Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Slaughter Procedure and Sampling
2.3. Chemical Analysis
(MUFA + PUFA)
(0.5 × MUFA) + O.5 × PUFA n − 6 + 3 × PUFA n − 3 + (n − 3/n − 6)
2.4. Water-Holding Capacity and TBARS Measurement
(initial fresh meat weight)
2.5. Physical Analysis
2.6. Volatile Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meinert, L.; Andersen, L.T.; Bredie, W.L.P.; Bjergegaard, C.; Aaslyng, M.D. Chemical and sensory characterization of pan-fried pork flavor: Interaction between raw meat quality, ageing and frying temperature. Meat Sci. 2007, 75, 229–242. [Google Scholar] [CrossRef]
- Meinert, L.; Schäfer, A.; Bjergegaard, C.; Aaslyng, M.D.; Bredie, W.L.P. Comparison of glucose, glucose 6-phosphate, ribose, and mannose as flavor precursors in pork; the effect of monosaccharide addition on flavor generation. Meat Sci. 2009, 81, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Cava, R. Volatile Profiles of Dry-Cured Meat Products from Three Different Iberian X Duroc Genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal “cecina”. Meat Sci. 2014, 96, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Barron, L.J.R.; Aldai, N. Effect of ageing time on the volatile compounds from cooked horse meat. Meat Sci. 2022, 184, 108692. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Tateo, A.; Maggiolino, A.; Domínguez, R.; Lorenzo, J.M.; Dinardo, F.R.; Ceci, E.; Marino, R.; della Malva, A.; Bragaglio, A.; De Palo, P. Volatile Organic Compounds, Oxidative and Sensory Patterns of Vacuum Aged Foal Meat. Animals 2020, 10, 1495. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Effect of slaughter age and feeding system on the neutral and polar lipid composition of horse meat. Animal 2018, 12, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Polidori, P.; Ariani, A.; Micozzi, D.; Vincenzetti, S. The effects of low voltage electrical stimulation on donkey meat. Meat Sci. 2016, 119, 160–164. [Google Scholar] [CrossRef] [PubMed]
- De Palo, P.; Tateo, A.; Maggiolino, A.; Marino, R.; Ceci, E.; Nisi, A.; Lorenzo, J.M. Martina Franca donkey meat quality: Influence of slaughter age and suckling technique. Meat Sci. 2017, 134, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Priolo, A. Ruminant fat volatiles as affected by diet. A review. Meat Sci. 2006, 73, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Echegaray, N.; Domínguez, R.; Cadavez, V.A.P.; Bermúdez, R.; Purriños, L.; Gonzales-Barron, U.; Hoffman, E.; Lorenzo, J.M. Influence of the Production System (Intensive vs. Extensive) at Farm Level on Proximate Composition and Volatile Compounds of Portuguese Lamb Meat. Foods 2021, 10, 1450. [Google Scholar] [CrossRef]
- Vasta, V.; Ratel, J.; Engel, E. Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J. Agric. Food Chem. 2007, 55, 4630–4639. [Google Scholar] [CrossRef]
