Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Microorganisms and Culture Conditions
2.3. Sensory Analysis Experiment
2.3.1. Preparation of Cured Loins for Sensory Evaluation
2.3.2. Sensory Analysis
2.3.3. Instrumental Evaluation of Color
2.4. Microbial Challenge Test
2.4.1. Preparation of Cured Loins for the Microbial Challenge Test
2.4.2. Activity of Water and pH
2.4.3. Microbial Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Sensory Evaluation
3.2. Instrumental Evaluation of Color
3.3. Microbial Challenge Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fraqueza, M.J.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Curr. Opin. Food Sci. 2021, 38, 32–39. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat; WHO: Geneva, Switzerland, 2018; Volume 114, ISBN 9789283201809. [Google Scholar]
- Molognoni, L.; Daguer, H.; Motta, G.E.; Merlo, T.C.; Lindner, J.D.D. Interactions of preservatives in meat processing: Formation of carcinogenic compounds, analytical methods, and inhibitory agents. Food Res. Int. 2019, 125, 108608. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.J.M.J.; Borges, A.; Patarata, L. Strategies to Reduce the Formation of Carcinogenic Chemicals in Dry Cured Meat Products; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 16, ISBN 9780128114971. [Google Scholar]
- Higuero, N.; Moreno, I.; Lavado, G.; Vidal-Aragón, M.C.; Cava, R. Reduction of nitrate and nitrite in Iberian dry cured loins and its effects during drying process. Meat Sci. 2020, 163, 108062. [Google Scholar] [CrossRef] [PubMed]
- Hospital, X.F.; Hierro, E.; Fernández, M. Effect of reducing nitrate and nitrite added to dry fermented sausages on the survival of Salmonella Typhimurium. Food Res. Int. 2014, 62, 410–415. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; López-Díez, J.J.; Belloch, C.; Flores, M. Counteracting the effect of reducing nitrate/nitrite levels on dry fermented sausage aroma by Debaryomyces hansenii inoculation. Meat Sci. 2020, 164, 108103. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, P.; Patarata, L.; Lorenzo, J.M.; Fraqueza, M.J. Nitrate Is Nitrate: The Status Quo of Using Nitrate through Vegetable Extracts in Meat Products. Foods 2021, 10, 3019. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, S.; Van Nieuwenhuysen, T.; Crèvecoeur, S.; Vanleyssem, R.; Thimister, J.; Denayer, S.; Jeuge, S.; Daube, G.; Clinquart, A.; Fremaux, B. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham. Int. J. Food Microbiol. 2020, 334, 108853. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Xu, B.; Shao, X.; Chen, C.; Wang, W.; Li, P. Theoretical basis of nitrosomyoglobin formation in a dry sausage model by coagulase-negative staphylococci: Behavior and expression of nitric oxide synthase. Meat Sci. 2020, 161, 108022. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, J.I.; Hayashi, N.; Nishimura, T.; Hattori, A. Nitric oxide inhibits the formation of zinc protoporphyrin IX and protoporphyrin IX. Meat Sci. 2010, 84, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; González-rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “ chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Wakamatsu, J.I.; Kawazoe, H.; Ohya, M.; Hayakawa, T.; Kumura, H. Improving the color of meat products without adding nitrite/nitrate using high zinc protoporphyrin IX-forming microorganisms. Meat Sci. 2020, 161, 107989. [Google Scholar] [CrossRef] [PubMed]
