Selection and Application of ssDNA Aptamers for Fluorescence Biosensing Detection of Malachite Green
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. Capture-SELEX Selection for MG ssDNA Aptamer
2.2.1. ssDNA Library Immobilization
2.2.2. Monitoring Selection Process
2.2.3. Positive ssDNA Amplification
2.3. High-Throughput Sequencing (HTS) and Sequence Analysis
2.4. Affinity Analysis of the Candidate Aptamers by ITC
2.5. General Procedure of GO-Based Fluorescence Assay to Detect MG
2.6. Determination of MG in Actual Water Samples
3. Results and Discussion
3.1. Capture-SELEX Selection of Aptamers for MG
3.2. High-Throughput Sequencing and Sequence Analysis of the Enriched Library
3.3. Kd Values of Active Aptamers
3.4. Development and Optimized Conditions of GO-Based Fluorescent Aptasensor
3.4.1. Development of the GO-Based Fluorescent Aptasensor for Detection of MG
3.4.2. Optimization of Detection Conditions
3.4.3. Sensitivity and Specificity Test
3.5. Practicability for Determination of MG in Actual Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.L.; Schmitt, T.C.; Heinze, T.M.; Cerniglia, C.E. Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl. Environ. Microbiol. 1997, 63, 4099–4101. [Google Scholar] [CrossRef] [PubMed]
- Mitrowska, K.; Posyniak, A. Malachite green: Pharmacological and toxicological aspects and residue control. Med. Weter.-Vet. Med.-Sci. Pract. 2005, 61, 742–745. [Google Scholar]
- Hashimoto, J.C.; Paschoal, J.A.R.; De Queiroz, J.F.; Reyes, F.G.R. Considerations on the Use of Malachite Green in Aquaculture and Analytical Aspects of Determining the Residues in Fish: A Review. J. Aquat. Food Prod. Technol. 2011, 20, 273–294. [Google Scholar] [CrossRef]
- Mitrowska, K.; Posyniak, A. Determination of malachite green and its metabolite, leucomalachite green, in fish muscle by liquid chromatography. Bull. Vet. Inst. Pulawy 2004, 48, 173–176. [Google Scholar]
- Halme, K.; Lindfors, E.; Peltonen, K. Determination of malachite green residues in rainbow trout muscle with liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2004, 21, 641–648. [Google Scholar] [CrossRef]
- Bilandzic, N.; Varenina, I.; Kolanovic, B.S.; Oraic, D.; Zrncic, S. Malachite green residues in farmed fish in Croatia. Food Control 2012, 26, 393–396. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Volgina, T.N.; Pugachev, E.V.; Gavrilenko, M.A. Visual determination of malachite green in sea fish samples. Food Chem. 2019, 274, 242–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Kang, Y.; Miao, J.; Lai, K. Selective recognition and determination of malachite green in fish muscles via surface-enhanced Raman scattering coupled with molecularly imprinted polymers. Food Control 2021, 130, 108367. [Google Scholar] [CrossRef]
- Lin, Z.-Z.; Li, W.-J.; Chen, Q.-C.; Peng, A.-H.; Huang, Z.-Y. Rapid detection of malachite green in fish with a fluorescence probe of molecularly imprinted polymer. Int. J. Polym. Anal. Charact. 2019, 24, 121–131. [Google Scholar] [CrossRef]
- Zhou, X.H.; Zhang, J.R.; Pan, Z.L.; Li, D.L. Review of Methods for the Detection and Determination of Malachite Green and Leuco-Malachite Green in Aquaculture. Crit. Rev. Anal. Chem. 2019, 49, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Grate, D.; Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 1999, 96, 6131–6136. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Liu, K.; Li, T.; Yang, Y. Simultaneous and rapid determination of malachite green and leucomalachite green by a label-free colorimetric aptasensor. Chin. J. Chromatogr. 2020, 38, 1332–1339. [Google Scholar] [CrossRef]
- Zhan, S.-B.; Zeng, Y. Recent progress on SELEX and its applications. Chin. J. Virol. 2013, 29, 573–577. [Google Scholar]
- Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, B.; Xu, C. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces 2015, 7, 7492–7496. [Google Scholar] [CrossRef]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces 2017, 9, 23287–23301. [Google Scholar] [CrossRef]
- Charbgoo, F.; Soltani, F.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Nanoparticles application in high sensitive aptasensor design. Trac. Trends Anal. Chem. 2016, 85, 85–97. [Google Scholar] [CrossRef]
