The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Origin and Sample Preparation
2.2. Fatty Acids
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Ren, Q.-S.; Fang, K.; Yang, X.-T.; Han, J.-W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Kang, N.; Panzone, L.; Kuznesof, S. The role of cooking in consumers’ quality formation: An exploratory study of beef steaks. Meat Sci. 2022, 186, 108730. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelski, G.; Pogorzelska-Nowicka, E.; Pogorzelski, P.; Półtorak, A.; Hocquette, J.-F.; Wierzbicka, A. Towards an integration of pre- and post-slaughter factors affecting the eating quality of beef. Livest. Sci. 2022, 255, 104795. [Google Scholar] [CrossRef]
- Supaphon, P.; Kerdpiboon, S.; Vénien, A.; Loison, O.; Sicard, J.; Rouel, J.; Astruc, T. Structural changes in local Thai beef during sous-vide cooking. Meat Sci. 2021, 175, 108442. [Google Scholar] [CrossRef]
- Nogalski, Z.; Sobczuk-Szul, M.; Pogorzelska-Przybyłek, P.; Wielgosz-Groth, Z.; Purwin, C.; Modzelewska-Kapituła, M. Comparison of slaughter value for once-calved heifers and heifers of Polish Holstein-Friesian × Limousine crossbreds. Meat Sci. 2016, 117, 1–6. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Tkacz, K.; Nogalski, Z.; Karpińska-Tymoszczyk, M.; Draszanowska, A.; Pietrzak-Fiećko, R.; Purwin, C.; Lipiński, K. Addition of herbal extracts to the Holstein-Friesian bulls’ diet changes the quality of beef. Meat Sci. 2018, 145, 163–170. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of sous vide and steam cooking on mineral contents, fatty acid composition and tenderness of semimembranosus muscle from Holstein-Friesian bulls. Meat Sci. 2019, 157, 107877. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Tkacz, K.; Nogalski, Z. The influence of muscle, ageing and thermal treatment method on the quality of cooked beef. J. Food Sci. Technol. 2021, 59, 123–132. [Google Scholar] [CrossRef]
- Tkacz, K.; Modzelewska-Kapituła, M.; Więk, A.; Nogalski, Z. The Applicability of Total Color Difference ΔE for Determining the Blooming Time in Longissimus Lumborum and Semimembranosus Muscles from Holstein-Friesian Bulls at Different Ageing Times. Appl. Sci. 2020, 10, 8215. [Google Scholar] [CrossRef]
- Tkacz, K.; Modzelewska-Kapituła, M.; Petracci, M.; Zduńczyk, W. Improving the quality of sous-vide beef from Holstein-Friesian bulls by different marinades. Meat Sci. 2021, 182, 108639. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of sous vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous vide, a culinary technique for improving quality of food products: A review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Chian, F.M.; Kaur, L.; Astruc, T.; Venien, A.; Stubler, A.S.; Aganovic, K.; Loison, O.; Hodgkinson, S.; Boland, M. Shockwave processing of beef brisket in conjunction with sous-vide cooking: Effects on protein structural characteristics and muscle microstructure. Food Chem. 2021, 343, 12850. [Google Scholar] [CrossRef] [PubMed]
- Roldan, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.B.; Kumari, N.; Senapati, S.R.; Lekshmi, M.; Nagalakshmi, K.; Balange, A.K.; Chouksey, M.K.; Venkateshwarlu, G.; Xavier, K.A.M. Sous vide processed ready-to-cook seerfish steaks: Process optimization by response surface methodology and its quality evaluation. LWT 2016, 74, 62–69. [Google Scholar] [CrossRef]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. semitendinosus steaks targeted at elderly consumers. LWT 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Ferigolo, L.P.; Elias, S.O.; Carmo da Silva, D.; Lopes, S.M.; Geimba, M.P.; Tondo, E.C. Escherichia coli inactivation on tenderloin beef medallions processed by sous vide treatment. Int. J. Gastron. Food Sci. 2021, 25, 100366. [Google Scholar] [CrossRef]
- Moran, L.; Wilson, S.S.; McElhinney, C.K.; Monahan, F.J.; McGee, M.; O’Sullivan, M.G.; O’Riordan, E.G.; Kerry, J.P.; Moloney, A.P. Suckler Bulls Slaughtered at 15 Months of Age: Effect of Different Production Systems on the Fatty Acid Profile and Selected Quality Characteristics of Longissimus Thoracis. Foods 2019, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.D.; Enser, M. Chapter 20—Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing Series in Food Science Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2017; pp. 501–535. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1461 (accessed on 30 April 2019).