- De Maere, H.; Chollet, S.; De Brabanter, J.; Michiels, C.; Paelinck, H.; Fraeye, I. Influence of meat source, pH and production time on zinc protoporphyrin IX formation as natural colouring agent in nitrite-free dry fermented sausages. Meat Sci. 2018, 135, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.M.; Westermann, S.; Hansson, M.; Skibsted, L.H. Parallel enzymatic and non-enzymatic formation of zinc protoporphyrin IX in pork. Food Chem. 2012, 130, 832–840. [Google Scholar] [CrossRef]
- Ras, G.; Leroy, S.; Talon, R. Nitric oxide synthase: What is its potential role in the physiology of staphylococci in meat products? Int. J. Food Microbiol. 2018, 282, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Mainar, M.; Stavropoulou, D.A.; Leroy, F. Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. Int. J. Food Microbiol. 2017, 247, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Viallon, C.; Berdagué, J.L.; Montel, M.C.; Talon, R.; Martin, J.F.; Kondjoyan, N.; Denoyer, C. The effect of stage of ripening and packaging on volatile content and flavour of dry sausage. Food Res. Int. 1996, 29, 667–674. [Google Scholar] [CrossRef]
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Córdoba, M.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2010, 85, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Perea-Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile. Int. J. Food Microbiol. 2018, 282, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Šojić, B.; Pavlić, B.; Zeković, Z.; Tomović, V.; Ikonić, P.; Kocić-Tanackov, S.; Džinić, N. The effect of essential oil and extract from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the oxidative and microbiological stability of fresh pork sausages. LWT-Food Sci. Technol. 2018, 89, 749–755. [Google Scholar] [CrossRef]
- Roseiro, L.C.; Gomes, A.; Patarata, L.; Santos, C. Comparative survey of PAHs incidence in Portuguese traditional meat and blood sausages. Food Chem. Toxicol. 2012, 50, 1891–1896. [Google Scholar] [CrossRef]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Hospital, X.F.; Hierro, E.; Stringer, S.; Fernández, M. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Int. J. Food Microbiol. 2016, 218, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Patarata, L.; Novais, M.; Fraqueza, M.; Silva, J. Influence of Meat Spoilage Microbiota Initial Load on a naturally fermented sausage. Foods 2020, 9, 676. [Google Scholar] [CrossRef] [PubMed]
- Walz, F.H.; Gibis, M.; Lein, M.; Herrmann, K.; Hinrichs, J.; Weiss, J. Influence of casing material on the formation of efflorescences on dry fermented sausages. LWT-Food Sci. Technol. 2018, 89, 434–440. [Google Scholar] [CrossRef]
- Christieans, S.; Picgirard, L.; Parafita, E.; Lebert, A.; Gregori, T. Impact of reducing nitrate/nitrite levels on the behavior of Salmonella Typhimurium and Listeria monocytogenes in French dry fermented sausages. Meat Sci. 2018, 137, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Lizarazo, C.M.; Sotelo-Díaz, I.; Arjona-Roman, J.L.; Llorente-Bousquets, A.; Miranda-Ruvalcaba, R. Effect of Starter Culture and Low Concentrations of Sodium Nitrite on Fatty Acids, Color, and Escherichia coli Behavior during Salami Processing. Int. J. Food Sci. 2018, 2018, 5934305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inguglia, E.S.; Oliveira, M.; Burgess, C.M.; Kerry, J.P.; Tiwari, B.K. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua. Innov. Food Sci. Emerg. Technol. 2020, 59, 102276. [Google Scholar] [CrossRef]
