Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. MP Extraction
2.4. Thawing Loss of Muscle
2.5. Cooking Loss of Muscle
2.6. Colour of Muscle
2.7. Texture Analysis of Muscle
2.8. Moisture Mobility and Distribution of Muscle
2.9. Oxidation Reaction
2.10. Internal Temperature Distribution of Muscle
2.11. Microstructure of Muscle
2.12. Sensory Evaluation and Consumer Testing
2.13. Statistical Analysis
3. Results and Discussion
3.1. Quality Traits
3.1.1. Fluid Losses
3.1.2. Colour of Muscle
3.1.3. Texture of Muscle
3.2. Moisture Mobility and Distribution of Muscle
3.3. Protein and Lipid Oxidation
3.4. Internal Temperature Distribution
3.5. Microstructure of Muscle
3.6. Sensory Evaluation and Consumer Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Du, X.; Kong, B.; Liu, Q.; Li, F.; Pan, N.; Xia, X.; Zhang, D. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi. Ultrason. Sonochem. 2020, 64, 104860. [Google Scholar] [CrossRef] [PubMed]
- Leygonie, C.; Britz, T.; Hoffman, L. Impact of freezing and thawing on the quality of meat: A review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.; Xia, X.; Kong, B. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its stuctural modification under different thawing methods. Meat Sci. 2019, 147, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Sha, K.; Meng, J.; Liu, H. Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin. LWT-Food Sci. Technol. 2019, 99, 268–275. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, W.; Cao, A.; Cao, M. Effects of different thawing methods on the quality of largemouth bass (Micropterus salmonides). LWT-Food Sci. Technol. 2020, 120, 108908. [Google Scholar] [CrossRef]
- Li, F.; Wang, B.; Kong, B.; Shi, S.; Xia, X. Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles. Food Hydrocoll. 2019, 97, 105223. [Google Scholar] [CrossRef]
- Wang, B.; Kong, B.; Li, F.; Liu, Q.; Zhang, H.; Xia, X. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chem. 2020, 316, 126375. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Pu, Y.; Muhammad, A.; Hang, M. Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food Chem. 2019, 286, 576–583. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.; Park, D.; Choi, M. Two-stage air thawing as an effective method for controlling thawing temperature and improving the freshness of frozen pork loin. LWT-Food Sci. Technol. 2021, 140, 110668. [Google Scholar] [CrossRef]
- Anderson, B.; Sun, S.; Erdogdu, F.; Singh, R. Thawing and freezing of selected meat products in household refrigerators. Int. J. Refrig. 2004, 27, 63–72. [Google Scholar] [CrossRef]
- Li, D.; Zhao, H.; Muhammad, A.; Song, L.; Liu, D. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chem. 2020, 320, 126614. [Google Scholar] [CrossRef] [PubMed]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares). Innov. Food Sci. Emerg. Technol. 2016, 36, 42–47. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, W.; Cao, A.; Cao, M.; Li, J. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of sciaenops ocellatus (red drum). Ultrason. Sonochem. 2019, 55, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Kong, B.; Liu, S.; Zheng, O.; Zhang, C. Ultrasound-assisted thawing accelerates the thawing of common carp (Cyprinus carpio) and improves its muscle quality. LWT-Food Sci. Technol. 