- Silva, L.F.; Barbosa, A.M.; da Silva Júnior, J.M.; Oliveira, V.d.S.; Gouveia, A.A.L.; Silva, T.M.; Lima, A.G.V.D.O.; Nascimento, T.V.C.; Bezerra, L.R.; Oliveira, R.L. Growth, physicochemical properties, fatty acid composition and sensorial attributes from longissumus lumborum of young bulls fed diets with containing licuri cake: Meat quality of bulls fed licuri cake. Livest. Sci. 2022, 255, 104775. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’orazio, N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peisker, K. A rapid semi-micro method for preparation of methyl esters from triglycerides using chloroform, methanol, sulphuric acid. J. Am. Oil Chem. Soc. 1964, 41, 87–88. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Tables of Nutritional Value of Food Products and Dishes; Instytut Żywności i Żywienia: Warszawa, Poland, 2005. [Google Scholar]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak-Fiećko, R.; Modzelewska-Kapituła, M.; Zakęś, Z.; Szczepkowski, M. The Effect of Thermal Treatment Method on Fatty Acid Composition in Northern Pike (Esox lucius) Fillets. J. Aquat. Food Prod. Technol. 2017, 26, 1303–1311. [Google Scholar] [CrossRef]
- Suleman, R.; Wang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef]
- Gerber, N.; Scheeder, M.R.L.; Wenk, C. The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef]
- Alfaia, C.M.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.J.E.; Costa, A.S.H.; Fontes, C.M.G.A.; Castro, M.L.F.; Bessa, R.J.B.; Prates, J.A.M. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Benatmane, F.; Blochet, J.E.; Mourot, J. Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci. 2008, 80, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.M.; Muela, E.; Olleta, J.L.; Moreno, L.A.; Santaliestra-Pasías, A.M.; Mesana, M.I.; Sañudo, C. Influence of cooking method on the nutrient composition of Spanish light lamb. J. Food Compost Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Manful, C.F.; Vidal, N.P.; Pham, T.H.; Nadeem, M.; Wheeler, E.; Hamilton, M.C.; Doody, K.M.; Thomas, R.H. Unfiltered beer based marinades reduced exposure to carcinogens and suppressed conjugated fatty acid oxidation in grilled meats. Food Control 2020, 111, 107040. [Google Scholar] [CrossRef]
- Manful, C.F.; Pham, T.H.; Nadeem, M.; Wheeler, E.; Warren, K.J.T.; Vidal, N.P.; Thomas, R.H. Assessing unfiltered beer-based marinades effects on ether and ester linked phosphatidylcholines and phosphatidylethanolamines in grilled beef and moose meat. Meat Sci. 2021, 171, 108271. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO. Interim Summary of Conclusions and Dietary Recommendations on Total Fat & Fatty Acids from the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition, 10–14 November 2008; WHO: Geneva, Switzerland, 2008; Available online: https://www.who.int/nutrition/topics/FFA_summary_rec_conclusion.pdf (accessed on 28 December 2021).
