Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Jaboticaba Pomace
2.3. Agitated Bed Extraction
2.4. Ultrasound-Assisted Extraction (UAE)
2.5. High Hydrostatic Pressure-Assisted Extraction (HHE)
2.6. Analytical Methods
2.6.1. Total Monomeric Anthocyanin Content
2.6.2. Antioxidant Capacity
Folin–Ciocalteu Reducing Capacity
ABTS+ Cationic Radical Scavenging Activity
2.7. Statistical Analysis
3. Results
3.1. Agitated Bed Extraction
3.2. Non-Conventional Extraction
3.2.1. UAE
3.2.2. HHE
3.3. Comparison of Conventional and Non-Conventional Methods
3.4. Identification of the Anthocyanins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2020. [Google Scholar]
- Andersen, O.; Andersen, V.U. As Fruteiras Silvestres Brasileiras; Globo: Rio de Janeiro, Brazil, 1988. [Google Scholar]
- Inada, K.O.P.; Oliveira, A.A.; Revorêdo, T.B.; Martins, A.B.N.; Lacerda, E.C.Q.; Freire, A.S.; Braz, B.F.; Santelli, R.; Torres, A.G.; Perrone, D.; et al. Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions. J. Funct. Foods 2015, 17, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Lorenzi, H.; LaRocca, L.L. Brazilian Fruits and Cultivated Exotics (for Consuming in Natura); Instituto Plantarum de Estudos da Flora: São Paulo, Brazil, 2006. [Google Scholar]
- Wu, S.-B.; Long, C.; Kennelly, E.J. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res. Int. 2013, 54, 148–159. [Google Scholar] [CrossRef]
- Rufino, M.S.; Alves, R.E.; Fernandes, F.; de Brito, E.S. Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res. Int. 2011, 44, 2072–2075. [Google Scholar] [CrossRef] [Green Version]
- Alezandro, M.R.; Granato, D.; Genovese, M.I. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Res. Int. 2013, 54, 650–659. [Google Scholar] [CrossRef] [Green Version]
- Lamas, C.; Lenquiste, S.; Baseggio, A.; Cuquetto-Leite, L.; Kido, L.; Aguiar, A.; Erbelin, M.; Collares-Buzato, C.; Maróstica, M.; Cagnon, V. Jaboticaba extract prevents prediabetes and liver steatosis in high-fat-fed aging mice. J. Funct. Foods 2018, 47, 434–446. [Google Scholar] [CrossRef]
- Lenquiste, S.A.; Lamas, C.D.A.; Marineli, R.D.S.; Moraes, A.; Borck, P.C.; Camargo, R.L.; Quitete, V.H.A.C.; Carneiro, E.M.; Junior, M.R.M. Jaboticaba peel powder and jaboticaba peel aqueous extract reduces obesity, insulin resistance and hepatic fat accumulation in rats. Food Res. Int. 2018, 120, 880–887. [Google Scholar] [CrossRef]
- Moura, M.; Cunha, M.G.; Alezandro, M.R.; Genovese, M.I. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Res. Int. 2018, 107, 48–60. [Google Scholar] [CrossRef]
- Plaza, M.; Batista, Â.G.; Cazarin, C.B.B.; Sandahl, M.; Turner, C.; Östman, E.; Junior, M.R.M. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chem. 2016, 211, 185–197. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Rosas-Domínguez, C.; Vega-Vega, V.; González-Aguilar, G.A. Antioxidant Enrichment and Antimicrobial Protection of Fresh-Cut Fruits Using Their Own Byproducts: Looking for Integral Exploitation. J. Food Sci. 2010, 75, R175–R181. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—A response surface approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Fernandes, F.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crop. Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Q.; Li, X.; Wang, Y.; Zhu, J.; Ning, C.; Chang, X.; Meng, X. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- Altuner, E.M.; Islek, C.; Ceter, T.; Alpas, H. High hydrostatic pressure extraction of phenolic compounds from Maclura pomifera fruits. Afr. J. Biotechnol. 2012, 14, 930–937. [Google Scholar]
- Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Grassino, A.N.; Pedisić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into High-Hydrostatic Pressure Extraction of Polyphenols from Tomato Peel Waste. Mater. Veg. 2020, 75, 427–433. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Zhao, L.; Wang, Y.; Liao, X. Comparison of the compounds and characteristics of pepper seed oil by pressure-assisted, ultrasound-assisted and conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2019, 54, 78–86. [Google Scholar] [CrossRef]
- Xi, J.; Luo, S. The mechanism for enhancing extraction of ferulic acid from Radix angelica sinensis by high hydrostatic pressure. Sep. Purif. Technol. 2016, 165, 208–213. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Nunes, S.; Martínez-Blázquez, J.A.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chem. 2019, 309, 125794. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Coelho, M.A.Z.; Rosenthal, A.; Gottschalk, L.M.F.; Tonon, R.V. Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J. Food Eng. 2020, 288, 110128. [Google Scholar] [CrossRef]
- de Brito, E.S.; de Araújo, M.C.P.; Alves, R.E.; Carkeet, C.; Clevidence, B.A.; Novotny, J.A. Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. J. Agric. Food Chem. 2007, 55, 9389–9394. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.C.P.D.A.; Gouvêa, A.C.M.S.; Godoy, R.L.D.O.; Neto, J.O.; Pacheco, S.; Rosa, J.S.D. Adaptação de um Método por Cromatografia Líquida de Alta Eficiência Para Análise de Antocianinas em Suco de Açaí (Euterpe oleraceae Mart.); Technical Communique; Embrapa Agroindústria de Alimentos: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Silva, G.; Constant, P.; Figueiredo, R.; Moura, S.M. Formulação e estabilidade de corantes de antocianinas extraídas das cascas de jabuticaba (Myrciaria ssp.). Alimentos e Nutrição 2010, 21, 429–436. [Google Scholar]
- Albuquerque, B.R.; Pereira, C.; Calhelha, R.C.; Alves, M.J.; Abreu, R.M.; Barros, L.; Oliveira, M.B.P.; Ferreira, I.C. Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem. 2020, 309, 125735. [Google Scholar] [CrossRef] [Green Version]
- Blackhall, M.L.; Berry, R.; Davies, N.W.; Walls, J.T. Optimized extraction of anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. Food Chem. 2018, 256, 280–285. [Google Scholar] [CrossRef]
- Ochoa, S.; Durango-Zuleta, M.M.; Osorio-Tobón, J.F. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod. Process. 2020, 122, 111–123. [Google Scholar] [CrossRef]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Kakhki, A.H.; Sarfarazi, M. Optimization of Anthocyanin Extraction from Saffron Petals with Response Surface Methodology. Food Anal. Methods 2015, 9, 1993–2001. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind. Crop. Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Soylak, M.; Narin, I.; Bezerra, M.D.A.; Ferreira, S.L.C. Factorial design in the optimization of preconcentration procedure for lead determination by FAAS. Talanta 2005, 65, 895–899. [Google Scholar] [CrossRef] [PubMed]
- de Melo, M.; Vieira, P.; Şen, A.; Pereira, H.; Portugal, I.; Silva, C. Optimization of the supercritical fluid extraction of Quercus cerris cork towards extraction yield and selectivity to friedelin. Sep. Purif. Technol. 2020, 238, 116395. [Google Scholar] [CrossRef]