- Riel, G.; Boulaaba, A.; Popp, J.; Klein, G. Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella-type sausages–Impact on microbiological, physicochemical and sensory aspects. Meat Sci. 2017, 131, 166–175. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.S.; Jung, S. Nitrite sources for cured meat products. LWT-Food Sci. Technol. 2020, 129, 109583. [Google Scholar] [CrossRef]
- Silva, R.; Pereira, J.; Rouxinol, M.; Patarata, L. Sensory Changes and Listeria monocytogenes Behavior in Sliced Cured Pork Loins during Extended Storage. Foods 2020, 9, 621. [Google Scholar] [CrossRef]
- Morales-Partera, Á.M.; Cardoso-Toset, F.; Jurado-Martos, F.; Astorga, R.J.; Huerta, B.; Luque, I.; Tarradas, C.; Gómez-Laguna, J. Survival of selected foodborne pathogens on dry cured pork loins. Int. J. Food Microbiol. 2017, 258, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Belloch, C.; Neef, A.; Salafia, C.; López-Diez, J.J.; Flores, M. Microbiota and volatilome of dry-cured pork loins manufactured with paprika and reduced concentration of nitrite and nitrate. Food Res. Int. 2021, 149, 110691. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yong, H.I.; Jang, H.W.; Lee, H.; Kim, Y.B.; Jeon, K.H.; Choi, Y.S. Quality of Sliced Cured Pork Loin with Spinach: Effect of Incubation Period with Starter Culture. J. Food Qual. 2019, 2019, 6373671. [Google Scholar] [CrossRef]
- Linares, M.B.; Garrido, M.D.; Martins, C.; Patarata, L. Efficacies of Garlic and L. sakei in Wine-Based Marinades for Controlling Listeria monocytogenes and Salmonella spp. in Chouriço de Vinho, a Dry Sausage Made from Wine-Marinated Pork. J. Food Sci. 2013, 78, M719–M724. [Google Scholar] [CrossRef] [PubMed]
- Patarata, L.; Martins, S.; Silva, J.A.; Fraqueza, M.J. Red Wine and Garlic as a Possible Alternative to Minimize the Use of Nitrite for Controlling Clostridium Sporogenes and Salmonella in a Cured Sausage: Safety and Sensory Implications. Foods 2020, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Colaço-do-Rosário, C.; Patarata, L.; Esteves, A.; Silva, J. Salsicharia Tradicional Transmontana: Caracterização, Monitorização e Experimentação da tecnologia Artesanal. Relatório Final do Projecto PAMAF 3056; UTAD: Vila Real, Portugal, 2000. [Google Scholar]
- Istrati, D.; Ciuciu, A.S.; Vizireanu, C.; Ionescu, A.; Carballo, J. Impact of spices and wine-based marinades on tenderness, fragmentation of myofibrillar proteins and color stability in bovine biceps femoris muscle. J. Texture Stud. 2015, 46, 455–466. [Google Scholar] [CrossRef]
- Cristino, R.; Costa, E.; Cosme, F.; Jordão, A.M. General phenolic characterisation, individual anthocyanin and antioxidant capacity of matured red wines from two Portuguese Appellations of Origins. J. Sci. Food Agric. 2013, 93, 2486–2493. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.C.; Ribeiro-Vidal, H.; Esteban-Fernández, A.; Bartolomé, B.; Figuero, E.; Moreno-Arribas, M.V.; Sanz, M.; Herrera, D. Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complement. Altern. Med. 2019, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Sabel, A.; Bredefeld, S.; Schlander, M.; Claus, H. Wine phenolic compounds: Antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages 2017, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Olejar, K.J.; Ricci, A.; Swift, S.; Zujovic, Z.; Gordon, K.C.; Fedrizzi, B.; Versari, A.; Kilmartin, P.A. Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc. Antioxidants 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. TrAC-Trends Anal. Chem. 2019, 120, 115630. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Patarata, L.; Lauková, A. Protective cultures and bacteriocins in fermented meats. In Fermented Meat Products: Health Aspects; CRC Press: Boca Raton, FL, USA, 2017; pp. 228–269. [Google Scholar] [CrossRef]