- Vasta, V.; D’Alessandro, A.G.; Priolo, A.; Petrotos, K.; Martemucci, G. Volatile compound profile of ewe’s milk and meat of their suckling lambs in relation to pasture vs. indoor feeding system. Small Rumin. Res. 2012, 105, 16–21. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G.; Dimauro, C.; Röhrle, F.; Priolo, A.; Monahan, F.J.; Moloney, A.P. The volatile profile of longissimus dorsi muscle of heifers fed pasture, pasture silage or cereal concentrate: Implication for dietary discrimination. Meat Sci. 2011, 87, 282–289. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S.; Cavallucci, C.; Beghelli, D. Quality of donkey meat and carcass characteristics. Meat Sci. 2008, 80, 1222–1224. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S. Meat quality in donkey foals. Ital. J. Food Sci. 2013, 25, 390–393. [Google Scholar]
- Lorenzo, J.M.; Gόmez, M. Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Sci. 2012, 92, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and faeces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Razmaité, V.; Šveistiené, R.; Račkauskaité, A.; Jatkauskiené, V. Effect of Gender on Meat Quality from Adult Obsolescent Horses. Animals 2021, 11, 2880. [Google Scholar] [CrossRef]
- Franco, D.; Rodríguez, E.; Purriños, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sarriés, M.V.; Franco, D. Sex effect on meat quality and carcass traits of foals slaughtered at 15 months of age. Animal 2013, 7, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Palo, P.; Tateo, A.; Maggiolino, A.; Centoducati, P. Nutritive Level Effects on Horse Meat. Anim. Sci. J. 2014, 85, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Lorenzo, J.M. Effect of packaging conditions on shelf-life of foal fresh meat. Meat Sci. 2012, 91, 513–520. [Google Scholar] [CrossRef]
- Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.J.; Vincenzetti, S. Effects of Donkeys Rearing System on Performance Indices, Carcass, and Meat Quality. Foods 2021, 10, 3119. [Google Scholar] [CrossRef]
- Polidori, P.; Pucciarelli, S.; Ariani, A.; Polzonetti, V.; Vincenzetti, S. A comparison of the carcass and meat quality of Martina Franca donkey foals aged 8 or 12 months. Meat Sci. 2015, 106, 6–10. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R. Cooking losses, lipid oxidation and formation of volatile compounds in foal meat as affected by cooking procedure. Flavour Fragr. J. 2014, 29, 240–248. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). SAS/STAT Guide for Personal Computers, 8th ed.; SAS Institute Inc.: Cary, NC, USA, 2001. [Google Scholar]
- Maggiolino, A.; Lorenzo, J.M.; Centoducati, G.; Domínguez, R.; Dinardo, F.R.; Marino, R.; Malva, A.d.; Bragaglio, A.; De Palo, P. How Volatile Compounds, Oxidative Profile and Sensory Evaluation Can Change with Vacuum Aging in Donkey Meat. Animals 2020, 10, 2126. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zakrys, P.I.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Consumer acceptability and physiochemical characteristics of modified atmosphere packed beef steaks. Meat Sci. 2009, 81, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Cittadini, A.; Domínguez, R.; Pateiro, M.; Sarriés, M.V.; Lorenzo, J.M. Fatty Acid Composition and Volatile Profile of longissimus thoracis et lumborum Muscle from Burguete and Jaca Navarra Foals Fattened with Different Finishing Diets. Foods. 2021, 10, 2914. [Google Scholar] [CrossRef]
