Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis and Characterizaiton of Catalysts
2.2.1. Catalyst Synthesis
2.2.2. Catalyst Characterization
2.3. Effect of Catalyst on Asarinin Yield
2.4. Preparation of the Tested Sesame Oil Samples
2.5. Effect of Catalyst on the Physicochemical Properties of Sesame Oil
2.5.1. Acid Value (AV), Peroxide Value (POV) and Color
2.5.2. Determination of Lignans
2.6. Statistical Analysis
3. Results and Discussion
3.1. Catalyst Screening
3.2. Catalyst Characterization
3.2.1. Nitrogen Adsorption and Desorption Analysis
3.2.2. Acidic Properties
3.3. Effect of Catalyst on Asarinin Yield
3.3.1. Single Factors Analysis
3.3.2. Optimized Experiment
3.3.3. Determination of Optimal Reaction Conditions
3.4. Determination of Physicochemical Properties and Lignans of Tested Sesame Oils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodoira, R.; Velez, A.; Andreatta, A.E.; Martínez, M.; Maestri, D. Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions. Food Chem. 2017, 237, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kancharla, P.K.; Arumugam, N. Variation of oil, sesamin, and sesamolin content in the germplasm of the ancient oilseed crop Sesamum indicum L. J. Am. Oil Chem. Soc. 2020, 97, 475–583. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Dalibalta, S.; Yousef, S.M. Effects of sesamin on fatty acid and cholesterol metabolism, macrophage cholesterol homeostasis and serum lipid profile: A comprehensive review. Eur. J. Pharmacol. 2020, 885, 173417. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography–tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang. Biomed. Chromatogr. 2020, 35, e5021. [Google Scholar] [CrossRef] [PubMed]
- Freise, C.; Querfeld, U. The lignan (+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-ĸB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol. 2015, 213, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.J.; Hu, T.; Wei, D.; Gao, J.P.; Che, D.L.; Wang, C.; He, H.Z. (−)-Asarinin inhibits mast cells activation as a Src family kinase inhibitor. Int. J. Biochem. Cell Biol. 2020, 121, 105701. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, K.S.; Zhao, T.T.; Lee, K.E.; Lee, M.L. Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Arch. Pharm. Res. 2017, 40, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Lim, J.S.; Odbayar, T.; Nakashima, Y. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. J. Nutr. Sci. Vitaminol. 2009, 55, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, P.; Lin, M.; Chen, G.; Yiu, T.; Tzen, J.T.C. Identification of methanol-soluble compounds in sesame and evaluation of antioxidant potential of its lignans. J. Agric. Food Chem. 2011, 59, 3214–3219. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.H.; Wang, R.D.; Lu, X.; Jia, C.; Sun, Q.; Huang, J.N.; Wei, S.L.; Ma, L. Enzymatic preparation and structure-activity relationship of sesaminol. J. Oleo Sci. 2021, 70, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.; Lee, W.J.; Chu, I.H.; Hung, W.C.; Su, N.W. Formation of samin diastereomers by acid-catalyzed transformation of sesamolin with hydrogen peroxide. J. Agric. Food Chem. 2020, 68, 6430–6438. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Nagata, M.; Osawa, T.; Namiki, M. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. J. Am. Oil Chem. Soc. 1986, 63, 1027–1031. [Google Scholar] [CrossRef]
- Li, C.Y.; Chow, T.J.; Wu, T.S. The epimerization of sesamin and asarinin. J. Nat. Prod. 2005, 68, 1622–1624. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Chen, Y.Z.; Tian, J.J.; Ge, H.F.; Liang, X.F.; Xiao, J.B.; Lin, H.T. Simultaneous determination of four sesame lignans and conversion in Monascus aged vinegar using HPLC method. Food Chem. 2018, 256, 133–139. [Google Scholar] [CrossRef]
- Yu, Q.; Ma, Y.X.; Qin, Z.; Luo, X.R.; Liu, H.M.; Wang, X.D. Using solid acid catalysts to improve the oxidative stability of cold-pressed sesame oil. LWT 2021, 141, 110928. [Google Scholar] [CrossRef]