- Lock, A.L.; O’Donnell-Megaro, A.M.; Bauman, D.E. Conjugated Linoleic Acid. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 798–802. [Google Scholar] [CrossRef]
- Geranpour, M.; Assadpour, E.; Jafari, S.M. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends Food Sci. Technol. 2020, 102, 71–90. [Google Scholar] [CrossRef]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
Fatty Acid (% of Total) | M1 | M2 |
---|---|---|
C14:0 | 0.108 b ± 0.0002 | 0.149 a ± 0.0003 |
C16:0 | 5.5 b ± 0.04 | 6.49 a ± 0.029 |
C17:0 | 0.053 ± 0.002 | 0.0548 ± 0.0013 |
C18:0 | 2.28 ± 0.18 | 2.71 ± 0.017 |
C20:0 | 0.66 ± 0.03 | 0.683 ± 0.0017 |
C22:0 | 0.685 ± 0.109 | 0.873 ± 0.024 |
C16:1 | 0.28 a ± 0.003 | 0.224 b ± 0.001 |
C17:1 | 0.072 ± 0.008 | 0.081 ± 0.013 |
C18:1 | 63.17 a ± 0.15 | 61.96 b ± 0.05 |
C20:1 | 1.28 ± 0.01 | 1.29 ± 0.01 |
C22:1 | 0.188 ± 0.010 | 0.271 ± 0.029 |
C18:2 (n-6, LA) | 18.19 ± 0.11 | 17.42 ± 0.01 |
C18:3 (n-3, ALA) | 7.53 b ± 0.07 | 7.80 a ± 0.02 |
Σ SFA | 9.3 b ± 0.4 | 10.96 a ± 0.07 |
Σ MUFA | 65.00 a ± 0.17 | 63.83 b ± 0.10 |
Σ PUFA | 25.71 ± 0.19 | 25.22 ± 0.03 |
Σ n-6 | 18.19 a ± 0.11 | 17.42 b ± 0.01 |
Σ n-3 | 7.53 b ± 0.07 | 7.80 a ± 0.02 |
n-6/n-3 | 2.42 a ± 0.01 | 2.23 b ± 0.01 |
Fatty Acid (% of Total) | Raw Unmarinated Beef | Unmarinated SV Beef | Marinated SV Beef |
---|---|---|---|
C14:0 | 2.56 a ± 0.11 | 2.66 a ± 0.12 | 1.70 b ± 0.11 |
C15:0 | 0.336 a ± 0.013 | 0.357 a ± 0.013 | 0.225 b ± 0.014 |
C16:0 | 27.3 a ± 0.4 | 27.9 a ± 0.5 | 19.19 b ± 0.7 |
C17:0 | 0.941 a ± 0.028 | 0.979 a ± 0.026 | 0.613 b ± 0.028 |
C18:0 | 15.11 a ± 0.24 | 15.5 a ± 0.4 | 10.7 b ± 0.4 |
C20:0 | 0.093 b ± 0.009 | 0.106 b ± 0.011 | 0.403 a ± 0.021 |
C22:0 | ND | ND | 0.77 ± 0.05 |
C14:1 | 0.504 a ± 0.028 | 0.50 a ± 0.04 | 0.31 b ± 0.04 |
C16:1 | 3.82 a ± 0.10 | 3.76 a ± 0.18 | 2.36 b ±0.15 |
C17:1 | 0.812 a ± 0.021 | 0.807 a ± 0.025 | 0.468 b ± 0.023 |
C18:1 | 39.6 b ± 0.5 | 40.5 b ± 0.5 | 48.4 a ± 0.7 |
C20:1 | 0.32 b ± 0.04 | 0.36 b ± 0.04 | 0.758 a ± 0.021 |
C18:2 (n-6, LA) | 6.2 b ± 0.4 | 4.87 c ± 0.14 | 9.99 a ± 0.28 |
C18:2 (CLA) | 0.098 a ± 0.006 | 0.093 a ± 0.007 | 0.069 b ± 0.005 |
C18:3 (n-3, ALA) | 0.55 a ± 0.03 | 0.434 a ± 0.019 | 3.45 b ± 0.18 |