- Trombetta, M.F.; Nocelli, F.; Pasquini, M. Meat quality and intramuscular fatty acid composition of Catria Horse. Anim. Sci. J. 2017, 88, 1107–1112. [Google Scholar] [CrossRef]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Insausti, K.; Barron, L.J.R.; Aldai, N. Muscle and Subcutaneous Fatty Acid Composition and the Evaluation of Ageing Time on Meat Quality Parameters of Hispano-Bretón Horse Breed. Animals 2021, 11, 1421. [Google Scholar] [CrossRef]
- Li, M.; Zhang, D.; Chai, W.; Mingxia Zhu, M.; Yonghui Wang, Y.; Liu, Y.; Qingxin Wei, Q.; Fan, D.; Lv, M.; Jiang, X.; et al. Chemical and physical properties of meat from Dezhou black donkey. Food Sci. Technol. Res. 2022, 28, 87–94. [Google Scholar] [CrossRef]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci. 2008, 79, 270–277. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Bessa, R.J.B.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Horse-meat for human consumption—Current research and future opportunities. Meat Sci. 2015, 108, 74–81. [Google Scholar] [CrossRef]
- Polidori, P.; Cavallucci, C.; Beghelli, D.; Vincenzetti, S. Physical and chemical characteristics of donkey meat from Martina Franca breed. Meat Sci. 2009, 82, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.C.; Erasmus, L.J. The effect of production system and management practices on the quality of meat products from ruminant livestock. S. Afr. J. Anim. Sci. 2013, 43, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Raes, K.; De Smet, S.; Demeyer, D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim. Feed Sci. Technol. 2004, 113, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 2003, 38, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Webb, E. Cis/Trans-Fatty Acid Content of Red Meats and the Related Effects on Meat Quality and Human Health. In Meat and Nutrition; Ranabhat, C., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Moussa, E.W.H.; Shereen, A.N.; Manal, A.; Mehanni, A.E.; Rash, A.E. Nutritional value and fatty acid composition of household cooking on fish fatty acids profile using atherogenicity and thrombogenicity indices. J. Food Chem. Nutr. 2014, 2, 27–41. [Google Scholar]
- Polidori, P.; Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V. Comparison of Carcass and Meat Quality Obtained from Mule and Donkey. Animals 2020, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Landi, C.; Scerra, M.; Galofaro, V.; Pennisi, P. Meat quality and intramuscular fatty acid composition of Sanfratellano and Haflinger foals. Meat Sci. 2009, 81, 142–147. [Google Scholar] [CrossRef]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef]