2021, 141, 111080. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Res. Int. 2012, 29, 67–91. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, M.; Adhikari, B.; Sun, J. Recent developments in novel freezing and thawing technologies applied to foods. Food Sci. Nutr. 2016, 57, 3620–3631. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Adhikari, B. Effects of ultrasound-assisted thawing on the quality of edamames [Glycine max (L.) Merrill] frozen using different freezing methods. Food Sci. Biotechnol. 2014, 23, 1095–1102. [Google Scholar] [CrossRef]
- Kissam, A.; Nelson, R.; Ngao, J.; Hunter, P. Water-thawing of fish using low frequency acoustics. J. Food Sci. 1982, 47, 71–75. [Google Scholar] [CrossRef]
- Gambuteanu, C.; Alexe, P. Effects of ultrasound assisted thawing on microbiological, chemical and technological properties of unpackaged pork longissimus dorsi. Food Technol. 2013, 37, 98–107. [Google Scholar]
- Cai, L.; Cao, M.; Cao, A.; Regenstein, J.; Li, J.; Guan, R. Ultrasound or microwave vacuum thawing of red seabream (Pagrus major) fillets. Ultrason. Sonochem. 2018, 47, 122–132. [Google Scholar] [CrossRef]
- Taher, B.; Farid, M. Cyclic microwave thawing of frozen meat: Experimental and theoretical investigation. Chem. Eng. Process. 2001, 40, 379–389. [Google Scholar] [CrossRef]
- Choi, E.; Park, H.; Chung, Y.; Park, S.; Jin, S.; Chun, H. Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion. Meat Sci. 2017, 124, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Arocas, A.; Sanz, T.; Hernando, M.; Fiszman, S. Comparing microwave- and water bath-thawed starch-based sauces: Infrared thermography, rheology and microstructure. Food Hydrocoll. 2011, 25, 1554–1562. [Google Scholar] [CrossRef]
- Xia, X.; Kong, B.; Liu, Q.; Liu, J. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles. Meat Sci. 2009, 83, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Kong, B.; Liu, J.; Diao, X.; Liu, Q. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT-Food Sci. Technol. 2012, 46, 280–286. [Google Scholar] [CrossRef]
- Pan, N.; Wan, W.; Du, X.; Kong, B.; Liu, Q.; Lv, H.; Xia, X.; Li, F. Mechanisms of change in emulsifying capacity induced by protein denaturation and aggregation in quick-frozen pork patties with different fat levels and freeze-thaw cycles. Foods 2022, 11, 44. [Google Scholar] [CrossRef]
- Du, X.; Chang, P.; Tian, J.; Kong, B.; Sun, F.; Xia, X. Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze-thaw cycles. LWT-Food Sci. Technol. 2020, 124, 109140. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Dong, C.; Ren, Y.; Pan, N.; Kong, B.; Liu, H.; Xia, X. Effect of ice structuring protein on the microstructure and myofibrillar protein structure of mirror carp (Cyprinus carpio L.) induced by freeze-thaw processes. LWT-Food Sci. Technol. 2021, 139, 110570. [Google Scholar] [CrossRef]
- Amiri, A.; Mousakhani-Ganjeha, A.; Shafiekhanib, S.; Mandalc, R.; Singhc, A.; Kenarid, R. Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins. Innov. Food Sci. Emerg. Technol. 2019, 56, 102191. [Google Scholar] [CrossRef]
- Li, F.; Du, X.; Ren, Y.; Kong, B.; Wang, B.; Xia, X.; Bao, Y. Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage. Int. J. Biol. Macromol. 2021, 178, 136–142. [Google Scholar] [CrossRef]
