Postprandial Glucose Response after Consuming Low-Carbohydrate, Low-Calorie Rice Cooked in a Carbohydrate-Reducing Rice Cooker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Test Rice Preparation
2.4. Test Rice Nutrient Analysis
2.5. Study Procedure
2.6. Sensory Evaluation
2.7. Hunger and Appetite Evaluation
2.8. Anthropometric Measures
2.9. Sample Size and Statistical Analysis
3. Results
3.1. Participants
3.2. Test Food Nutrient Contents
3.3. Incremental Area under Glucose Curve (iAUC Blood Glucose) of Test Foods
3.4. Postprandial Blood Glucose Changes after Test Food Consumption
3.5. Sensory Evaluation
3.6. Hunger and Appetite Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. (Tokyo) 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Qi, J.; Zou, Y. Association between intake of white rice and incident type 2 diabetes—An updated meta-analysis. Diabetes Res. Clin. Pract. 2021, 172, 108651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xia, S.; Li, J.; Zhang, X.; Yu, J. Effect of moisture transfer on texture uniformity of cooked rice after heat preservation with electric rice cooker. J. Cereal Sci. 2020, 91, 102862. [Google Scholar] [CrossRef]
- Jittanit, W.; Khuenpet, K.; Kaewsri, P.; Dumrongpongpaiboon, N.; Hayamin, P.; Jantarangsri, K. Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innov. Food Sci. Emerg. Technol. 2017, 42, 16–24. [Google Scholar] [CrossRef]
- Schenker, S. An overview of the role of rice in the UK diet. Nutr. Bull. 2012, 37, 309–323. [Google Scholar] [CrossRef]
- Khosravi-Boroujeni, H.; Sarrafzadegan, N.; Mohammadifard, N.; Sajjadi, F.; Maghroun, M.; Asgari, S.; Rafieian-Kopaei, M.; Azadbakht, L. White rice consumption and CVD risk factors among Iranian population. J. Health Popul. Nutr. 2013, 31, 252. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Spiegelman, D.; van Dam, R.M.; Holmes, M.D.; Malik, V.S.; Willett, W.C.; Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Intern. Med. 2010, 170, 961–969. [Google Scholar] [CrossRef]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: Systematic review and dose–response meta-analysis of prospective studies. Diabetes Care 2013, 36, 4166–4171. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, D.; Malisova, S.; Lindberg, F.A.; Karaniki, G. Glycemic index (GI) or glycemic load (GL) and dietary interventions for optimizing postprandial hyperglycemia in patients with T2 diabetes: A review. Nutrients 2020, 12, 1561. [Google Scholar] [CrossRef]
- Samji, S. Low carb diets. BMJ 2004, 329. [Google Scholar] [CrossRef]
- Slomski, A. Low-Carb Diets Help Maintain Weight Loss. JAMA 2019, 321, 335. [Google Scholar] [CrossRef]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.A.; Jacobs, D.R., Jr.; Pins, J.J.; Raatz, S.K.; Gross, M.D.; Slavin, J.L.; Seaquist, E.R. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 2002, 75, 848–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Low-carbohydrate diets and all-cause mortality: A systematic review and meta-analysis of observational studies. PLoS ONE 2013, 8, e55030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, E.J.; Chung, H.K.; Kim, W.Y.; Kerver, J.M.; Song, W.O. Carbohydrate intake is associated with diet quality and risk factors for cardiovascular disease in US adults: NHANES III. J. Am. Coll. Nutr. 2003, 22, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Li, Z.; Nie, R.; Meng, X.; Yang, X. Comparison of the Effects of a Bean-Based and a White Rice-Based Breakfast Diet on Postprandial Glucose and Insulin Levels in Chinese Patients with Type 2 Diabetes. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, 930349. [Google Scholar] [CrossRef] [PubMed]
- Bhawamai, S.; Lin, S.H.; Hou, Y.Y.; Chen, Y.H. Thermal cooking changes the profile of phenolic compounds, but does not attenuate the anti-inflammatory activities of black rice. Food Nutr. Res. 2016, 60, e32941. [Google Scholar] [CrossRef]
- Kim, M.K. Sensory Profile of Rice-Based Snack (Nuroongji) Prepared from Rice with Different Levels of Milling Degree. Foods 2020, 9, 685. [Google Scholar] [CrossRef]
- Kwak, H.S.; Kim, H.G.; Kim, H.S.; Ahn, Y.S.; Jung, K.; Jeong, H.Y.; Kim, T.H. Sensory characteristics and consumer acceptance of frozen cooked rice by a rapid freezing process compared to homemade and aseptic packaged cooked rice. Prev. Nutr. Food Sci. 2013, 18, 67–75. [Google Scholar] [CrossRef] [Green Version]
- ISO 26642–2010; Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. International Standards Organisation: Geneva, Switzerland, 2010.
