | 1,8-cineole |
920–916 | (CH3)3–C–O or 5-membered cyclic ethers | ||
887 | ω (C–H) γ (=CH2) | pinene limonene | |
843 | |||
816 | ω (C–H) | p-cymene | |
801–797 | δ(sp2 C–H) | ||
770–764 | δ(sp2 C–H) |
Eugenol | Methyleugenol | Geographical Origin of Plant Material | References (2000–Present) |
---|---|---|---|
Content (%) | |||
trace–2.3 | 10.6–11.0 | Algeria | [59] |
2.8 | 14.0 | [60] | |
2.1 | 0 | [61] | |
0 | 2.8 | [62] | |
2.6 | 4.4 | [63] | |
1.2–3.6 | 5.1–6.2 | [64] | |
2.4 | 6.5 | [65] | |
0 | 16.9 | [66] | |
1.6 | 7.7 | Egypt | [67] |
6.4 | 16.6 | France | [60] |
0.7–1.8 | 1.8–6.4 | Greece | [15] |
12.3 | 0.9 | [68] | |
9.9 | 10.4 | [69] | |
0.6–2.2 | 1.5–6.4 | [23] | |
2.7 | 3.6 | [70] | |
1.7–6.0 | 6.9–16.4 | Italy | [13] |
1.2 | 4.5 | [71] | |
1.6 | 3.3 | [27] | |
2.5 | 10.0 | Croatia | [54] |
0.2 | 0.1 | Cyprus | [72] |
3.7 | 2.5 | Lebanon | [73] |
0.6 | 1.7 | Morocco | [74] |
1.4 | 3.9 | [62] | |
5.1 | 8.7 | [75] | |
2.9 | 3.5 | Turkey | [76] |
0.5 | 0.7 | [48] | |
0–1.7 | 0–1.1 | [77] | |
trace–0.7 | 0.4–3.4 | [78] | |
1.1–1.6 | 1.5–2.1 | [79] | |
trace | 3.4 | [50] | |
3.7–4.3 | 4.6–5.8 | [80] | |
0 | 0 | [81] | |
1.7 | 1.5 | [82] | |
0.3 | 0.2 | [83] | |
0 | 0 | [84] | |
0.5 | 0 | [85] | |
0 | 0.89 | [86] | |
4.2 | 2.6 | [87] | |
0–2.6 | 0 | [88] | |
1.3–1.6 | 2.5–2.8 | [89] | |
0 | 0 | [90] | |
0.3 | 0 | [91] | |
0.8 | 1.4 | [92] | |
0 | 3.5 | Tunisia | [93] |
0 | 3.5 | [94] | |
0.6–4.1 | 6.6–17.8 | [18] | |
trace–1.6 | 10.2–10.6 | [59] | |
2.0 | 13.2 | [60] | |
0.1–5.2 | 6.20–9.6 | [26] | |
2.1 | 12.4 | [62] | |
0.5–3.5 | 6.3–18.8 | [28] | |
1.7–7.2 | trace–6.1 | [95] | |
2.2–2.4 | 15.2–15.6 | [96] | |
0 | 3.6 | [97] | |
0.4 | 1.8 | [98] | |
0 | 11.5 | [99] | |
6.8 | 4.6 | [100] |
Name of the Substance | Compound Food in which the Presence of the Substance is Restricted | Maximum Level (mg/kg) |
---|---|---|
Methyleugenol | Dairy products | 20 |
Meat preparations and meat products, including poultry and game | 15 | |
Fish preparations and fish products | 10 | |
Soups and sauces | 60 | |
Ready-to-eat savouries | 20 | |
Non-alcoholic beverages | 1 |
Reaction Environment | Quantities of EO and Reagents | Reaction End-Point (min) | Reference Compounds | Result Expression | Reference |
---|---|---|---|---|---|
Ethanol | 0.1 mL EO solution (concentration range. n.s.) 2 mL solution DPPH• (0.21 mM) | 60 | BHT | AAI = DPPH•final concentration (μg/mL)/EC50 (μg/mL) | [53] |
Ethanol | 0.3 mL EO solution (30–1000 μg/mL) 1.5 mL solution DPPH• (0.25 mM) | 30 | - | RSA = [(A0–A1)/A0] × 100 | [73] |
Methanol | 3 mL EO solution (1.25–10 µL/mL) 1 mL solution DPPH• (1 mM) | 30 | BHT | RSA = [(A0–A1)/A0] × 100 | [107] |
Methanol | 1 mL EO solution (20–2000 μg/mL) 2 mL solution DPPH• (0.1 mM) | 60 | Quercetin BHT | IC50 (μg/mL) | [110] |
Ethanol/buffer | 0.1 mL EO mixed and vortexed (8 min) with Tris-HCl buffer (pH 7.4) (volume n.s.) 1 mL solution DPPH• (0.5 mM) | 20 | - | RSA = [(A0–A1)/A0] × 100 | [85] |