- Du, X.; Zhao, M.; Pan, N.; Wang, C.; Xia, X.; Zhang, D. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (cyprinus carpio) under the synergistic effects of pH and heating. Food Chem. 2021, 362, 130222. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Yang, H.; Liu, F.; Diao, X.; Feng, X. Effect of Dietary Curcumin on the Growth Performance, Serum Antioxidation and Meat Quality of Ducks (Anas Platyrhynchos). Foods 2021, 10, 2981. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhong, Q.; Kong, B.; Wang, B.; Pan, N.; Xia, X. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res. Int. 2020, 133, 109142. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, H.; Huang, Z.; Kong, B.; Liu, Q.; Wang, H.; Xu, M.; Xia, X. Dynamic changes in the qualities and heterocyclic aromatic amines of roasted pork induced by frying temperature and time. Meat Sci. 2021, 176, 108457. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Alvarenga, T.; Vandeven, R.; Hopkins, D. A comparison of technical replicate (cuts) effect on lamb Warner-Bratzler shear force measurement precision. Meat Sci. 2015, 105, 93–95. [Google Scholar] [CrossRef]
- Pan, N.; Dong, C.; Du, X.; Kong, B.; Xia, X. Effect of freeze-thaw cycles on the quality of quick-frozen pork patty with different fat content by consumer assessment and instrument-based detection. Meat Sci. 2020, 172, 108313. [Google Scholar] [CrossRef]
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.; Feng, X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, Y. Inhibition of lipid oxidation in cooked beef patties byhydrolyzed potato protein is related to its reducing andradical scavenging ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef]
- Wang, B.; Li, F.; Pan, N.; Kong, B.; Xia, X. Effect of ice structuring protein on the quality of quick-frozen patties subjected to multiple freeze-thaw cycles. Meat Sci. 2021, 172, 108335. [Google Scholar] [CrossRef]
- Heck, R.T.; Fagundes, M.B.; Cichoski, A.J.; De Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Campagnol, P.C. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Sci. 2018, 148, 164–170. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S. Check-all-that-apply questions: Influence of attribute order on sensory product characterization. Food Qual. Prefer. 2013, 28, 141–153. [Google Scholar] [CrossRef]
- Vidal, L.; Tárrega, A.; Antúnez, L.; Ares, G.; Jaeger, S.R. Comparison of correspondence analysis based on Hellinger and chi-square distances to obtain sensory spaces from check-all-that-apply (CATA) questions. Food Qual. Prefer. 2015, 43, 106–112. [Google Scholar] [CrossRef]
- Hong, H.; Luo, Y.; Zhou, Z.; Bao, Y.; Lu, H.; Shen, H. Effects of different freezing treatments on the biogenic amine and quality changes of bighead carp (aristichthys nobilis) heads during ice storage. Food Chem. 2013, 138, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sun, F.; Xia, X.; Xu, H.; Kong, B. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (cyprinus carpio) during freezing storage. Ultrason. Sonochem. 2019, 51, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Boonsumrej, S.; Chaiwanichsiri, S.; Tantratian, S.; Suzuki, T.; Takai, R. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 2007, 80, 292–299. [Google Scholar] [CrossRef]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.; Zhou, G. Effect of multiple freeze-thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef]