- Resconi, V.C.; Bueno, M.; Escudero, A.; Magalhaes, D.; Ferreira, V.; Campo, M.M. Ageing and retail display time in raw beef odour according to the degree of lipid oxidation. Food Chem. 2018, 242, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Beldarrain, L.R.; Etaio, I.; Moran, L.; Sentandreu, M.A.; Barron, L.J.R.; Aldai, N. Effect of ageing time on consumer preference and sensory description of foal meat. Food Res. Int. 2020, 129, 108871. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Liu, M.; Zhao, X.; Luo, H. Effect of Breed on the Volatile Compound Precursors and Odor Profile Attributes of Lamb Meat. Foods 2020, 9, 1178. [Google Scholar] [CrossRef] [PubMed]
- Maggiolino, A.; Lorenzo, J.M.; Marino, R.; Malva, A.D.; Centoducati, P.; De Palo, P. Foal meat volatile compounds: Effect of vacuum ageing on semimembranosus muscle. J. Sci. Food Agric. 2019, 99, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Sgarro, M.F.; Maggiolino, A.; Pateiro, M.; Domínguez, R.; Iannaccone, F.; De Palo, P.; Lorenzo, J.M. Effect of Anthocyanin Supplementation and Ageing Time on the Volatile Organic Compounds and Sensory Attributes of Meat from Goat Kids. Animals 2022, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Wi, G.; Bae, J.; Kim, H.; Cho, Y.; Choi, M.-J. Evaluation of the Physicochemical and Structural Properties and the Sensory Characteristics of Meat Analogues Prepared with Various Non-Animal Based Liquid Additives. Foods 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Della Malva, A.; De Palo, P.; Lorenzo, J.M.; Maggiolino, A.; Albenzio, M.; Marino, R. Application of proteomic to investigate the post-mortem tenderization rate of different horse muscles. Meat Sci. 2019, 157, 107885. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass Traits, Meat Quality, and Volatile Compounds of Lamb Meat from Different Restricted Grazing Time and Indoor Supplementary Feeding Systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef] [PubMed]
KERRYPNX | Ageing | Significance | SEM | ||
---|---|---|---|---|---|
1 d | 8 d | 15 d | |||
Moisture (%) | 73.28 | 73.47 | 73.88 | n.s. | 0.91 |
Protein (%) | 22.14 | 21.91 | 21.80 | n.s. | 0.57 |
Fat (%) | 3.12 | 3.15 | 2.97 | n.s. | 0.49 |
Ash (%) | 1.45 | 1.47 | 1.38 | n.s. | 0.28 |
Drip Loss (%) | 3.96 | 3.89 | 3.94 | n.s. | 0.51 |
Cooking loss (%) | 30.7 a | 36.2 b | 35.9 b | * | 0.88 |
TBARS values (mg MDA/kg muscle) | 0.33 A | 1.24 B | 1.32 B | ** | 0.08 |
pH value | 5.66 | 5.67 | 5.58 | n.s. | 0.03 |
Lightness L | 39.4 | 40.1 | 41.13 | n.s. | 0.40 |
Redness a | 11.91 | 10.87 | 11.45 | n.s. | 0.55 |
Yellowness b | 8.28 | 8.46 | 8.32 | n.s. | 0.44 |
Warner Bratzler Shear Force (N/cm2) | 61.6 A | 55.8 B | 53.9 B | * | 0.19 |
Fatty Acid | 1 Day | 8 Days | 15 Days | SEM | p-Value |
---|---|---|---|---|---|
C12:0 | 0.26 | 0.21 | 0.24 | 0.005 | n.s |
C14:0 | 3.88 | 3.24 | 3.63 | 0.002 | n.s |
C15:0 | 0.47 | 0.39 | 0.44 | 0.008 | n.s |
