Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Coconut Haustorium Samples
2.3. Determination of Chemical Composition
2.4. Analysis of Nutritive Value
2.4.1. Determination of Fatty Acids Composition
2.4.2. Determination and Analysis of Amino Acids Composition
2.4.3. Determination of Mineral Elements
2.5. Determination of Volatile Profiles
2.6. Fourier-Transform Infrared (FTIR) Spectroscopy
2.7. Assay for Antioxidant Activities In Vitro
2.7.1. Samples Preparation
2.7.2. Determination of Radical Scavenging Activities
2.8. Statistical Analysis
3. Results and Discussions
3.1. Analysis of Yield Data and Chemical Composition
3.2. Evaluation of Nutritive Value
3.2.1. Analysis of Fatty Acid Composition
3.2.2. Analysis of Amino Acid Composition
3.2.3. Analysis of Mineral Elements
3.3. Analysis of Volatile Profiles
3.4. Analysis of FTIR
3.5. Analysis of Antioxidant Activities In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Htwe, Y.M.; Wang, Y.; Yang, Y.; Wang, R. Analysis of sugars and fatty acids during haustorium development and seedling growth of coconut. Agron. J. 2019, 111, 2341–2349. [Google Scholar] [CrossRef]
- Manivannan, A.; Bhardwaj, R.; Padmanabhan, S.; Suneja, P.; Hebbar, K.B.; Kanade, S.R. Biochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium. Food Chem. 2018, 238, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, Y. Ultrastructural observation of the haustorium in germinating coconut. Jpn. J. Trop. Agric. 1998, 42, 179–181. [Google Scholar] [CrossRef]
- Smita, M.; Mudasir, B.; Sundaramoorthy, H. Physicochemical and functional properties of peeled and unpeeled coconut haustorium flours. J. Food Meas. Charact. 2019, 13, 61–69. [Google Scholar] [CrossRef]
- Sugimuma, Y.; Murakami, T. Structure and function of the haustorium in germinating coconut palm seed. JARQ-Jpn. Agr. Res. Q 1990, 24, 1–14. [Google Scholar] [CrossRef]
- Balachandran, C.; Arumughan, C. Triglyceride deposition in tissues of germinating coconut (Cocos nucifera L.). J. Am. Oil Chem. Soc. 1995, 72, 647–651. [Google Scholar] [CrossRef]
- López-Villalobos, A.; Dodds, P.F.; Roland, H. Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro. J. Exp. Bot. 2001, 358, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, R.; Yang, Y.; Wu, Y.; Fan, H.; Gong, S. Variation regulation of haustorium inclusion during coconut germination. J. South. Agric. 2017, 48, 2163–2168. [Google Scholar] [CrossRef]
- Arivalagan, M.; Manikantan, M.R.; Yasmeen, A.M.; Sreejith, S.; Balasubramanian, D.; Hebbar, K.B.; Kanade, S.R. Physiochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium based extrudates. LWT-Food Sci. Technol. 2018, 89, 171–178. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists International, 18th ed.; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Gao, W.; Li, W.; Wang, X.; Qiao, L. Determination of reducing sugar and total sugar in turnip by 3, 5-Dinitrosalicylic acid colorimetry. China Pharm. 2020, 29, 113–116. [Google Scholar] [CrossRef]