- Elias, M.; Laranjo, M.; Agulheiro-Santos, A.; Potes, E. The Role of Salt on Food and Human Health. In Salt in the Earth; Cinku, M., Karabulut, S., Eds.; IntechOpen: London, UK, 2020; pp. 19–43. [Google Scholar]
- Patarata, L. Caracterização e Avaliação da Aptidão Tecnológica de Bactérias do ácido Láctico e Micrococcaceae em Produtos de Salsicharia. Efeito da sua Utilização em Culturas de Arranque e de Formulação Acidificante no Fabrico de Linguiça Tradicional Transmontana; UTAD: Vila Real, Portugal, 2002. [Google Scholar]
- Ghabraie, M.; Vu, K.D.; Tnani, S.; Lacroix, M. Antibacterial effects of 16 formulations and irradiation against Clostridium sporogenes in a sausage model. In Fermented Meat Products; Sankaranarayanan, A., Amaresan, N., Dhanasekaran, D., Eds.; CRC Press: Boca Raton, FL, USA, 2020; Volume 63, pp. 197–237. [Google Scholar]
- Ares, G.; de Andrade, J.C.; Antúnez, L.; Alcaire, F.; Swaney-Stueve, M.; Gordon, S.; Jaeger, S.R. Hedonic product optimisation: CATA questions as alternatives to JAR scales. Food Qual. Prefer. 2017, 55, 67–78. [Google Scholar] [CrossRef]
- Oliveira e Silva, R.; do Carmo Rouxinol, M.I.F.; da Silva Coutinho Patarata, L.A.; Silva, R.; Rouxinol, M.; Patarata, L. The use of photography to perform an online consumer test on the freshness of chicken breast and the extension of shelf life. J. Sens. Stud. 2020, 35, e12565. [Google Scholar] [CrossRef]
- Grischy, R.; Speck, R.; Adams, D. New Media for Enumeration and Detection of Clostricfium sporogenes (PA3679) Spores. J. Food Sci. 1983, 48, 1466–1469. [Google Scholar] [CrossRef]
- Rothman, L.; Parker, M.J. Structure and use of Just-Abouit-Right Scales; ASTM International: West Conshohocken, PA, USA, 2009; ISBN 978-0-8031-7010-0. [Google Scholar]
- Pinton, M.B.M.; Santos, B.; Lorenzo, J.J.M.; Cichoski, A.A.J.; Boeira, C.C.P.; Campagnol, P.P.C.B.; dos Santos, B.A.; Lorenzo, J.J.M.; Cichoski, A.A.J.; Boeira, C.C.P.; et al. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2021, 40, 1–5. [Google Scholar] [CrossRef]
- Fernqvist, F.; Ekelund, L. Credence and the effect on consumer liking of food-A review. Food Qual. Prefer. 2014, 32, 340–353. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; de Kok, T.M.; Verbeke, W. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Sci. 2016, 121, 119–126. [Google Scholar] [CrossRef]
- Lusk, J.L. Consumer preferences for and beliefs about slow growth chicken. Poult. Sci. 2018, 97, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, A.; Monteleone, E.; Braghieri, A.; Napolitano, F. Mapping the effect of information about animal welfare on consumer liking and willingness to pay for yogurt. J. Sens. Stud. 2009, 24, 712–730. [Google Scholar] [CrossRef]
- Jacoby, J.; Johar, G.V.; Morrin, M. Consumer behavior: A Quadrennium. Annu. Rev. Psychol. 1998, 49, 319–344. [Google Scholar] [CrossRef]
- Loken, B. Consumer psychology: Categorization, inferences, affect, and persuasion. Annu. Rev. Psychol. 2006, 57, 453–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, R.B.; Shahidi, F. Unraveling the Chemical Identity of Meat Pigments. Crit. Rev. Food Sci. Nutr. 1997, 37, 561–589. [Google Scholar] [CrossRef] [PubMed]