- Dall’Asta, M.; Dodi, R.; Di Pede, G.; Marchini, M.; Spaggiari, M.; Gallo, A.; Righetti, L.; Brighenti, F.; Galaverna, G.; Dall’Asta, C.; et al. Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects. Nutrition 2022, 94, 111533. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Tang, A.C.; Wakaki, Y.; Koyama, W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur. J. Clin. Nutr. 2003, 57, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srisawas, W.; Jindal, V.K. Sensory evaluation of cooked rice in relation to water-to-rice ratio and physicochemical properties. J. Texture Stud. 2007, 38, 21–41. [Google Scholar] [CrossRef]
- Penaforte, F.R.; Japur, C.C.; Pigatto, L.P.; Chiarello, P.G.; Diez-Garcia, R.W. Short-term impact of sugar consumption on hunger and ad libitum food intake in young women. Nutr. Res. Pract. 2013, 7, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Lan, Y. Effects of drying temperature and moisture content on rice taste quality. In Proceedings of the 5th Asia-Pacific Drying Conference, The (In 2 Volumes), Hong Kong, 13–15 August 2007; World Scientific: Singapore, 2007; pp. 1112–1117. [Google Scholar]
- Liu, A.G.; Most, M.M.; Brashear, M.M.; Johnson, W.D.; Cefalu, W.T.; Greenway, F.L. Reducing the glycemic index or carbohydrate content of mixed meals reduces postprandial glycemia and insulinemia over the entire day but does not affect satiety. Diabetes Care 2012, 35, 1633–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, H.L.; Dekker Nitert, M.; D’Emden, M.; Lingwood, B.; de Jersey, S.; McIntyre, H.D.; Callaway, L.K. Capillary Triglycerides in Late Pregnancy—Challenging to Measure, Hard to Interpret: A Cohort Study of Practicality. Nutrients 2021, 13, 1266. [Google Scholar] [CrossRef] [PubMed]
- Field, R.; Pourkazemi, F.; Rooney, K. Effects of a Low-Carbohydrate Ketogenic Diet on Reported Pain, Blood Biomarkers and Quality of Life in Patients with Chronic Pain: A Pilot Randomized Clinical Trial. Pain Med. 2022, 23, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Murgia, C.; Dordevic, A.L.; Bonham, M.P.; Huggins, C.E. Diurnal variation in gene expression of human peripheral blood mononuclear cells after eating a standard meal compared with a high protein meal: A cross-over study. Clin. Nutr. 2021, 40, 4349–4359. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Franceschi, S.; Hamidi, M.; Marchie, A.; Jenkins, A.L.; Axelsen, M. Glycemic index: Overview of implications in health and disease. Am. J. Clin. Nutr. 2002, 76, 266S–273S. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Ghafari, H.; Jenkins, A.L.; Barker, H.; Jenkins, M.J. Rate of digestion of foods and postprandial glycaemia in normal and diabetic subjects. Br. Med. J. 1980, 281, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M. The Glycaemic Index: A Physiological Classification of Dietary Carbohydrate; CABI: Oxon, UK, 2006. [Google Scholar]