C16:0 | 27.8 | 28.1 | 28.0 | 0.38 | n.s |
C16:1 | 3.63 | 4.00 | 3.81 | 0.22 | n.s |
C17:0 | 0.58 | 0.47 | 0.52 | 0.005 | n.s |
C18:0 | 7.99 | 6.81 | 7.60 | 0.24 | n.s |
C18:1n−9 | 28.7 | 29.0 | 28.4 | 0.482 | n.s |
C18:2n − 6 | 20.3 | 20.9 | 20.2 | 0.202 | n.s |
C18:3n − 3 | 3.17 | 4.20 | 3.60 | 0.11 | n.s |
C20:1n−9 | 0.32 | 0.34 | 0.33 | 0.007 | n.s |
C20:2n − 6 | 0.23 | 0.19 | 0.30 | 0.008 | n.s |
C20:3n − 6 | 0.28 | 0.17 | 0.19 | 0.005 | n.s |
C20:4n − 6 | 2.27 | 2.10 | 2.43 | 0.12 | n.s |
C20:5n − 3 | 0.19 | 0.24 | 0.32 | 0.03 | n.s |
SFA | 40.98 | 39.22 | 40.43 | 0.421 | n.s |
MUFA | 32.65 | 33.34 | 32.54 | 0.356 | n.s |
PUFA | 26.44 a | 27.80 b | 27.04 b | 0.267 | * |
PUFA/SFA | 0.65 | 0.71 | 0.67 | 0.006 | n.s |
Σn − 3 | 3.36 a | 4.44 b | 3.92 b | 0.014 | * |
Σn − 6 | 23.08 | 23.36 | 23.12 | 0.221 | n.s |
Σn − 6/Σn − 3 | 6.87 | 5.26 | 5.90 | 0.035 | n.s |
AI | 0.74 | 0.68 | 0.72 | 0.019 | n.s |
TI | 1.04 | 0.91 | 0.99 | 0.025 | n.s |
Volatile Compound | 1 Day | 8 Days | 15 Days | SEM | p-Value |
---|---|---|---|---|---|
Propanal | 354.3 a | 349.6 a | 462.5 b | 122.7 | * |
Propanal, 2-methyl- | 71.5 | 76.9 | 71.7 | 11.2 | n.s. |
Butanal | 38.7 | 32.8 | 47.8 | 2.77 | n.s. |
Butanal, 3-methyl- | 64.8 a | 88.1 a | 173.8 b | 41.1 | * |
Butanal, 2-methyl- | 209.4 | 355.2 | 256.4 | 72.2 | n.s. |
Pentanal | 994.9 a | 1241.7 b | 1564.2 b | 269.8 | * |
Hexanal | 17854.1 | 16815.5 | 18546.6 | 3139.2 | n.s. |
Furfural | 16.2 | 20.5 | 21.6 | 1.19 | n.s. |
2-Hexenal, (E)- | 15.7 | 34.2 | 37.3 | 1.96 | n.s. |
Heptanal | 369.5 a | 328.2 a | 583.8 b | 142.8 | * |
Benzaldehyde | 121.3 | 153.8 | 187.4 | 24.2 | n.s. |
Benzeneacetaldeyde | 34.7 a | 32.9 a | 88.7 b | 3.68 | * |
2-Octenal, (E)- | 20.3 | 23.1 | 21.6 | 1.48 | n.s. |
Nonanal | 290.8 A | 278.2 A | 595.2 B | 71.8 | ** |
Benzaldehyde, 3-ethyl- | 36.5 | 41.7 | 42.4 | 4.57 | n.s. |
2,4-Decadienal | 17.2 | 15.4 | 16.8 | 0.53 | n.s. |
Total aldehydes | 20,509.9 a | 19,887.8 a | 22,717.8 b | 3918.2 | * |
Furan, 3-methyl- | 25.4 | 24.7 | 27.9 | 2.92 | n.s. |
Furan, 2,5-dihydro | 23.6 | 22.8 | 25.7 | 1.47 | n.s. |
Furan, 2-ethyl | 83.7 a | 97.6 a | 287.5 b | 37.4 | * |
2-n-Butyl furan | 74.2 a | 82.3 a | 174.7 b | 17.3 | * |
Furan, 2,3-dihydro-3-methyl | 21.3 | 22.2 | 27.3 | 9.4 | n.s. |
Furan, 2-pentyl- | 579.4 A | 538.5 A | 1533.6 B | 371.2 | ** |
Total furans | 807.6 A | 788.1 A | 2096.7 B | 442.3 | ** |
Volatile Compound | 1 Day | 8 Days | 15 Days | SEM | p-Value |
---|---|---|---|---|---|
Pentane | 22.0 a | 23.4 a | 38.5 b | 2.47 | * |
n-Hexane | 571.3 | 599.3 | 485.7 | 99.5 | n.s. |
Hexane, 2,2-dimethyl- | 185.8 | 196.7 | 174.1 | 27.2 | n.s. |
Isopropylcyclobutane | 24.8 | 28.1 | 27.8 | 2.11 | n.s. |
Heptane | 49.4 | 45.2 | 46.4 | 5.72 | n.s. |
Pentane, 2,3,4-trimethyl | 64.9 | 67.3 | 64.2 | 6.98 | n.s. |
Heptane, 3,3,4-trimethyl | 85.1 | 81.5 | 85.6 | 9.20 | n.s. |
Hexane, 2,2,4-trimethyl- | 116.2 | 120.5 | 121.6 | 11.9 | n.s. |
2-Heptene, 3-methyl- | 115.7 | 134.2 | 137.3 | 19.6 | n.s. |