- Yuan, Q.; He, Y.; Xiang, P.; Huang, Y.; Cao, Z.; Shen, S.; Zhang, Q.; Qin, W.; Wu, D. Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2020, 147, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, X.; Zhuang, Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 2012, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, Y.; Sun, L. Characteristics of fibre-rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels. Int. J. Food Sci. Technol. 2012, 47, 1279–1285. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Duan, K.; Gui, Q. Preparation, antioxidant activity and protective effect of coconut testa oil extraction on oxidative damage to human serum albumin. Int. J. Food Sci. Technol. 2016, 51, 946–953. [Google Scholar] [CrossRef]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Effects of processing methods on the chemical composition and antioxidant capacity of walnut (Juglans regia L.) oil. LWT-Food Sci. Technol. 2021, 135, 109958. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Zhang, Y.; Xu, J.; Gao, G. Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions. Molecules 2018, 23, 707. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Hou, N.; Zhao, L.; Wei, A.; Yang, T. Amino acid composition and nutritional quality evaluation of different germplasms of chinese prickly ash (Zanthoxylum bungeanum Maxim). Food Sci. 2017, 38, 113–118. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, X.; Yao, X.; Yang, S.; Wang, K. Amino acid composition and nutritional value evaluation of different varieties of pecan (Carya illinoensis K. Koch). J. Southwest Univ. Nat. Sci. 2021, 43, 44–52. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Santosh, O.; Bajwa, H.K.; Aribam, I. Mineral elements in bamboo shoots and potential role in food fortification. J. Food Compos. Anal. 2021, 95, 103662. [Google Scholar] [CrossRef]
- Cheng, Y. Introduction of dietary reference intake of nutrients for Chinese (2013 Edition). Acta Nutr. Sin. 2014, 36, 313–317. [Google Scholar] [CrossRef]
- Saini, N.; Rawat, K.; Bisht, M.S.; Nirmala, C. Qualitative and quantitative mineral element variances in shoots of two edible bamboo species after processing and storage evaluated by wavelength dispersion X-ray fluorescence spectrometry. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 8262–8270. Available online: https://www.researchgate.net/publication/319263366 (accessed on 20 March 2022). [CrossRef]
- James, O.; Emmanuel, U.C. Comparative studies on the protein and mineral composition of some selected Nigerian vegetables. Afr. J. Food Sci. 2011, 5, 22–25. Available online: https://www.researchgate.net/publication/267549030 (accessed on 20 March 2022).