- Tosh, S.M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur. J. Clin. Nutr. 2013, 67, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, S.S.; Kim, M.H.; Sung, C.J.; Lee, J.H. The Effect of Cooking Form of Rice and Barley on the Postprandial Serum Glucose and Insulin Responses in Normal Subject. J. Korean Soc. Food Nutr. 1991, 20, 293–299. [Google Scholar]
- Ito, Y.; Mizukuchi, A.; Kise, M.; Aoto, H.; Yamamoto, S.; Yoshihara, R.; Yokoyama, J. Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. J. Med. Investig. 2005, 52, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.L.; Im, H.J.; Lee, Y.; Kim, K.W.; Yoon, K.Y. A Survey on the Preferences and Recognition of Multigrain Rice by Adding Grains and Legumes. J. Korean Soc. Food Nutr. 2012, 41, 853–860. [Google Scholar] [CrossRef]
- Jung, E.S.; Shin, D.H.; Doo, J.K.; Chae, S.W.; Kim, Y.S.; Park, Y.M. Status of Mixed Grain Diet by People with Diabetes in Jeollabuk-do and Sensory Evaluation of Different Composition of Mixed Grains. J. Korean Soc. Food Nutr. 2010, 39, 1049–1055. [Google Scholar] [CrossRef]
- Wadhera, D.; Capaldi-Phillips, E.D. A review of visual cues associated with food on food acceptance and consumption. Eating Behav. 2014, 15, 132–143. [Google Scholar] [CrossRef]
- Wansink, B.; Painter, J.E.; North, J. Bottomless bowls: Why visual cues of portion size may influence intake. Obes. Res. 2005, 13, 93–100. [Google Scholar] [CrossRef]
Classification | Subjects (n = 13) |
---|---|
Age (years) | 56.8 ± 12.1 1 |
Sex (male/female) | 4/9 |
Height (cm) | 162.2 ± 10.6 |
Body weight (kg) | 64.7 ± 14.7 |
Body mass index (kg/m2) | 24.5 ± 4.4 |
% Body fat (%) | 32.4 ± 5.3 |
Skeletal muscle mass (kg) | 24.0 ± 6.9 |
Waist–hip ratio | 0.90 ± 0.05 |
Fasting blood glucose (mg/dL, range) | 99.5 ± 15.0 (82–120) |
Test Food | Energy (kcal/100 g) | Carbohydrate (g/100 g) | Protein (g/100 g) | Fat (g/100 g) | Ash (g/100 g) | Dietary Fiber (g/100 g) | Water (g/100 g) |
---|---|---|---|---|---|---|---|
Regular WR | 149.0 ± 1.0 1 | 34.0 ± 0.3 | 2.6 ± 0.0 | 0.4 ± 0.0 | 0.1 ± 0.0 | 0.4 ± 0.0 | 62.9 ± 0.3 |
Low-carb WR | 120.8 ± 3.7 * | 27.6 ± 0.9 * | 1.7 ± 0.8 | 0.5 ± 0.1 | 0.1 ± 0.0 | 0.4 ± 0.0 | 70.1 ± 0.8 * |
Regular MR | 154.4 ± 2.3 | 34.8 ± 0.4 | 2.9 ± 0.1 | 0.5 ± 0.1 | 0.2 ± 0.0 | 0.5 ± 0.0 | 61.6 ± 0.4 |