Octane | 169.5 | 132.2 | 183.8 | 14.8 | n.s. |
2-Octene, (E) | 11.3 | 13.8 | 11.8 | 0.24 | n.s. |
Octane, 2-methyl- | 14.7 | 12.8 | 18.7 | 1.88 | n.s. |
Heptane, 2,3-dimethyl | 40.3 | 43.1 | 41.6 | 1.48 | n.s. |
4-Octene, (E) -dimethyl- | 10.8 | 12.2 | 12.2 | 71.8 | n.s. |
Heptane, 3-ethyl- | 286.5 | 241.7 | 242.4 | 35.7 | n.s. |
Nonane, 3,7 | 147.2 | 153.4 | 160.8 | 0.53 | n.s. |
Heptane, 2,2,4-trimethyl- | 259.9 | 288.7 | 277.8 | 18.2 | n.s. |
Octane, 3,5-dimethyl- | 225.4 | 247.9 | 279.6 | 28.1 | n.s. |
3-Methyl-3-hexene | 123.6 | 122.8 | 125.7 | 1.47 | n.s. |
2-Octene, 4-ethyl-, (E)- | 136.7 | 137.6 | 187.5 | 27.4 | n.s. |
Heptane, 3-ethyl-5-methylene- | 274.2 | 282.3 | 274.7 | 19.3 | n.s. |
3-Ethyl-3-methylheptane | 81.3 | 82.2 | 87.3 | 9.23 | n.s. |
Pentane, 3,3-dimethyl- | 37.9 | 38.5 | 33.6 | 4.12 | n.s. |
Undecane, 6,6-dimethyl | 97.6 | 88.1 | 96.7 | 12.3 | n.s. |
Nonane, 5-methylene- | 98.5 | 89.2 | 87.6 | 13.2 | n.s. |
2-Nonene, 3-methyl, (E)- | 247.1 | 253.3 | 268.5 | 26.3 | n.s. |
Heptane,2,2,4,6,6-pentamethyl | 2227.7 | 2618.6 | 2539.8 | 211.8 | n.s. |
Decane | 336.0 | 364.4 | 346.7 | 32.7 | n.s. |
(Z)-4-Methyl-2-hexene | 127.2 | 173.2 | 147.8 | 23.6 | n.s. |
2,2,4,4-Tetramethyloctane | 197.1 | 223.2 | 188.6 | 27.0 | n.s. |
Undecane, 5,5-dimethyl- | 145.5 | 177.4 | 179.5 | 25.3 | n.s. |
Dodecane,2,6,10-trimethyl- | 127.5 | 166.2 | 138.9 | 22.4 | n.s. |
Dodecane, 4-methyl- | 88.2 | 108.8 | 99.6 | 14.2 | n.s. |
2-Decene, 3-methyl, (Z)- | 52.3 | 51.8 | 59.6 | 8.10 | n.s. |
Undecane | 1057.5 | 1205.4 | 1198.6 | 152.8 | n.s. |
2-Undecene, 9-methyl-, (Z)- | 225.4 | 255.5 | 234.1 | 26.3 | n.s. |
4,4-Dipropilheptane | 14.2 | 13.7 | 13.9 | 0.66 | n.s. |
Pentane, 3,3-diethyl- | 43.8 | 44.6 | 45.4 | 1.24 | n.s. |
Dodecane, 2-methyl-6-propyl- | 113.2 | 118.3 | 112.5 | 11.8 | n.s. |
2-Undecene, 3-methyl-, (E)- | 38.2 | 35.4 | 42.2 | 2.15 | n.s. |
Dodecane | 490.7 | 435.0 | 478.6 | 76.4 | n.s. |
Pentadecane, 6-methyl- | 32.4 | 33.5 | 37.6 | 5.76 | n.s. |
Decane, 2,3,6-trimethyl | 18.9 | 22.7 | 24.7 | 0.63 | n.s. |
Tridecane | 99.9 | 115.2 | 118.2 | 10.7 | n.s. |
Tridecane, 3-methyl- | 14.8 | 15.5 | 14.9 | 0.37 | n.s. |
Tetradecane | 13.3 | 16.0 | 16.9 | 0.21 | n.s. |
Total hydrocarbons | 8961.5 | 10,987.6 | 9609.6 | 1024.9 | n.s. |
Benzene | 31.1 a | 125.4 b | 127.5 b | 12.2 | * |
Toluene | 112.1 | 97.1 | 99.6 | 8.63 | n.s. |
Ethylbenzene | 140.6 a | 393.4 b | 380.8 b | 48.5 | * |
Benzene, 1,3-dimethyl- | 287.1 | 300.5 | 315.4 | 49.4 | n.s. |
p-Xylene | 69.4 | 67.1 | 63.9 | 12.2 | n.s. |
3-Carene | 94.1 a | 180.0 b | 185.2 b | 10.1 | * |
Total aromatic hydrocarbons | 734.4 a | 1163.5 b | 1172.4 b | 141.0 | * |
Volatile Compound | 2 Days | 8 Days | 15 Days | SEM | p-Value |
---|---|---|---|---|---|
2,3-Butanedione | 237.5 a | 260.7 a | 302.1 b | 84.5 | * |
2-Butanone | 198.3 | 211.4 | 185.6 | 28.3 | n.s. |
2-Pentanone | 15.5 | 18.2 | 16.4 | 0.65 | n.s. |
3-Pentanone | 79.4 | 105.5 | 88.7 | 22.1 | n.s. |