C20:4 (n-6, AA) | 1.77 a ± 0.16 | 1.13 b ± 0.05 | 0.64 c ± 0.05 |
Σ SFA | 46.3 a ± 0.4 | 47.6 a ± 0.6 | 33.6 b ± 1.1 |
Σ MUFA | 45.1 b ± 0.5 | 45.9 b ± 0.5 | 52.3 a ± 0.6 |
Σ PUFA | 8.6 b ± 0.6 | 6.52 c ± 0.18 | 14.2 a ± 0.6 |
Σ n-6 | 8.0 b ± 0.6 | 6.0 c ± 0.17 | 10.6 a ± 0.4 |
Σ n-3 | 0.55 b ± 0.03 | 0.434 b ± 0.019 | 3.45 a ± 0.18 |
n-6/n-3 | 14.7 a ± 0.8 | 14.0 a ± 0.6 | 3.1 b ± 0.1 |
Fatty Acid (% of Total) | M1 | M2 |
---|---|---|
C14:0 | 1.85 ± 0.17 | 1.54 ± 0.13 |
C15:0 | 0.220 ± 0.019 | 0.231 ± 0.021 |
C16:0 | 20.5 ± 1.1 | 17.9 ± 0.6 |
C17:0 | 0.62 ± 0.04 | 0.61 ± 0.04 |
C18:0 | 10.9 ± 0.4 | 10.4 ± 0.8 |
C20:0 | 0.40 ± 0.03 | 0.409 ± 0.026 |
C22:0 | 0.85 ± 0.09 | 0.70 ± 0.03 |
C14:1 | 0.32 ± 0.04 | 0.30 ± 0.06 |
C16:1 | 2.46 ± 0.22 | 2.27 ± 0.21 |
C17:1 | 0.49 ± 0.04 | 0.451 ± 0.02 |
C18:1 | 47.1 b ± 0.9 | 49.7 a ± 0.7 |
C20:1 | 0.749 ± 0.028 | 0.7 ± 0.03 |
C18:2 (n-6, LA) | 9.5 ± 0.6 | 10.51 ± 0.4 |
C18:2 (CLA) | 0.057 b ± 0.004 | 0.081 a ± 0.008 |
C18:3 (n-3, ALA) | 3.26 ± 0.26 | 3.64 ± 0.24 |
C20:4 (n-6, AA) | 0.75 a ± 0.06 | 0.54 b ± 0.05 |
Σ SFA | 35.4 ± 1.5 | 31.7 ± 8 1.1 |
Σ MUFA | 51.1 b ± 0.7 | 53.5 a ± 0.5 |
Σ PUFA | 13.5 ± 0.9 | 14.8 ± 0.6 |
Σ n-6 | 10.2 ± 0.7 | 11.0 ± 0.4 |
Σ n-3 | 3.26 ± 0.26 | 3.64 ± 0.24 |
n-6/n-3 | 3.2 ± 0.1 | 3.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkacz, K.; Tylewicz, U.; Pietrzak-Fiećko, R.; Modzelewska-Kapituła, M. The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls. Foods 2022, 11, 797. https://doi.org/10.3390/foods11060797
Tkacz K, Tylewicz U, Pietrzak-Fiećko R, Modzelewska-Kapituła M. The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls. Foods. 2022; 11(6):797. https://doi.org/10.3390/foods11060797
Chicago/Turabian StyleTkacz, Katarzyna, Urszula Tylewicz, Renata Pietrzak-Fiećko, and Monika Modzelewska-Kapituła. 2022. "The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls" Foods 11, no. 6: 797. https://doi.org/10.3390/foods11060797
APA StyleTkacz, K., Tylewicz, U., Pietrzak-Fiećko, R., & Modzelewska-Kapituła, M. (2022). The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls. Foods, 11(6), 797. https://doi.org/10.3390/foods11060797