- Ismail, F.; Anjum, M.R.; Mamon, A.N.; Kazi, T.G. Trace metal contents of vegetables and fruits of Hyderabad retail market. Pak. J. Nutr. 2011, 10, 365–372. [Google Scholar] [CrossRef]
- Gupta, U.C.; Srivastava, P.C.; Gupta, S.C. Role of micronutrients: Boron and molybdenum in crops and in human health and nutrition. Curr. Nutr. Food Sci. 2011, 7, 126–136. [Google Scholar] [CrossRef]
- Hunt, C.D. Dietary boron: Progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 2012, 26, 157–160. [Google Scholar] [CrossRef]
- Hasegawa, R.; Hirata-Koizumi, M.; Dourson, M.L.; Parker, A.; Ono, A.; Hirose, A. Safety assessment of boron by application of new uncertainty factors and their subdivision. Regul. Toxicol. Pharm. 2013, 65, 108–114. [Google Scholar] [CrossRef]
- Shi, G.; Zhao, L.; Wang, X.; Zhang, L.; Jiang, P.; Wang, X.; Wang, Z. Dynamic variation of main active substances and volatile components in Toona sinensis during growth period. Food Sci. 2022, 43, 276–284. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Peng, Y.; Lv, C. Study on the aroma of Yunnan Changning black tea based on electronic nose and gas chromatography-Ion mobility spectroscop. J. Tea Commun. 2021, 48, 80–89. [Google Scholar] [CrossRef]
- Song, J.; Shao, Y.; Yan, Y.; Li, X.; Guo, L. Characterization of volatile profiles of three colored quinoas based on gc-ims and pca. LWT-Food Sci. Technol. 2021, 146, 111292. [Google Scholar] [CrossRef]
- Cao, J.; Tang, D.; Wang, Y.; Li, X.; Hong, L.; Sun, C. Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium). Food Chem. 2018, 254, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Niu, X.; Liu, N.; Gao, Y.; Wang, L.; Xu, G.; Li, X.; Yang, Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chem 2018, 243, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Sun, X.; Qian, Y.; Xu, Y.; Wang, D.; Cao, Y. Effects of metal ions in tea polysaccharides on their in vitro antioxidant activity and hypoglycemic activity. Int. J. Biol. Macromol. 2018, 113, 418–426. [Google Scholar] [CrossRef]
- Luo, Q.; Tang, Z.; Zhang, X.; Zhong, Y.; Yao, S.; Wang, L.; Lin, C.; Luo, X. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol. 2016, 89, 219–227. [Google Scholar] [CrossRef]
- Li, F.; Feng, K.; Yang, J.; He, Y.; Wu, D. Polysaccharides from dandelion (Taraxacum mongolicum) leaves: Insights into innovative drying techniques on their structural characteristics and biological activities. Int. J. Biol. Macromol. 2021, 167, 995–1005. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhang, Y.; Zhao, S. Purification, characterization and synthesis of antioxidant peptides from enzymatic hydrolysates of coconut (Cocos nucifera L.) cake protein isolates. RSC Adv. 2016, 6, 54346–54356. [Google Scholar] [CrossRef]