- García-Marino, M.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Colour and pigment composition of red wines obtained from co-maceration of Tempranillo and Graciano varieties. Anal. Chim. Acta 2010, 660, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouillard, R.; Chassaing, S.; Fougerousse, A. Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry 2003, 64, 1179–1186. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gago, B.; Lundberg, J.O.; Barbosa, R.M.; Laranjinha, J. Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic. Biol. Med. 2007, 43, 1233–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Ras, G.; Bailly, X.; Chacornac, J.P.; Zuliani, V.; Derkx, P.; Seibert, T.M.; Talon, R.; Leroy, S. Contribution of nitric oxide synthase from coagulase-negative staphylococci to the development of red myoglobin derivatives. Int. J. Food Microbiol. 2018, 266, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Ras, G.; Zuliani, V.; Derkx, P.; Seibert, T.M.; Leroy, S.; Talon, R. Evidence for nitric oxide synthase activity in Staphylococcus xylosus mediating nitrosoheme formation. Front. Microbiol. 2017, 8, 598. [Google Scholar] [CrossRef]
- Serra-Castelló, C.; Jofré, A.; Garriga, M.; Bover-Cid, S. Modeling and designing a Listeria monocytogenes control strategy for dry-cured ham taking advantage of water activity and storage temperature. Meat Sci. 2020, 165, 108131. [Google Scholar] [CrossRef]
- Lee, B.H.; Hébraud, M.; Bernardi, T. Increased adhesion of Listeria monocytogenes strains to abiotic surfaces under cold stress. Front. Microbiol. 2017, 8, 2221. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2020, 61, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.; Patarata, L. Fermented Meat Products: From the Technology to the Quality Control. In Fermented Food Products; Sankaranarayanan, A., Amaresan, N., Dhanasekaran, D., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 197–237. ISBN 978-0-367-22422-6. [Google Scholar]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fraqueza, M.J.; et al. Impact of salt reduction on biogenic amines, fatty acids, microbiota, texture and sensory profile in traditional blood dry-cured sausages. Food Chem. 2017, 218, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lingbeck, J.M.; Cordero, P.; O’Bryan, C.A.; Johnson, M.G.; Ricke, S.C.; Crandall, P.G. Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Sci. 2014, 97, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.; Laranjo, M.; Alves, S.; Fernandes, M.; Agulheiro-Santos, A.; Fernandes, M.; Potes, M.; Elias, M. Dry-cured meat products according to the smoking regime: Process optimization to control polycyclic aromatic hydrocarbons. Foods 2020, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Marinades | (1) Control | (2) Nitrite | (3) S. xylosus |
---|---|---|---|
Wine-based (50 wine:50 water) 1% fresh garlic 0.5% bay leaves | 2% salt | 2% salt 150 mg/kg nitrite | 2% salt 20 mL cell suspension |
Water-based (100 water) 1% fresh garlic 0.5% bay leaves | 2% salt | 2% salt 150 mg/kg nitrite | 2% salt 20 mL cell suspension |
Marinades | Control | Nitrite | S. xylosus |
---|---|---|---|
Wine-based | 6.27 ± 1.38 ab | 5.81 ± 1.63 ab | 5.93 ± 1.66 ab |
Water-based | 5.74 ± 1.63 b | 6.39 ± 1.42 a | 6.04 ± 1.71 ab |
Marinades | Control | Nitrite | S. xylosus |
---|---|---|---|
Wine-based | 67.3 (0.82) 1 | 53.8 (−2.31) | 68.3 (1.04) |
Water-based | 49.0 (−3.43) | 76.0 (2.83) | 68.3 (1.04) |
Marinades | Control | Nitrite | S. xylosus | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Level | % | MD | Penalties | % | MD | Penalties | % | MD | Penalties | |
Wine-based | Weak | 56.7 | 0.94 1 | 0.86 | 15.4 | 0.54 | −0.050 | 36.5 | 0.91 | 0.71 |