- Wang, X.D.; Huang, X.; Liu, S.; Cui, Y.D. Catalytic epimerization of hydrochloric acid-ferric chloride of sesamin to synthesis of asarinin and its mechanism. CIESC J. 2015, 66, 455–460. [Google Scholar]
- Liu, M.; Yin, Y.X.; Guo, X.W.; Song, C.S. Oxalic acid modification of β zeolite for dehydration of 2-(4’-ethylbenzoyl) benzoic acid. Ind. Eng. Chem. Res. 2017, 56, 8850–8856. [Google Scholar] [CrossRef]
- Mansir, N.; Taufiq-Yap, Y.H.; Rashid, U.; Lokman, I.M. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Convers. Manag. 2017, 141, 171–182. [Google Scholar] [CrossRef]
- Hoff, T.C.; Gardner, D.W.; Thilakaratne, R.; Proano-Aviles, J.; Brown, R.C.; Tessonnier, J.P. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Appl. Catal. A-Gen. 2017, 529, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.Y.; Ma, Z.; Shi, L.J.; Lan, X.W.; Wang, Y.L.; Han, J.; Qiu, M.D.; Fu, H.L.; Liu, P.D. Continuous synthesis of bis(indolyl)phenylmethane over acid modified Hβ zeolite. Appl. Catal. A-Gen. 2012, 427–428, 114–118. [Google Scholar] [CrossRef]
- Patel, A.; Narkhede, N. 12-Tungstophosphoric acid anchored to zeolite Hβ: Synthesis, characterization, and biodiesel production by esterification of oleic acid with methanol. Energy Fuel 2012, 26, 6025–6032. [Google Scholar] [CrossRef]
- Wu, Y.H.; Tian, F.P.; Liu, J.; Song, D.; Jia, C.Y.; Chen, Y.Y. Enhanced catalytic isomerization of α-pinene over mesoporous zeolite beta of low Si/Al ratio by NaOH treatment. Microporous Mesoporous Mater. 2012, 162, 168–174. [Google Scholar] [CrossRef]
- Yang, Q.L.; Sun, Y.X.; Sun, W.H.; Qin, Z.; Liu, H.M.; Ma, Y.X.; Wang, X.D. Cellulose derived biochar: Preparation, characterization and Benzo[a]pyrene adsorption capacity. Grain Oil Sci. Technol. 2021, 4, 182–190. [Google Scholar] [CrossRef]
- Viswanadham, B.; Nekkala, N.; Rohitha, C.N.; Vishwanathan, V.; Chary, K.V.R. Synthesis, characterization and catalytic dehydration of glycerol to acrolein over phosphotungstic acid supported Y-zeolite catalysts. Catal. Lett. 2018, 148, 397–406. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Omobuwajo, T.O.; Gbadamosi, S.O. Optimization of simultaneous recovery of oil and protein from sesame (Sesamum indicum) seed. J. Food Process. Preserv. 2018, 42, e13341. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Jayasooriya, A.P.; Madhujith, T. Optimization of the production of structured lipid by enzymatic interesterification from coconut (Cocos nucifera) oil and sesame (Sesamum indicum) oil using response surface methodology. LWT 2019, 101, 723–730. [Google Scholar] [CrossRef]
- Cao, J.; Xiong, N.; Zhang, Y.; Dai, Y.W.; Wang, Y.Y.; Lu, L.Y.; Jiang, L. Using RSM for optimum of optimum production of peptides from edible bird’s nest by-product and characterization of its antioxidant’s properties. Foods 2022, 11, 1071. [Google Scholar] [CrossRef]
- Wu, S.M.; Wang, L.; Shu, F.Y.; Cao, W.M.; Chen, F.X.; Wang, X.G. Effect of refining on the lignan content and oxidative stability of oil pressed from roasted sesame seed. Int. J. Food Sci. Technol. 2013, 48, 1187–1192. [Google Scholar] [CrossRef]
- Shi, L.K.; Zheng, L.; Jin, Q.Z.; Wang, X.G. Effects of adsorption on polycyclic aromatic hydrocarbon, lipid characteristic, oxidative stability, and free radical scavenging capacity of sesame oil. Eur. J. Lipid Sci. Technol. 2017, 119, 1700150. [Google Scholar] [CrossRef]
- MacQueen, B.; Royko, M.; Crandall, B.S.; Heyden, A.; Pagán-Torres, Y.J.; Lauterbach, J. Kinetics study of the hydrodeoxygenation of xylitol over a ReOx-Pd/CeO2 catalyst. Catalysts 2021, 11, 108. [Google Scholar] [CrossRef]
- Zhang, J.W.; Uknalis, J.; Chen, L.; Moreau, R.A.; Ngo, H. Development of magnesium oxide–zeolite catalysts for isomerization of fatty acids. Catal. Lett. 2019, 149, 303–312. [Google Scholar] [CrossRef]
- Singh, H.K.G.; Yusup, S.; Quitain, A.T.; Kida, T.; Sasaki, M.; Cheah, K.W.; Ameen, M. Production of gasoline range hydrocarbons from catalytic cracking of linoleic acid over various acidic zeolite catalysts. Environ. Sci. Pollut. Res. 2019, 26, 34039–34046. [Google Scholar] [CrossRef] [PubMed]