- Gu, M.; Guo, R.; Zhang, J.; Yao, Y.; Yang, L. Thermal dissociation of the singly protonated Arginine: Competition between side-chain and backbone fragmentation. Chem. Phys. 2020, 538, 110890. [Google Scholar] [CrossRef]
- Xi, L.; Yang, J.; Xu, S.; Huang, X.; Li, J.; Wang, S. Preparation, antioxidant activity and amino acid composition analysis of crude peptides from western-style fermented ham. Meat Res. 2022, 36, 1–6. [Google Scholar] [CrossRef]
Parameter | SCH | MCH | LCH | |
---|---|---|---|---|
Yield data | Average transverse diameter (cm) | 3.34 ± 0.49 c | 5.33 ± 0.75 b | 7.44 ± 0.39 a |
Longitudinal diameter range (cm) | 2.10–6.80 | 4.00–8.00 | 5.60–8.10 | |
Average longitudinal diameter (cm) | 3.91 ± 0.87 c | 5.70 ± 0.83 b | 6.78 ± 0.5 a | |
Range of weight (g) | 5.59–25.84 | 14.87–112.56 | 43.51–130.47 | |
Average weight (g) | 12.29 ± 4.98 c | 39.42 ± 17.76 b | 79.75 ± 25.57 a | |
Quantity proportion (%) | 26.42 | 65.28 | 8.29 | |
Mass proportion (%) | 9.12 | 72.30 | 18.57 | |
Chemical composition | Moisture (g/100 g wet basis) | 85.21 ± 1.40 bc | 85.24 ± 0.85 ab | 87.54 ± 0.95 a |
Soluble sugar (g/100 g dry basis) | 33.77 ± 0.24 c | 42.87 ± 0.04 b | 47.10 ± 0.11 a | |
Reducing sugar (g/100 g dry basis) | 12.62 ± 0.08 c | 17.44 ± 0.05 ab | 17.68 ± 0.82 a | |
Ash (g/100 g dry basis) | 10.17 ± 1.56 a | 8.55 ± 0.55 a | 8.22 ± 1.52 a | |
Protein (g/100 g dry basis) | 9.22 ± 0.06 a | 6.03 ± 0.04 b | 5.23 ± 0.04 c | |
Fat (g/100 g dry basis) | 5.03 ± 0.12 a | 4.27 ± 0.12 b | 4.03 ± 0.23 b |
Fatty Acid | SCH (%) | MCH (%) | LCH (%) |
---|---|---|---|
Caprylic acid (C8:0) | 1.86 ± 0.10 c | 3.73 ± 0.13 a | 3.01 ± 0.03 b |
Capric acid (C10:0) | 1.84 ± 0.09 c | 3.31 ± 0.11 a | 2.89 ± 0.08 b |
Lauric acid (C12:0) | 17.80 ± 0.73 c | 28.05 ± 0.55 a | 25.35 ± 0.46 b |
Myristic acid (C14:0) | 13.78 ± 0.40 bc | 15.88 ± 0.43 a | 14.48 ± 0.08 b |
Palmitic acid (C16:0) | 23.47 ± 0.05 a | 19.20 ± 0.58 bc | 19.20 ± 0.12 b |
Palmitoleic acid (C16:1n7) | 0.22 ± 0.01 a | 0.19 ± 0.03 a | 0.24 ± 0.02 a |
Stearic acid (C18:0) | 6.09 ± 0.18 bc | 7.07 ± 0.30 a | 6.62 ± 0.11 ab |
Oleic acid (C18:1n9c) | 15.99 ± 0.45 a | 13.66 ± 0.95 bc | 15.28 ± 0.20 ab |
Linoleic acid (C18:2n6c) | 16.94 ± 0.63 a | 7.61 ± 1.05 c | 11.37 ± 0.11 b |
α- Linolenic acid (C18:3n3) | 1.26 ± 0.06 a | 0.62 ± 0.08 c | 0.93 ± 0.01 b |
Arachidic acid (C20:0) | 0.55 ± 0.03 a | 0.47 ± 0.03 b | 0.46 ± 0.01 bc |
Eicosenoic acid (C20:1) | 0.2 ± 0.01 ab | 0.22 ± 0.01 a | 0.17 ± 0.01 c |
SFA | 65.38 ± 1.15 c | 77.71 ± 2.13 a | 71.99 ± 0.35 b |
MUFA | 16.41 ± 0.45 a | 14.06 ± 0.98 bc | 15.68 ± 0.17 ab |
PUFA | 18.22 ± 0.69 a | 8.23 ± 1.14 c | 12.30 ± 0.12 b |
Amino Acid | Content (mg/g Protein) | FAO/WHO Reference (mg/g Protein) | EAAS | ||||