- Faustman, C.; Cassens, R. The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Hong, G.P.; Park, S.H.; Kim, J.Y.; Min, S.G. The effects of high pressure and various binders on the physico-chemical properties of restructured pork meat. Asian-Australas. J. Anim. Sci. 2006, 19, 1484–1489. [Google Scholar] [CrossRef]
- Zhang, L.; Du, H.; Zhang, P.; Kong, B.; Liu, Q. Heterocyclic aromatic amine concentrations and quality characteristics of traditional smoked and roasted poultry products on the northern Chinese market. Food Chem. Toxicol. 2020, 135, 110931. [Google Scholar] [CrossRef]
- Farouk, M.M.; Farouk, K.J.; Wieliczko, I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 2004, 66, 171–179. [Google Scholar] [CrossRef]
- Beltrán, J.; Bellés, M. Effect of freezing on the quality of meat. Ref. Modul. Food Sci. 2019, 2, 493–497. [Google Scholar] [CrossRef]
- Abdallah, M.B.; Marchello, J.A.; Ahmad, H.A. Effect of freezing and microbial growth on myoglobin derivatives of beef. J. Agric. Food Chem. 1999, 47, 4093–4099. [Google Scholar] [CrossRef] [PubMed]
- Muela, E.; Sañudo, C.; Campo, M.M.; Medel, I.; Beltrán, J.A. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Sci. 2010, 84, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, H.; Park, J.; Kum, J. Effect of microwave treatment on the physicochemical and microbiological characteristics of beef loin during storage at 4 °C. Korean J. Food Sci. Technol. 2013, 45, 161–166. [Google Scholar] [CrossRef]
- Añón, M.; Calvelo, A. Freezing rate effects on the drip loss of frozen beef. Meat Sci. 1980, 4, 1–14. [Google Scholar] [CrossRef]
- Ozlu, N.; Akten, B.; Timm, W.; Haseley, N.; Steen, H.; Steen, J. Phosphoproteomics. Wsbm 2010, 2, 255–276. [Google Scholar] [CrossRef]
- Coombs, C.E.O.; Holman, B.W.B.; Friend, M.A. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Sci. 2017, 125, 84–94. [Google Scholar] [CrossRef]
- Seyfert, M.; Mancini, R.A.; Hunt, M.C.; Tang, J.; Faustman, C.; Garcia, M. Color stability, reducing activity, and cytochrome c oxidase activity of five bovine muscles. J. Agric. Food Chem. 2006, 54, 8919–8925. [Google Scholar] [CrossRef]
- Washington, T.; Reecy, J.; Thompson, R.; Lowe, L.; McClung, J.; Carson, J. Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle. J. Appl. Physiol. 2004, 97, 1424–1430. [Google Scholar] [CrossRef]
- Guro, I.; Tveit, G.; Backi, C.; Jónsson, Á.; Karlsdóttir, M.; Lunestad, B. Effects of controlled thawing media temperatures on quality and safety of pre-rigor frozen Atlantic cod (Gadus morhua). LWT-Food Sci. Technol. 2018, 90, 138–144. [Google Scholar] [CrossRef]
- Pan, B.; Yeh, W. Biochemical and morphological changes in grasss hrimp (Penaeus monodon) muscle following freezing by air blast and liquid nitrogen methods. J. Food Biochem. 1993, 17, 147–160. [Google Scholar] [CrossRef]
- Lagerstedt, Å.; Lundström, K.; Enfält, L.; Johansson, L. Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E. Calpains from thaw rigor muscle. Meat Sci. 1996, 43, 311–320. [Google Scholar] [CrossRef]