Low-carb MR | 129.3 ± 2.9 ** | 28.0 ± 1.4 ** | 3.3 ± 1.0 | 0.6 ± 0.2 | 0.2 ± 0.0 | 0.5 ± 0.0 | 68.0 ± 0.6 ** |
Test Foods (Serving) | Blood Glucose at Each Time (mg/dL) | ||||||
---|---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 45 min | 60 min | 90 min | 120 min | |
Glucose (50 g) | 101.1 ± 15.2 1 | 135.7 ± 26.8 | 164.2 ± 32.2 | 165.2 ± 43.9 | 169.8 ± 50.4 | 156.8 ± 61.2 | 130.9 ± 55.6 |
Regular WR | 99.6 ± 13.8 | 112.7 ± 12.4 | 144.9 ± 17.6 | 159.0 ± 31.0 | 161.8 ± 41.7 | 157.1 ± 44.6 | 141.5 ± 40.1 |
Low-carb WR (EW) | 99.7 ± 12.3 | 105.3 ± 11.4 | 139.8 ± 22.0 | 149.3 ± 25.3 | 158.8 ± 37.4 | 139.7 ± 46.9 | 133.9 ± 42.1 |
Low-carb WR (EC) | 99.5 ± 17.1 | 116.5 ± 33.0 | 143.6 ± 24.0 | 158.8 ± 38.7 | 146.1 ± 34.6 | 138.6 ± 41.1 | 130.2 ± 40.0 |
Regular MR | 100.5 ± 16.4 | 107.5 ± 18.0 | 141.4 ± 25.8 | 153.4 ± 31.8 | 155.4 ± 43.7 | 145.2 ± 38.7 | 132.3 ± 46.5 |
Low-carb MR (EW) | 96.5 ± 13.9 | 105.8 ± 14.6 | 140.8 ± 23.9 | 154.9 ± 32.0 | 147.2 ± 32.1 | 141.2 ± 46.6 | 123.5 ± 35.1 |
Low-carb MR (EC) | 100.6 ± 19.4 | 110.3 ± 21.1 | 147.7 ± 30.2 | 153.5 ± 39.4 | 149.7 ± 43.0 | 139.5 ± 44.4 | 132.5 ± 45.8 |
Test Foods | Appearances | Flavor | Taste | Texture Properties | Overall Preference |
---|---|---|---|---|---|
Regular WR | 5.7 ± 1.7 1 | 4.7 ± 2.2 | 5.8 ± 1.6 | 5.6 ± 2.0 | 6.7 ± 1.2 |
Low-carb WR | 6.4 ± 1.5 | 5.1 ± 2.3 | 5.8 ± 1.5 | 5.4 ± 2.1 | 6.3 ± 1.2 |
Regular MR | 6.1 ± 1.6 | 4.9 ± 1.9 | 5.4 ± 1.5 | 5.4 ± 1.9 | 5.9 ± 1.7 |
Low-carb MR | 6.4 ± 1.5 | 5.1 ± 2.2 | 5.9 ± 1.6 | 5.5 ± 1.8 | 6.5 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Lee, M.; Shin, H.; Chung, H.-a.; Park, Y.-k. Postprandial Glucose Response after Consuming Low-Carbohydrate, Low-Calorie Rice Cooked in a Carbohydrate-Reducing Rice Cooker. Foods 2022, 11, 1050. https://doi.org/10.3390/foods11071050
Ahn H, Lee M, Shin H, Chung H-a, Park Y-k. Postprandial Glucose Response after Consuming Low-Carbohydrate, Low-Calorie Rice Cooked in a Carbohydrate-Reducing Rice Cooker. Foods. 2022; 11(7):1050. https://doi.org/10.3390/foods11071050
Chicago/Turabian StyleAhn, Hyejin, Miran Lee, Hyeri Shin, Heajung-angie Chung, and Yoo-kyoung Park. 2022. "Postprandial Glucose Response after Consuming Low-Carbohydrate, Low-Calorie Rice Cooked in a Carbohydrate-Reducing Rice Cooker" Foods 11, no. 7: 1050. https://doi.org/10.3390/foods11071050
APA StyleAhn, H., Lee, M., Shin, H., Chung, H.-a., & Park, Y.-k. (2022). Postprandial Glucose Response after Consuming Low-Carbohydrate, Low-Calorie Rice Cooked in a Carbohydrate-Reducing Rice Cooker. Foods, 11(7), 1050. https://doi.org/10.3390/foods11071050