- Mketo, N.; Nomngongo, P.N.; Ngila, J.C. Environmentally friendly microwave-assisted sequential extraction method followed by ICP-OES and ion-chromatographic analysis for rapid determination of sulphur forms in coal samples. Talanta 2018, 182, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Lenquiste, S.A.; Marineli, R.D.S.; Moraes, É.A.; Dionísio, A.P.; de Brito, E.S.; Maróstica, M.R. Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Res. Int. 2015, 77, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.P.G.; Sousa, C.G.S.e.; Torres, A.G.; Freitas, S.P.; Cabral, L.M.C. Recuperação de compostos bioativos a partir do bagaço de uva. Rev. Bras. De Frutic. 2013, 35, 1147–1157. [Google Scholar]
- Ruenroengklin, N.; Zhong, J.; Duan, X.; Yang, B.; Li, J.; Jiang, Y. Effects of Various Temperatures and pH Values on the Extraction Yield of Phenolics from Litchi Fruit Pericarp Tissue and the Antioxidant Activity of the Extracted Anthocyanins. Int. J. Mol. Sci. 2008, 9, 1333–1341. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Leite-Legatti, A.V.; Batista, G.; Dragano, N.; Marques, A.C.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Machado, A.R.T.; de Carvalho-Silva, L.B.; Ruiz, A.L.T.G.; et al. Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. Food Res. Int. 2012, 49, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Xu, X.; Liu, C.; Sun, Y.; Lin, Z.; Liu, H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep. Purif. Technol. 2013, 104, 17–25. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Esclapez, M.D.; Garcia-Perez, J.V.; Mulet, A.; Carcel, J.A. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2020, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xie, C.; Fan, G.; Gu, Z.; Han, Y. Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innov. Food Sci. Emerg. Technol. 2010, 11, 611–615. [Google Scholar] [CrossRef]
- Chemat, S.; Lagha, A.; AitAmar, H.; Bartels, P.V.; Chemat, F. Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Fragr. J. 2004, 19, 188–195. [Google Scholar] [CrossRef]
- de Sousa Sabino, L.B.; Alves Filho, E.G.; Fernandes, F.A.N.; de Brito, E.S.; da Silva Júnior, I.J. Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). Food Bioprod. Process. 2021, 127, 77–89. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Li, Z.-H.; Wang, Z.-J.; Liu, L.-L.; Sun, T.-T.; Ma, J.-Z.; Zhang, Y. Ultrasound-assisted extraction of total anthocyanins from Rubia sylvatica Nakai fruit and radical scavenging activity of the extract. Ind. Crop. Prod. 2020, 150, 112420. [Google Scholar] [CrossRef]
- Fick, A.V. On liquid diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Chawla, R.; Patil, G.R.; Singh, A.K. High hydrostatic pressure technology in dairy processing: A review. J. Food Sci. Technol. 2011, 48, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Chacana-Ojeda, M. High pressure extraction increases the antioxidant potential and in vitro bio-accessibility of bioactive compounds from discarded blueberries. CyTA J. Food 2019, 17, 622–631. [Google Scholar] [CrossRef] [Green Version]
- de Jesus, A.L.T.; Cristianini, M.; dos Santos, N.M.; Júnior, M.R.M. Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp. Food Res. Int. 2020, 130, 108856. [Google Scholar] [CrossRef] [PubMed]
- Shouqin, Z.; Jun, X.; Changzheng, W. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biotechnol. 2005, 80, 50–54. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuña, C.; Jamett, F. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT 2015, 60, 525–534. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Breil, C.; Abert-Vian, M.; Chemat, F. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresour. Technol. 2016, 211, 190–199. [Google Scholar] [CrossRef]
- Plazzotta, S.; Manzocco, L. Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innov. Food Sci. Emerg. Technol. 2018, 50, 11–19. [Google Scholar] [CrossRef]