- Zainudin, M.; Poojary, M.; Jongberg, S.; Lund, M. Light exposure accelerates oxidative protein polymerization in beef stored in high oxygen atmosphere. Food Chem. 2019, 299, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Nirasawa, S.; Ji, X.; Luo, Y.; Liu, H. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field. Food Chem. 2018, 240, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Jambrak, A.; Mason, T.; Lelas, V.; Herceg, Z.; Herceg, I. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Food Eng. 2008, 86, 281–287. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Torley, P.J.; D’arcy, B.R.; Bhandari, B.R. Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci. 2007, 75, 628–639. [Google Scholar] [CrossRef]
- Dickens, J.; Lyon, C.; Wilson, R. Effect of ultrasonic radiation on some physical characteristics of broiler breast muscle and cooked meat. Poult. Sci. 1991, 70, 389–396. [Google Scholar] [CrossRef]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). J. Food Eng. 2015, 156, 39–44. [Google Scholar] [CrossRef]
- Mcdonnell, C.; Allen, P.; Duggan, E.; Arimi, J.; Casey, E.; Duane, G.; James, G. The effect of salt and fibre direction on water dynamics, distribution and mobility in pork muscle: A low field NMR study. Meat Sci. 2013, 95, 51–58. [Google Scholar] [CrossRef]
- Zhang, M.; Li, F.; Diao, X.; Kong, B.; Xia, X. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Sci. 2017, 133, 10–18. [Google Scholar] [CrossRef]
- Shao, J.; Deng, Y.; Song, L.; Batur, A.; Jia, N.; Liu, D. Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWT-Food Sci. Technol. 2016, 66, 1–6. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field nmr study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Seo, J.; Setyabrata, D.; Kim, Y. Effects of aging/freezing sequence and freezing rate on meat quality and oxidative stability of pork loins. Meat Sci. 2018, 139, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Farag, K.; Lyng, J.; Morgan, J.; Cronin, D. A comparison of conventional and radio frequency thawing of beef meats: Effects on product temperature distribution. Food Bioprocess Technol. 2011, 4, 1128–1136. [Google Scholar] [CrossRef]
- Li, B.; Sun, D. Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J. Food Eng. 2002, 55, 77–282. [Google Scholar] [CrossRef]
- Cao, M.; Cao, A.; Wang, J.; Cai, L.; Regenstein, J.; Ruan, Y. Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus major) fillets. Food Chem. 2018, 266, 498–507. [Google Scholar] [CrossRef]
- Lui, Z.; Xiong, Y.; Chen, J. Protein oxidation enhances hydration but suppresses water-holding capacity in Porcine Longissimus muscle. J. Agric. Food Chem. 2010, 58, 10697–10704. [Google Scholar] [CrossRef]
Thawing Methods | Fluid Losses (%) | |
---|---|---|
Thawing Loss | Cooking Loss | |
FM | - | 18.70 ± 0.33 c |
UT | 2.98 ± 0.29 c | 20.71 ± 0.72 b |
VT | 2.78 ± 0.27 c | 19.37 ± 0.45 c |
MT | 4.71 ± 0.15 a | 23.07 ± 0.24 a |
WT | 3.70 ± 0.23 b | 23.77 ± 0.57 a |
Thawing Methods | L* | a* | b* | ΔE | Chroma | Hue (°) |
---|---|---|---|---|---|---|
FM | 36.44 ± 0.12 e | 13.86 ± 0.23 a | 8.88 ± 0.06 d | - | 16.46 ± 0.43 a | 32.65 ± 0.16 d |
UT | 37.33 ± 0.16 c | 12.08 ± 0.35 b | 9.08 ± 0.42 d | 2.00 ± 0.04 d | 15.11 ± 0.21 bc | 36.93 ± 0.25 c |