2,3-Pentanedione | 84.6 | 81.2 | 100.2 | 17.4 | n.s. |
Acetoin | 134.7 | 169.8 | 177.5 | 23.8 | n.s. |
3-Heptanone | 15.1 a | 27.8 b | 30.1 b | 2.81 | * |
2-Heptanone | 107.3 a | 145.5 a | 363.6 b | 80.2 | * |
4-Hexene-3-one,5-methyl- | 21.5 a | 26.2 a | 38.5 b | 1.20 | * |
Butyrolactone | 141.2 | 163.5 | 135.1 | 15.4 | n.s. |
2(5H)-Furanone | 105.7 | 176.5 | 138.9 | 12.3 | n.s. |
3-Octen-2-one | 26.1 | 28.2 | 27.3 | 1.21 | n.s. |
3-Octanone, 2-methyl- | 28.5 | 30.2 | 29.8 | 1.02 | n.s. |
Total ketones | 1195.4 a | 1444.7 a | 1633.8 b | 291.2 | * |
Cyclobutanol | 158.1 | 177.2 | 185.0 | 14.5 | n.s. |
1-Pentanol | 631.2 a | 652.4 a | 1.442.5 b | 231.5 | * |
1-Hexanol | 2165.3 a | 1872.4 a | 3743.6 b | 102.5 | * |
1-Heptanol | 80.5 | 95.1 | 100.2 | 27.2 | n.s. |
1-Octen-3-ol | 182.5 a | 214.1 a | 388.9 b | 62.6 | * |
n-tridecan-1-ol | 124.0 | 166.4 | 164.3 | 19.4 | n.s. |
1-Heptanol, 2,4-diethyl | 165.4 | 188.5 | 194.1 | 20.1 | n.s. |
1-Decanol | 19.2 | 20.8 | 22.1 | 1.26 | n.s. |
1-Tetradecanol | 26.5 | 23.1 | 28.6 | 0.74 | n.s. |
1-Decanol, 2-hexyl- | 18.8 | 18.2 | 18.1 | 1.11 | n.s. |
1-Butanol, 2-methyl- | 14.1 | 13.8 | 13.3 | 0.55 | n.s. |
1-Octanol, 2-methyl- | 17.7 | 13.5 | 16.9 | 1.01 | n.s. |
Total alcohols | 3603.3 A | 3455.5 A | 6317.6 B | 447.8 | ** |
Volatile Compound | 1 Day | 8 Days | 15 Days | SEM | p-Value |
---|---|---|---|---|---|
Butanoic acid | 93.6 a | 173.5 b | 177.8 b | 29.6 | * |
Hexanoic acid | 71.7 | 62.3 | 81.6 | 17.5 | n.s. |
Formic acid | 69.2 | 74.2 | 80.0 | 8.01 | n.s. |
Total carboxylic acids | 234.5 a | 310.0 b | 339.4 b | 45.1 | * |
Diazene, dimethyl. | 366.2 | 369.5 | 364.4 | 35.1 | n.s. |
Pyrazine, methyl- | 158.2 | 92.1 | 89.5 | 11.1 | * |
2-Propen-1-amine | 110.1 | 66.6 | 56.2 | 9.28 | * |
Pyrazine, 2,5-dimethyl- | 265.3 | 254.7 | 251.4 | 16.2 | n.s. |
Pyrazine, trimethyl- | 270.2 a | 152.4 b | 144.2 b | 21.3 | * |
Total nitrogen compounds | 1170.0 a | 935.3 b | 905.7 b | 89.9 | * |
Dimethylsulphide | 22.1 | 24.6 | 25.3 | 2.60 | n.s. |
Carbon disulphide | 115.3 | 117.5 | 111.1 | 12.5 | n.s. |
Total sulphur compounds | 137.4 | 142.1 | 136.4 | 16.2 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polidori, P.; Santini, G.; Klimanova, Y.; Zhang, J.-J.; Vincenzetti, S. Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds. Foods 2022, 11, 821. https://doi.org/10.3390/foods11060821
Polidori P, Santini G, Klimanova Y, Zhang J-J, Vincenzetti S. Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds. Foods. 2022; 11(6):821. https://doi.org/10.3390/foods11060821
Chicago/Turabian StylePolidori, Paolo, Giuseppe Santini, Yulia Klimanova, Jing-Jing Zhang, and Silvia Vincenzetti. 2022. "Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds" Foods 11, no. 6: 821. https://doi.org/10.3390/foods11060821
APA StylePolidori, P., Santini, G., Klimanova, Y., Zhang, J. -J., & Vincenzetti, S. (2022). Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds. Foods, 11(6), 821. https://doi.org/10.3390/foods11060821