- Luo, Z.; He, L.; Wang, J.; Fang, X.; Zhang, L. Developing a combined strategy for monitoring the progress of aptamer selection. Analyst 2017, 142, 3136–3139. [Google Scholar] [CrossRef]
- Marimuthu, C.; Tang, T.H.; Tominaga, J.; Tan, S.C.; Gopinath, S.C. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 2012, 137, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liu, X.; Hou, J.; Yuan, Q.; Li, Y.; Chen, S. Selection of Aptamers Specific for DEHP Based on ssDNA Library Immobilized SELEX and Development of Electrochemical Impedance Spectroscopy Aptasensor. Molecules 2020, 25, 747. [Google Scholar] [CrossRef] [PubMed]
- Cole, K.H.; Luptak, A. High-Throughput Methods in Aptamer Discovery and Analysis. In Chemical and Synthetic Biology Approaches to Understand Cellular Functions—Pt A.; Methods in Enzymology; Shukla, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 621, pp. 329–346. [Google Scholar]
- Sadeghi, A.S.; Mohsenzadeh, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 2018, 182, 193–201. [Google Scholar] [CrossRef]
- Shrivastava, A. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Luo, J.; Xu, Z.; Ma, X. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Microchim. Acta 2018, 185, 295. [Google Scholar] [CrossRef]
- Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018, 117, 75–83. [Google Scholar] [CrossRef]
- Zhao, C.; Hong, C.-Y.; Lin, Z.-Z.; Chen, X.-M.; Huang, Z.-Y. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions. Microchim. Acta 2019, 186, 322. [Google Scholar] [CrossRef]
- Jia, J.; Yan, S.; Lai, X.; Xu, Y.; Liu, T.; Xiang, Y. Colorimetric Aptasensor for Detection of Malachite Green in Fish Sample Based on RNA and Gold Nanoparticles. Food Anal. Methods 2018, 11, 1668–1676. [Google Scholar] [CrossRef]
- Khati, M. The future of aptamers in medicine. J. Clin. Pathol. 2010, 63, 480–487. [Google Scholar] [CrossRef]
- Pehlivan, Z.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yüce, M. Aptamer and nanomaterial based FRET biosensors: A review on recent advances (2014–2019). Mikrochim. Acta 2019, 186, 563. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-A.; Pei, R.; Stojanovic, M.N. In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 2016, 106, 58–65. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequences (5′–3′) |
---|---|
Biotin-CO | 5′-biotin-TCGTGCTGCTGGATGTGTCA-3′ |
FAM-Forward | 5′-FAM-GTTCGTGGTGTGCTGGATGT-3′ |
PolyA20-Reverse | 5′-AAAAAAAAAAAAAAAAAAAAAAAAA-Spacer18-TCGTGCTGCTGGATGTGTCA-3′ |
Q-Forward | 5′-GTTCGTGGTGTGCTGGATGT-3′ |
Q-Reverse | 5′-TCGTGCTGCTGGATGTGTCA-3′ |
Aptamer | Sequence (5′–3′) | ΔG (kcal/mol) | Kd (μM) |
---|---|---|---|
MG-36-12 | CCATGCGACGGACAGCACGTGTCACCGCGATCAGCC | −5.87 | 169.78 |
MG-36-16 | CCACCCGACAGCCAGTCACGCGCATCGTACAGACCG | −3.94 | 71.94 |
MG-36-17 | CGCAGCGCGGCAGACAGTCAGGCTCAGCACGTGGCA | −4.55 | 102.46 |
Sample | Add MG Concentration (ng/mL) | Final Concentration of MG (ng/mL) | GO-Based Fluorescent Aptasensor (ng/mL) | Recovery Ratio % | RSD (%) |
---|---|---|---|---|---|
1 | 100 | 42.86 | 37.73 | 88.03% | 14.69% |
2 | 1000 | 428.57 | 432.68 | 100.96% | 3.24% |
3 | 2000 | 857.14 | 698.92 | 81.54% | 6.41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Chen, Z.; Zhao, F.; Lin, Y.; Zheng, S.; Han, S. Selection and Application of ssDNA Aptamers for Fluorescence Biosensing Detection of Malachite Green. Foods 2022, 11, 801. https://doi.org/10.3390/foods11060801
Xie M, Chen Z, Zhao F, Lin Y, Zheng S, Han S. Selection and Application of ssDNA Aptamers for Fluorescence Biosensing Detection of Malachite Green. Foods. 2022; 11(6):801. https://doi.org/10.3390/foods11060801
Chicago/Turabian StyleXie, Miaojia, Zanlin Chen, Fengguang Zhao, Ying Lin, Suiping Zheng, and Shuangyan Han. 2022. "Selection and Application of ssDNA Aptamers for Fluorescence Biosensing Detection of Malachite Green" Foods 11, no. 6: 801. https://doi.org/10.3390/foods11060801
APA StyleXie, M., Chen, Z., Zhao, F., Lin, Y., Zheng, S., & Han, S. (2022). Selection and Application of ssDNA Aptamers for Fluorescence Biosensing Detection of Malachite Green. Foods, 11(6), 801. https://doi.org/10.3390/foods11060801