---|---|---|---|---|---|---|---|
SCH | MCH | LCH | SCH | MCH | LCH | ||
Essential | |||||||
Histidine | 18.91 ± 0.19 ab | 18.13 ± 0.49 bc | 25.01 ± 0.67 a | 19 | 1.00 | 0.95 | 1.32 |
Isoleucine | 36.29 ± 0.30 a | 33.46 ± 0.04 bc | 33.51 ± 0.90 b | 28 | 1.30 | 1.20 | 1.20 |
Leucine | 59.19 ± 1.38 a | 54.34 ± 0.15 ab | 46.80 ± 6.45 bc | 66 | 0.90 | 0.82 | 0.71 |
Lysine | 44.51 ± 1.14 ab | 44.01 ± 0.05 bc | 46.59 ± 0.50 a | 58 | 0.77 | 0.76 | 0.80 |
Methionine | 26.13 ± 1.51 a | 15.37 ± 0.86 c | 22.26 ± 1.61 ab | 25 | 1.25 | 0.75 | 1.33 |
Cysteine | 5.06 ± 1.11 b | 3.34 ± 1.23 bc | 10.95 ± 1.39 a | ||||
Phenylalanine | 34.93 ± 1.8 ab | 35.46 ± 0.22 a | 34.82 ± 2.91 abc | 63 | 0.87 | 0.85 | 0.97 |
Tyrosine | 19.94 ± 0.85 ab | 18.00 ± 1.48 bc | 26.48 ± 3.22 a | ||||
Threonine | 36.56 ± 1.95 abc | 39.66 ± 0.22 ab | 40.19 ± 0.75 a | 34 | 1.08 | 1.17 | 1.18 |
Valine | 44.24 ± 0.45 b | 42.62 ± 0.1 c | 56.09 ± 0.01 a | 35 | 1.26 | 1.22 | 1.60 |
Nonessential | |||||||
Aspartic acid | 66.09 ± 3.55 c | 84.57 ± 1.27 b | 102.15 ± 2.85 a | ||||
Serine | 35.07 ± 1.61 c | 39.21 ± 0.18 ab | 40.95 ± 0.64 a | ||||
Glutamic acid | 145.92 ± 4.51 a | 118.30 ± 1.06 ab | 110.80 ± 1.36 bc | ||||
Glycine | 38.16 ± 0.68 ab | 36.65 ± 0.16 bc | 38.35 ± 0.52 a | ||||
Alaine | 55.20 ± 0.12 b | 49.35 ± 0.09 c | 59.55 ± 1.45 a | ||||
Arginine | 52.93 ± 0.02 c | 61.65 ± 2.94 b | 76.00 ± 0.46 a | ||||
Proline | 41.13 ± 1.18 c | 46.45 ± 0.46 ab | 47.79 ± 1.89 a | ||||
EAA | 325.75 ± 1.86 b | 304.39 ± 2.82 c | 342.71 ± 1.87 a | 328 | |||
NEAA | 434.50 ± 11.67 bc | 436.17 ± 5.79 b | 475.59 ± 4.46 a | ||||
TAA | 760.25 ± 13.53 b | 740.57 ± 8.61 bc | 818.30 ± 2.60 a |
Mineral Elements | Calibration Curve | R2 | LOD (mg/kg) | LOQ (mg/kg) | SCH (mg/kg) | MCH (mg/kg) | LCH (mg/kg) | RNI (mg/d) |
---|---|---|---|---|---|---|---|---|
Macro-minerals | ||||||||
Potassium | y = 1.001x + 33.31 | 0.9999 | 0.0405 | 0.1350 | 46,489.03 ± 385.94 ab | 46,892.57 ± 147.59 a | 40,555.94 ± 39.26 c | 350–2200 |
Phosphorus | y = 0.996x − 0.3331 | 0.9993 | 0.0214 | 0.0712 | 4977.82 ± 16.61 a | 4366.68 ± 51.20 b | 3908.77 ± 1.12 c | 100 *–720 |
Sodium | y = 0.9879x + 51.848 | 0.9999 | 0.0119 | 0.0395 | 1675.01 ± 8.90 c | 1956.56 ± 6.42 b | 2418.60 ± 20.59 a | 170–1600 |
Magnesium | y = 0.997x + 38.996 | 1.0000 | 0.0049 | 0.0162 | 1530.18 ± 11.51 c | 1651.65 ± 8.33 b | 1706.43 ± 6.93 a | 20 *–330 |
Calcium | y = 0.9851x + 55.76 | 0.9985 | 0.0485 | 0.1617 | 857.35 ± 8.61 c | 1130.25 ± 18.55 ab | 1155.65 ± 5.84 a | 200 *–1200 |
Micro-minerals | ||||||||
Iron | y = 0.9909x + 47.555 | 0.9999 | 0.0039 | 0.0130 | 29.34 ± 1.35 b | 31.84 ± 24.68 a | 16.52 ± 0.66 c | 0.3 *–20 |
Zinc | y = 1.0059x − 0.7266 | 0.9989 | 0.0003 | 0.0009 | 29.40 ± 0.13 a | 21.14 ± 0.04 b | 16.43 ± 0.05 c | 2.0 *–12.5 |