- Paludo, M.C.; de Oliveira, S.B.P.; de Oliveira, L.F.; Colombo, R.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; Prata, R.; Lima, A.F.; Filho, J.T.; Ballus, C.A.; et al. Phenolic composition of peels from different Jaboticaba species determined by HPLC-DAD-ESI/MSn and antiproliferative activity in tumor cell lines. Curr. Plant Biol. 2022, 29, 100233. [Google Scholar] [CrossRef]
Independent Variables | Responses | |||||
---|---|---|---|---|---|---|
Tests | Temperature (°C) | Ethanol Concentration (%) | Solid: Liquid Ratio | Anthocyanins (mg c-3-g 100 g−1 dw) | Folin–Ciocalteu Reducing Capacity (mg GAE 100 g−1 dw) | ABTS+ Assay (μmol Trolox g−1 dw) |
1 | 30 | 26 | 1:7 | 87 ± 3 | 3100 ± 13 | 270 ± 9 |
2 | 50 | 26 | 1:7 | 113 ± 5 | 3500 ± 74 | 280 ± 12 |
3 | 30 | 74 | 1:7 | 232 ± 6 | 4400 ± 62 | 339 ± 17 |
4 | 50 | 74 | 1:7 | 249 ± 8 | 5900 ± 153 | 374 ± 29 |
5 | 30 | 26 | 1:13 | 125 ± 3 | 3400 ± 112 | 238 ± 17 |
6 | 50 | 26 | 1:13 | 143 ± 3 | 4700 ± 398 | 329 ± 23 |
7 | 30 | 74 | 1:13 | 246 ± 7 | 5100 ± 324 | 397 ± 31 |
8 | 50 | 74 | 1:13 | 284 ± 5 | 7000 ± 209 | 502 ± 25 |
9 | 23 | 50 | 1:10 | 192 ± 1 | 7000 ± 135 | 407 ± 7 |
10 | 57 | 50 | 1:10 | 225 ± 9 | 10,600 ± 474 | 666 ± 50 |
11 | 40 | 10 | 1:10 | 59 ± 1 | 5300 ± 96 | 1600 ± 143 |
12 | 40 | 90 | 1:10 | 192 ± 2 | 2900 ± 93 | 185 ± 16 |
13 | 40 | 50 | 1:5 | 169 ± 3 | 7300 ± 279 | 238 ± 2 |
14 | 40 | 50 | 1:15 | 258 ± 4 | 8100 ± 218 | 595 ± 45 |
15 | 40 | 50 | 1:10 | 223 ± 8 | 6900 ± 315 | 563 ± 38 |
16 | 40 | 50 | 1:10 | 228 ± 7 | 7400 ± 222 | 518 ± 14 |
17 | 40 | 50 | 1:10 | 224 ± 7 | 6300 ± 27 | 480 ± 19 |
Coefficient | Anthocyanins (mg c3g 100 g−1 dw) | Folin–Ciocalteu Reducing Capacity (mg GAE 100 g−1) | ABTS+ Assay (μmol Trolox g−1) |
---|---|---|---|
β0 | 224.41 | 7005.03 | 539.04 |
β1 | 11.26 | 830.08 | 49.57 |
β2 | 56.19 | 277.72 | −132.77 |
β3 | 19.53 | 336.77 | 58.79 |
β11 | −4.58 | N.S | −52.86 |
β22 | −34.08 | −1501.22 | 63.97 |
β33 | N.S | N.S | 100.42 |
β12 | N.S | N.S | N.S |
β13 | N.S | N.S | N.S |
β23 | N.S | N.S | N.S |
R2 predicted | 0.9490 | 0.6170 | 0.3620 |
R2 adjusted | 0.8880 | 0.1419 | 0 |
Lack of fit | 109.29 | 16.76 | 116.60 |
Method | Condition | Anthcyanins 1 | Folin–Ciocalteu 2 | ABTS+ 3 |
---|---|---|---|---|
Conventional | 1 h | 284 ± 5 c | 7000 ± 209 c | 502 ± 25 b |
High Hydrostatic Pressure | 200 MPa 15 min | 187 ± 8 b | 9200 ± 481 b | 628 ± 25 b |
Ultrasound | 150 W/L 10 min | 407 ± 91 a | 11,300 ± 428 a | 1300 ± 216 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes Mattos, G.; Pessanha de Araújo Santiago, M.C.; Sampaio Doria Chaves, A.C.; Rosenthal, A.; Valeriano Tonon, R.; Correa Cabral, L.M. Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods. Foods 2022, 11, 885. https://doi.org/10.3390/foods11060885
Nunes Mattos G, Pessanha de Araújo Santiago MC, Sampaio Doria Chaves AC, Rosenthal A, Valeriano Tonon R, Correa Cabral LM. Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods. Foods. 2022; 11(6):885. https://doi.org/10.3390/foods11060885
Chicago/Turabian StyleNunes Mattos, Gabriela, Manuela Cristina Pessanha de Araújo Santiago, Ana Carolina Sampaio Doria Chaves, Amauri Rosenthal, Renata Valeriano Tonon, and Lourdes Maria Correa Cabral. 2022. "Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods" Foods 11, no. 6: 885. https://doi.org/10.3390/foods11060885
APA StyleNunes Mattos, G., Pessanha de Araújo Santiago, M. C., Sampaio Doria Chaves, A. C., Rosenthal, A., Valeriano Tonon, R., & Correa Cabral, L. M. (2022). Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods. Foods, 11(6), 885. https://doi.org/10.3390/foods11060885