Methanol | 0.1 mL EO solution (0.0625–10%. v/v) 0.9 mL solution DPPH• (0.07 mM) | 30 | BHT | RSA = [(A0–A1)/A0] × 100 IC50 | [111] |
Methanol | 0.4 mL EO solution (0–4000 μg/mL) 2 mL solution DPPH• (0.06 mM) | 30 | - | RSA = [(A0–A1)/A0] × 100 IC50 | [112] |
Ethanol | 0.05 mL EO solution (0–4000 μg/mL) 5 mL solution DPPH• (0.004%) | 30 | BHT | IC50 (mg/mL) | [113] |
Methanol | 1 mL EO solution (0.02–0.5 mg/mL) 1 mL solution DPPH• (0.1 mM) | 30 | Ascorbic acid (0.001–0.2 mg/mL) | IC50 (mg/mL) | [99] |
Methanol | 0.05 mL EO solution (100–1000 μg/mL) 5 mL solution DPPH• (0.004% w/v) | 30 | BHT | IC50 (μg/mL) | [114] |
Ethanol | 0.1 mL EO solution (range of concentration, n.s.) 0.75 mL solution DPPH• (0.1 mΜ) | 30 | BHT Ascorbic acid | IC50 (μg/mL) | [115] |
Ethanol | 0.01 mL EO 0.5 mL solution DPPH• Adjustment to 1 mL with solvent | 15 | Trolox | RSA = [(A0–A1)/A0] × 100 TEAC (μg/mL) | [116] |
Methanol | 0.1 mL EO solution (range of concentration, n.s.) 4 mL solution DPPH• (0.071 mM) | 60 | Trolox (100–600 μmol/L) | TEAC (mmol/L) | [117] |
Methanol | 0.1 mL EO solution (12 geometric dilutions in methanol, actual range of concentration, n.s.) 0.1 mL solution DPPH• (0.2 mM) | 30 | Trolox | IC50 (µg/mL) TEAC = IC50Trolox (μΜ)/IC50sample (mg/L) | [118] |
Methanol | 0.04 mL EO 0.16 mL solution DPPH• (0.1 mM) | 30 | BHT BHA α-Tocopherol | IC50 (μg/mL) | [109] |
Methanol | 0.1 mL EO solution (5 mg/mL) 2.9 mL solution DPPH• (0.1 mM) | 60 | Trolox, α-Tocopherol | μmol Trolox or α-Tocopherol/mg EO | [108] |
EO | Antioxidant Activity (n = 3) | Most Abundant Volatiles | |||||||
---|---|---|---|---|---|---|---|---|---|
μmol Trolox/mg EO (μmol α-Tocopherol/mg EO) | α-pinene | limonene | 1,8-cineole | linalool | terpinen-4-ol | terpinyl acetate | methyleugenol | eugenol | |
RI 1 | |||||||||
1043 | 1120 | 1159 | 1456 | 1584 | 1683 | 2082 | 2338 | ||
m/z 2 | |||||||||
n.a. 3 | 68,93,136 | 43,81,154 | 41,71,153 | 71,111,154 | 43,121,181 | 147,163,178 | 103,149,164 | ||
Content (%) | |||||||||
1 | 4.4 ± 0.0 g (4.8 ± 0.0 g) | 6.0 | 0.9 | 61.9 | 2.8 | 3.4 | 9.1 | 1.1 | 0.8 |
2 | 5.6 ± 0.0 h (6.0 ± 0.0 h) | 7.1 | 1.6 | 51.0 | 3.0 | 2.8 | 14.0 | 1.7 | 1.2 |
3 | 4.7 ± 0.1 g (5.0 ± 0.1 g) | 5.6 | 2.1 | 58.4 | 0.9 | 2.5 | 14.2 | 1.1 | 0.8 |
4 | 8.1 ± 0.1 i (8.4 ± 0.1 i) | - | - | 34.1 | 10.6 | 6.1 | 28.0 | 7.6 | 2.1 |
5 | 3.6 ± 0.0 c (4.0 ± 0.0 c) | 2.5 | 3.5 | 48.6 | 1.8 | 4.3 | 16.1 | 1.3 | 1.5 |
6 | 3.9 ± 0.2 abd (4.3 ± 0.2 abd) | 7.1 | 2.9 | 59.5 | 3.3 | 1.6 | 8.9 | 2.5 | 0.5 |
7 | 7.7 ± 0.2 k (8.0 ± 0.2 k) | 6.4 | 2.2 | 58.2 | 6.1 | 1.6 | 8.8 | 2.2 | 2.1 |
8 | 3.6 ± 0.1 ac (4.0 ± 0.1 ac) | 7.5 | 2.6 | 58.0 | 3.5 | 2.2 | 8.9 | 2.2 | 0.5 |
9 | 4.0 ± 0.1 bd (4.4 ± 0.1 bd) | 7.5 | 2.7 | 59.1 | 3.5 | 1.9 | 8.2 | 2.2 | 0.5 |
10 | 3.8 ± 0.3 abc (4.2 ± 0.3 abc) | 6.4 | 2.3 | 59.6 | 3.5 | 2.3 | 10.2 | 2.2 | 0.5 |
11 | 4.2 ± 0.2 d (4.5 ± 0.2 d) | 8.2 | 2.7 | 54.7 | 3.6 | 1.7 | 10.4 | 2.6 | 0.6 |