Manganese | y = 1.0535x + 0.6334 | 0.9999 | 0.0002 | 0.0006 | 23.88 ± 0.13 c | 33.17 ± 0.10 b | 35.44 ± 0.20 a | 0.01 *–4.5 * |
Copper | y = 0.9888x + 0.5056 | 0.9998 | 0.00002 | 0.0001 | 2.26 ± 0.007 c | 2.49 ± 0.05 b | 2.97 ± 0.03 a | 0.3 *–0.8 |
Other-minerals | ||||||||
Boron | y = 1.0132x − 18.537 | 0.9951 | 0.0030 | 0.0100 | 10.86 ± 0.43 a | 11.99 ± 0.16 a | 11.40 ± 0.45 a | |
Rubidium | y = 0.9525x + 2.5483 | 0.9999 | 0.00002 | 0.0001 | 9.69 ± 0.003 c | 13.75 ± 0.16 a | 12.90 ± 0.02 b | |
Nickel | y = 1.0049x + 0.2771 | 0.9998 | 0.0028 | 0.0093 | 3.15 ± 0.04 a | 2.85 ± 0.04 bc | 3.06 ± 0.11 ab | |
Strontium | y = 0.952x + 4.4945 | 0.9999 | 0.00004 | 0.0001 | 2.25 ± 0.01 bc | 2.25 ± 0.02 b | 2.41 ± 0.01 a | |
Aluminum | y = 0.9248x + 1.4982 | 0.9936 | 0.0005 | 0.0016 | 1.92 ± 0.24 ab | 1.47 ± 0.01 bc | 2.23 ± 0.11 a | |
Tin | y = 0.9915x − 0.1772 | 0.9962 | 0.0002 | 0.0005 | 1.37 ± 0.02 bc | 1.44 ± 0.03 b | 2.79 ± 0.19 a |
No. | Compound Name | CAS# | Retention Index | Retention Time (s) | Drift Time (ms) | Relative Amount (%) | ||
---|---|---|---|---|---|---|---|---|
SCH | MCH | LCH | ||||||
1 | Ethanol M | 64-17-5 | 525.5 | 112.023 | 1.04599 | 0.63 ± 0.04 bc | 1.59 ± 0.27 b | 4.75 ± 1.03 a |
2 | Ethanol D | 64-17-5 | 526.4 | 112.467 | 1.13033 | 0.29 ± 0.02 bc | 0.70 ± 0.13 b | 2.40 ± 0.49 a |
3 | Acetone | 67-64-1 | 537 | 117.576 | 1.11781 | 0.39 ± 0.03 c | 0.92 ± 0.18 b | 2.48 ± 0.37 a |
4 | 2-Butanone | 78-93-3 | 598 | 147.117 | 1.25226 | 1.39 ± 0.07 a | 0.73 ± 0.10 bc | 0.88 ± 0.09 b |
5 | Acetoin | 513-86-0 | 710.7 | 209.085 | 1.33076 | 3.78 ± 0.10 bc | 5.74 ± 0.70 b | 13.10 ± 1.78 a |
6 | Acetic acid | 64-19-7 | 583.3 | 140.009 | 1.15873 | 3.69 ± 0.17 c | 6.22 ± 0.63 b | 11.37 ± 0.85 a |
7 | Hexanal M | 66-25-1 | 791.1 | 277.34 | 1.25828 | 0.03 ± 0.01 bc | 0.18 ± 0.09 b | 2.09 ± 0.79 a |
8 | Hexanal D | 66-25-1 | 790.2 | 276.317 | 1.56437 | 0.02 ± 0.01 bc | 0.08 ± 0.05 b | 3.15 ± 1.46 a |
9 | Butyrolactone M | 96-48-0 | 910.5 | 430.411 | 1.0828 | 0.09 ± 0.02 c | 0.75 ± 0.18 b | 1.44 ± 0.22 a |
10 | Butyrolactone D | 96-48-0 | 908.7 | 427.132 | 1.30275 | 0.77 ± 0.06 bc | 1.94 ± 0.12 a | 0.89 ± 0.56 b |
11 | 2-Propanol | 67-63-0 | 522.8 | 110.733 | 1.22213 | 0.36 ± 0.02 a | 0.34 ± 0.03 ab | 0.19 ± 0.06 a |
12 | 2-Methyl-propanal M | 78-84-2 | 568.3 | 132.746 | 1.10751 | 0.25 ± 0.02 bc | 0.58 ± 0.09 b | 1.64 ± 0.38 a |
13 | 2-Methyl-propanal D | 78-84-2 | 568.8 | 133.008 | 1.28396 | 0.55 ± 0.02 c | 0.90 ± 0.16 b | 1.62 ± 0.25 a |
14 | 2-Methylbutanal M | 96-17-3 | 665.2 | 179.655 | 1.15803 | 0.65 ± 0.04 c | 1.02 ± 0.08 b | 1.76 ± 0.23 a |
15 | 2-Methylbutanal D | 96-17-3 | 661.4 | 177.82 | 1.4016 | 0.31 ± 0.01 bc | 0.63 ± 0.13 b | 1.58 ± 0.43 a |
16 | 3-Methylbutanal M | 590-86-3 | 649.5 | 172.055 | 1.17311 | 0.10 ± 0.004 bc | 0.23 ± 0.03 b | 0.86 ± 0.24 a |