VT | 36.88 ± 0.07 d | 11.22 ± 0.31 c | 9.17 ± 0.32 c | 2.69 ± 0.01 c | 14.49 ± 0.46 c | 39.26 ± 0.44 b |
MT | 39.38 ± 0.14 b | 10.53 ± 0.19 c | 10.55 ± 0.32 a | 4.75 ± 0.06 a | 14.90 ± 0.24 c | 45.05 ± 0.26 a |
WT | 40.11 ± 0.19 a | 11.99 ± 0.24 b | 10.01 ± 0.18 b | 4.27 ± 0.03 b | 15.62 ± 0.31 b | 39.85 ± 0.31 b |
Thawing Methods | Shear Force (N) | Hardness | Cohesiveness | Chewiness | Springiness |
---|---|---|---|---|---|
FM | 28.89 ± 0.49 c | 34.57 ± 0.52 d | 0.54 ± 0.01 a | 22.37 ± 0.43 a | 1.71 ± 0.02 a |
UT | 34.03 ± 0.78 b | 37.09 ± 0.98 bc | 0.51 ± 0.01 ab | 21.07 ± 0.76 a | 1.56 ± 0.03 b |
VT | 32.02 ± 0.84 b | 35.77 ± 0.27 cd | 0.52 ± 0.01 a | 21.45 ± 0.49 a | 1.60 ± 0.01 b |
MT | 39.54 ± 0.98 a | 39.61 ± 0.54 a | 0.46 ± 0.02 c | 18.42 ± 0.41 b | 1.35 ± 0.03 d |
WT | 38.86 ± 0.31 a | 38.39 ± 0.54 ab | 0.48 ± 0.01 bc | 19.43 ± 0.46 b | 1.42 ± 0.02 c |
Thawing Methods | T2 (ms) | P2 (%) | ||||
---|---|---|---|---|---|---|
T2b | T21 | T22 | P2b | P21 | P22 | |
FM | 1.52 ± 0.04 a | 26.23 ± 0.31 a | 114.33 ± 2.52 c | 0.14 ± 0.01 a | 90.55 ± 0.59 a | 9.45 ± 0.96 c |
UT | 1.61 ± 0.02 a | 43.30 ± 0.40 c | 118.33 ± 2.08 cd | 0.11 ± 0.01 ab | 86.37 ± 1.08 b | 13.63 ± 1.76 b |
VT | 1.57 ± 0.04 a | 37.43 ± 0.31 d | 116.67 ± 2.08 cd | 0.11 ± 0.02 ab | 86.84 ± 0.53 b | 13.16 ± 1.18 b |
MT | 1.73 ± 0.02 a | 49.30 ± 0.56 a | 137.33 ± 3.21 a | 0.08 ± 0.01 b | 82.66 ± 0.68 c | 17.34 ± 1.73 a |
WT | 1.62 ± 0.02 a | 45.53 ± 0.40 b | 126.67 ± 2.08 b | 0.09 ± 0.02 b | 84.49 ± 0.98 c | 15.51 ± 0.51 ab |
Thawing Methods | Carbonyl Content nmol/mg MP | TBARS mg/kg MP |
---|---|---|
FM | 1.05 ± 0.02 c | 0.15 ± 0.01 c |
UT | 1.09 ± 0.02 b | 0.18 ± 0.01 b |
VT | 1.09 ± 0.01 b | 0.16 ± 0.01 bc |
MT | 1.14 ± 0.01 a | 0.23 ± 0.02 a |
WT | 1.11 ± 0.02 ab | 0.18 ± 0.01 b |
Thawing Methods | Sensory Attributes | ||||
---|---|---|---|---|---|
Appearance | Tenderness | Juiciness | Flavor | Overall Acceptability | |
FM | 7.67 ± 0.25 a | 8.02 ± 0.17 a | 7.06 ± 0.13 a | 6.83 ± 0.15 a | 7.26 ± 0.25 a |
UT | 7.52 ± 0.27 a | 7.79 ± 0.35 a | 6.69 ± 0.15 a | 6.77 ± 0.12 a | 7.04 ± 0.11 a |
VT | 7.57 ± 0.16 a | 7.93 ± 0.24 a | 6.78 ± 0.11 a | 6.81 ± 0.26 a | 7.12 ± 0.14 a |
MT | 7.38 ± 0.22 a | 7.04 ± 0.19 b | 6.15 ± 0.22 b | 6.58 ± 0.13 a | 6.33 ± 0.25 b |
WT | 7.47 ± 0.21 a | 7.13 ± 0.27 b | 6.22 ± 0.10 b | 6.61 ± 0.33 a | 6.51 ± 0.11 b |
Thawing Methods | Attributes | |||
---|---|---|---|---|
Brightness | Mouthfeel | Juiciness | Pleasant | |
FM | 25 | 45 | 51 | 32 |
UT | 23 | 43 | 47 | 28 |
VT | 20 | 44 | 49 | 28 |
MT | 20 | 37 | 40 | 23 |
WT | 22 | 39 | 38 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Bai, X.; Du, X.; Pan, N.; Shi, S.; Xia, X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods 2022, 11, 1368. https://doi.org/10.3390/foods11091368
Wang B, Bai X, Du X, Pan N, Shi S, Xia X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods. 2022; 11(9):1368. https://doi.org/10.3390/foods11091368
Chicago/Turabian StyleWang, Bo, Xue Bai, Xin Du, Nan Pan, Shuo Shi, and Xiufang Xia. 2022. "Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum" Foods 11, no. 9: 1368. https://doi.org/10.3390/foods11091368
APA StyleWang, B., Bai, X., Du, X., Pan, N., Shi, S., & Xia, X. (2022). Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods, 11(9), 1368. https://doi.org/10.3390/foods11091368