12 | 3.9 ± 0.1 abd (4.3 ± 0.1 abd) | 7.0 | 2.5 | 59.1 | 3.5 | 1.5 | 9.7 | 2.8 | 0.5 |
13 | 3.0 ± 0.1 f (3.4 ± 0.1 f) | 6.7 | 2.5 | 63.0 | 3.8 | 1.9 | 9.3 | 1.0 | 0.4 |
14 | 5.8 ± 0.0 h (6.1 ± 0.0 h) | 2.9 | 1.3 | 53.6 | 6.7 | 2.8 | 13.2 | 5.2 | 1.2 |
15 | 8.1 ± 0.3 i (8.4 ± 0.3 i) | 3.6 | 2.3 | 47.7 | 12.9 | 1.3 | 14.0 | 8.0 | 2.1 |
16 | 2.4 ± 0.0 e (2.8 ± 0.0 e) | 7.4 | 2.2 | 61.4 | 3.6 | 1.3 | 10.7 | 1.1 | 0.4 |
17 | 3.2 ± 0.2 f (3.7 ± 0.2 f) | 8.6 | 3.1 | 57.7 | 3.5 | 1.6 | 8.7 | 2.1 | 0.4 |
18 | 2.5 ± 0.1 e (2.9 ± 0.1 e) | 3.2 | 1.4 | 53.2 | 10.7 | - | 13.2 | - | 0.3 |
19 | 2.1 ± 0.3 j (2.6 ± 0.3 j) | 3.2 | 1.6 | 61.2 | 1.4 | 2.4 | 12.9 | 0.8 | 0.3 |
20 | 3.7 ± 0.0 abc (4.1 ± 0.0 abc) | 7.1 | 3.0 | 58.4 | 3.3 | 1.8 | 8.6 | 2.5 | 0.5 |
Type of Table Olives | Condiments | Concentration in Reduced-Sodium Packing Brine (Unless Otherwise Stated) | Aim of the Study | Reference |
---|---|---|---|---|
Seasoned cracked green table olives (cv. Aloreña) | Garlic, pepper, fennel and thyme | 4.0% w/w | Mineral nutrient content evaluation Sensory evaluation (trained panelists) | [160] |
Seasoned cracked green table olives (cv. Aloreña) | Garlic, pepper, fennel and thyme | 4.0% w/w | Microbial stability Physicochemical stability | [160] |
Cracked green table olives (desalted) (cv. Manzanilla Aloreña) | Garlic, pepper, fennel and thyme Thyme or rosemary EOs | 0.5 g/L (each) 0.2% (v/v) | HHP treatment effect (singly or combined with natural antimicrobials) on microbial stability of olives | [158] |
Reduced-sodium table olives (reduced-sodium fermentation brine) (cv. Cobrançosa) | Garlic, lemon juice Thymus sp., Origanum sp. and Calamintha nepeta | 0.6% w/w 1.2% w/w 0.06% w/w 0.04% w/w 0.02% w/w | Nutritional evaluation Safety evaluation Sensory evaluation (trained panelists), | [161] |
Reduced-sodium (desalted) Spanish-style green table olives (cv. Chalkidiki) | Origanum vulgare ssp. Hirtum EO Melissa officinalis EO Laurus nobilis EO | 0–1% w/w (VOO) 0–0.5% w/w (VOO) 0–0.5% w/w (VOO) | Common pathogens, Fermentation-related microorganisms, Color and texture parameters Nutritional parameters | [162] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordoudi, S.A.; Papapostolou, M.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods 2022, 11, 752. https://doi.org/10.3390/foods11050752
Ordoudi SA, Papapostolou M, Nenadis N, Mantzouridou FT, Tsimidou MZ. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods. 2022; 11(5):752. https://doi.org/10.3390/foods11050752
Chicago/Turabian StyleOrdoudi, Stella A., Maria Papapostolou, Nikolaos Nenadis, Fani Th. Mantzouridou, and Maria Z. Tsimidou. 2022. "Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products" Foods 11, no. 5: 752. https://doi.org/10.3390/foods11050752
APA StyleOrdoudi, S. A., Papapostolou, M., Nenadis, N., Mantzouridou, F. T., & Tsimidou, M. Z. (2022). Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods, 11(5), 752. https://doi.org/10.3390/foods11050752