17 | 3-Methylbutanal D | 590-86-3 | 651.1 | 172.841 | 1.40764 | 0.61 ± 0.03 c | 1.31 ± 0.22 b | 2.65 ± 0.49 a |
18 | Propionic acid M | 79-09-4 | 681.4 | 187.517 | 1.10751 | 0.16 ± 0.01 cb | 0.37 ± 0.05 b | 0.98 ± 0.19 a |
19 | Propionic acid D | 79-09-4 | 682.5 | 188.041 | 1.26662 | 0.14 ± 0.02 c | 0.18 ± 0.02 b | 0.23 ± 0.01 a |
20 | Pentanal M | 110-62-3 | 694.9 | 196.165 | 1.18292 | 0.05 ± 0.004 bc | 0.13 ± 0.03 b | 0.67 ± 0.21 a |
21 | Pentanal D | 110-62-3 | 694.3 | 195.641 | 1.42347 | 0.06 ± 0.01 bc | 0.17 ± 0.05 b | 0.69 ± 0.16 a |
22 | Methylpyrazine | 109-08-0 | 823.7 | 315.365 | 1.0936 | 0.01 ± 0.005 bc | 0.03 ± 0.01 b | 0.31 ± 0.10 a |
23 | Hexanoic acid | 142-62-1 | 991 | 585.494 | 1.30102 | 0.05 ± 0.01 bc | 0.12 ± 0.03 b | 0.56 ± 0.16 a |
24 | n-Nonanal | 124-19-6 | 1105 | 789.975 | 1.47213 | 0.06 ± 0.01 bc | 0.22 ± 0.05 b | 0.71 ± 0.14 a |
25 | Isobutyric acid | 79-31-2 | 805.6 | 279.818 | 1.37849 | 56.78 ± 0.47 a | 50.68 ± 3.85 ab | 8.69 ± 0.95 c |
Aldehydes (11) | 2.68 ± 0.16 bc | 5.44 ± 0.97 b | 17.43 ± 4.76 a | |||||
Acids (5) | 60.82 ± 0.29 a | 57.58 ± 3.1 ab | 26.90 ± 7.73 c | |||||
Alcohols (3) | 1.29 ± 0.03 bc | 2.63 ± 0.38 b | 7.35 ± 1.45 a | |||||
Ketones (3) | 5.59 ± 0.18 bc | 7.04 ± 0.44 b | 16.18 ± 2.14 a | |||||
Esters (2) | 0.88 ± 0.06 c | 2.66 ± 0.16 a | 2.47 ± 0.70 ab | |||||
Pyrazines (1) | 0.01 ± 0.01 bc | 0.03 ± 0.01 b | 0.31 ± 0.10 a | |||||
Total (25) | 71.22 ± 0.25 b | 75.76 ± 0.0.69 a | 70.79 ± 0.75 c |
Parameters | SCH | MCH | LCH | Vc * | |
---|---|---|---|---|---|
EC50 value | DPPH | 1.18 ± 0.01 c | 1.68 ± 0.02 b | 1.94 ± 0.01 a | 3.23 ± 0.03 |
Hydroxyl | 13.40 ± 0.08 b | 15.52 ± 0.26 a | 8.33 ± 0.02 c | 141.82 ± 1.32 | |
ABTS | 2.44 ± 0.01 c | 3.27 ± 0.05 b | 5.15 ± 0.07 a | 12.03 ± 0.01 | |
Active substance concentration | Polysaccharide | 14.81 ± 0.13 c | 18.95 ± 0.13 b | 21.17 ± 0.20 a | - |
Protein * | 134.06 ± 1.38 a | 77.75 ± 1.09 b | 72.24 ± 1.33 c | - | |
Total phenols # | 150.84 ± 0.15 a | 127.86 ± 0.79 b | 89.92 ± 0.37 c | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kan, J.; Tang, M.; Song, F.; Li, N.; Zhang, Y. Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter. Foods 2022, 11, 916. https://doi.org/10.3390/foods11070916
Zhang Y, Kan J, Tang M, Song F, Li N, Zhang Y. Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter. Foods. 2022; 11(7):916. https://doi.org/10.3390/foods11070916
Chicago/Turabian StyleZhang, Yufeng, Jintao Kan, Minmin Tang, Fei Song, Niu Li, and Youlin Zhang. 2022. "Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter" Foods 11, no. 7: 916. https://doi.org/10.3390/foods11070916
APA StyleZhang, Y., Kan, J., Tang, M., Song, F., Li, N., & Zhang, Y. (2022). Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter. Foods, 11(7), 916. https://doi.org/10.3390/foods11070916