Strong | 4.8 | 0 | 26.0 | −0.40 | 15.4 | 0.24 | ||||
Water-based | Weak | 59.6 | 1.32 | 1.34 | 32.7 | 0.77 | 0.78 | 41.4 | 1.22 | 1.35 |
Strong | 6.7 | 1.49 | 7.7 | 0.84 | 8.7 | 1.93 |
Presentation | Cured Loin Images | |
---|---|---|
Without Nitrite | with Nitrite | |
Anonymous | 58.5 | 41.5 |
Identified | 67.1 | 32.9 |
Change between Anonymous and Identified | ||
Maintained | 82.9 | |
Without → with nitrite | 4.3 | |
With → without nitrite | 12.8 | |
z = 2.464, p = 0.013 |
Parameter Marinades | Control | Nitrite | S. xylosus | Control | Nitrite | S. xylosus |
---|---|---|---|---|---|---|
8 d Drying | 30 d Drying | |||||
L* | ||||||
Wine-based | 58.41 ± 1.59 bc | 55.54 ± 2.19 c | 63.36 ± 1.28 a | 50.96 ± 0.38 a | 45.80 ± 1.09 b | 50.95 ± 0.42 a |
Water-based | 59.07 ± 1.06 abc | 58.47 ± 1.83 bc | 60.28 ± 0.15 ab | 42.67 ± 1.35 c | 46.32 ± 1.99 b | 42.69 ± 0.42 c |
a* | ||||||
Wine-based | 13.90 ± 1.34 b | 17.35 ± 0.48 a | 10.82 ± 0.85 c | 8.11 ± 0.57 c | 8.60 ± 0.41 c | 9.45 ± 0.17 bc |
Water-based | 9.55 ± 0.92 c | 16.77 ± 0.74 a | 11.14 ± 0.13 c | 11.72 ± 1.13 ab | 13.05 ± 1.09 a | 9.32 ± 1.08 c |
b* | ||||||
Wine-based | 5.14 ± 0.59 d | 8.01 ± 0.49 a | 5.64 ± 0.21 cd | 10.94 ± 0.08 ab | 10.50 ± 0.01 ab | 8.02 ± 0.50 c |
Water-based | 6.53 ± 0.60 bc | 8.16 ± 0.50 a | 6.98 ± 0.22 ab | 7.60 ± 0.84 c | 9.37 ± 0.92 bc | 11.73 ± 1.36 a |
Marinades | Control | Nitrite | S. xylosus | ||
---|---|---|---|---|---|
Cl. sporogenes | Meat after inoculation | 2.73 ± 0.23 | |||
Filling (5 d in the marinade) | Wine-based | 2.60 ± 0.31 a | 1.84 ± 0.13 b | 1.83 ± 0.09 b | |
Water-based | 2.97 ± 0.18 a | 1.80 ± 0.04 b | 1.64 ± 0.19 b | ||
8 d after smoking | Wine-based | 0.07 ± 0.12 | 0.08 ± 0.14 | 0.03 ± 0.06 | |
Water-based | ND | ND | 0.01 ± 0.02 | ||
21 d after smoking | Wine-based | ND | ND | ND | |
Water-based | ND | ND | ND | ||
L. monocytogenes | Meat after inoculation | 4.43 ± 0.13 | |||
Filling (5 d in the marinade) | Wine-based | 3.49 ± 0.14 b | 3.89 ± 0.03 ab | 3.81 ± 0.17 ab | |
Water-based | 3.94 ± 0.06 a | 3.69 ± 0.01 ab | 3.50 ± 0.27 b | ||
8 d after smoking | Wine-based | 2.18 ± 0.58 | 2.75 ± 1.41 | 1.98 ± 0.28 | |
Water-based | 2.06 ± 0.44 | 3.06 ± 1.15 | 1.55 ± 1.37 | ||
21 d after smoking | Wine-based | ND | ND | ND | |
Water-based | ND | ND | 0.43 ± 0.74 | ||
Salmonella | Meat after inoculation | 4.39 ± 0.03 | |||
Filling (5 d in the marinade) | Wine-based | 4.41 ± 0.30 | 3.97 ± 0.36 | 4.24 ± 0.07 | |
Water-based | 4.52 ± 0.14 | 4.05 ± 0.12 | 4.20 ± 0.16 | ||
8 d after smoking | Wine-based | 0.89 ± 0.78 | 1.21 ± 1.22 | 2.47 ± 0.06 | |
Water-based | 2.75 ± 0.81 | 2.38 ± 0.30 | 2.56 ± 0.23 | ||
21 d after smoking | Wine-based | 1.37 ± 1.19 | ND | ND | |
Water-based | 1.18 ± 0.31 | 0.48 ± 0.83 | 0.43 ± 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patarata, L.; Carvalho, F.; Fraqueza, M.J. Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins. Foods 2022, 11, 796. https://doi.org/10.3390/foods11060796
Patarata L, Carvalho F, Fraqueza MJ. Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins. Foods. 2022; 11(6):796. https://doi.org/10.3390/foods11060796
Chicago/Turabian StylePatarata, Luis, Filipa Carvalho, and Maria João Fraqueza. 2022. "Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins" Foods 11, no. 6: 796. https://doi.org/10.3390/foods11060796
APA StylePatarata, L., Carvalho, F., & Fraqueza, M. J. (2022). Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins. Foods, 11(6), 796. https://doi.org/10.3390/foods11060796