- Oginni, O.; Singh, K.; Oporto, G.; Dawson-Andoh, B.; McDonald, L.; Sabolsky, E. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresour. Technol. Rep. 2019, 8, 100307. [Google Scholar] [CrossRef]
- Li, F.; Min, R.; Li, J.; Gao, L.Y.; Xue, W.; Wang, Y.J.; Zhao, X.Q. Condensation reaction of methyl N-phenylcarbamate with formaldehyde over Hβ catalyst. Ind. Eng. Chem. Res. 2014, 53, 5406–5412. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Bladé, C.; Arola-Arnal, A.; Muguerza, B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct. 2019, 10, 6492–6502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.T.; Shi, T.; Guo, Z.Y.; Liao, H.X.; Chen, Y. Comparative study of the oxidation of cold-pressed and commercial refined camellia oil during storage with 1H and 31P NMR spectroscopy. Food Chem. 2020, 321, 126640. [Google Scholar] [CrossRef] [PubMed]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.T.; Azmeera, T.; Karuna, M.S.L.; Prasad, R.B.N.; Womeni, H.M. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in far-north region of cameroon. Food Chem. 2017, 221, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef]
- Hama, J.R. Comparison of fatty acid profile changes between unroasted and roasted brown sesame (Sesamum indicum L.) seeds oil. Int. J. Food Prop. 2017, 20, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Elhussein, E.; Bilgin, M.; Şahin, S. Oxidative stability of sesame oil extracted from the seeds with different origins: Kinetic and thermodynamic studies under accelerated conditions. J. Food Process Eng. 2018, 41, e12878. [Google Scholar] [CrossRef]
- Mishra, S.K.; Belur, P.D.; Iyyaswami, R. Use of antioxidants for enhancing oxidative stability of bulk edible oils: A review. Int. J. Food Sci. Technol. 2021, 56, 1–12. [Google Scholar] [CrossRef]
- Dadfar, T.; Sahari, M.A.; Barzegar, M. Bleaching of olive oil by membrane filtration. Eur. J. Lipid Sci. Technol. 2020, 122, 1900151. [Google Scholar] [CrossRef]
Serial Number | Abbreviations | Sample Name |
---|---|---|
1 | Hβ | Hydrogen type of zeolite beta |
2 | PMA | Phosphomolybdic acid |
3 | FCH | Ferric chloride hexahydrate |
4 | PTA | Phosphotungstic acid |
5 | DHβ | Alkali modified Hβ |
6 | BHβ | Calcined Hβ |
7 | DBHβ | Alkali modified BHβ |
8 | PMAH | Phosphomolybdic acid loaded on Hβ |
9 | CTAH | Citric acid loaded on Hβ |
10 | FCHH | Ferric chloride hexahydrate loaded on Hβ |
11 | PMAB | Phosphomolybdic acid loaded on BHβ |
12 | CTAB | Citric acid loaded on BHβ |
13 | FCHB | Ferric chloride hexahydrate loaded on BHβ |
14 | PTAH | Phosphotungstic acid loaded on Hβ |
15 | FRSH | Ferrous sulfate loaded on Hβ |
16 | FCSH | Ferric sulfate loaded on Hβ |
Hβ | CTAH | PTAH | FCHH | ||
---|---|---|---|---|---|
Surface area (m2/g) | 489.39 | 537.99 | 360.61 | 435.70 | |
External surface area (m2/g) | 134.90 | 178.27 | 96.76 | 129.29 | |
Pore size (nm) | 4.27 | 4.57 | 4.22 | 4.04 | |
Pore volume (cm3/g) | 0.52 | 0.61 | 0.38 | 0.44 | |
Micropore volume (cm3/g) | 0.17 | 0.18 | 0.13 | 0.15 | |
Mesopore volume (cm3/g) | 0.35 | 0.44 | 0.25 | 0.29 | |
NH3 acidity (mmol/g) | weak | 0.21 | 0.17 | 0.20 | 0.09 |
strong | 0.06 | 0.10 | 0.10 | 0.00 | |
strong/weak | 0.29 | 0.60 | 0.49 | 0.04 | |
Acid strength (°C) | weak | 244 | 251 | 256 | 261 |
strong | 351 | 351 | 351 | 600 |
Level/Variables | Catalyst Amount (X1)/% | Reaction Temperature (X2)/°C | Reaction Time (X3)/h |
---|---|---|---|
−1 | 1.2 | 75 | 2.0 |
0 | 1.4 | 80 | 2.5 |
1 | 1.6 | 85 | 3.0 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 844.84 | 9 | 93.87 | 16.97 | 0.0006 * | significant |
X1 | 270.12 | 1 | 270.12 | 48.84 | 0.0002 * | |
X2 | 285.78 | 1 | 285.78 | 51.67 | 0.0002 * | |
X3 | 175.17 | 1 | 175.17 | 31.67 | 0.0008 * | |
X1X2 | 20.46 | 1 | 20.46 | 3.70 | 0.0959 | |
X1X3 | 27.01 | 1 | 27.01 | 4.88 | 0.0628 | |
X2X3 | 1.04 | 1 | 1.04 | 0.19 | 0.6775 | |
X12 | 0.00 | 1 | 0.00 | 0.00 | 0.9870 | |
X22 | 10.56 | 1 | 10.56 | 1.91 | 0.2095 | |
X32 | 51.67 | 1 | 51.67 | 9.34 | 0.0184 | |
Residual | 38.72 | 7 | 5.53 | |||
Lack of Fit | 31.50 | 3 | 10.50 | 5.82 | 0.0610 | not significant |
Pure Error | 7.22 | 4 | 1.80 | |||
Cor Total | 883.56 | 16 | ||||
Std. Dev. | 2.35 | R-Squared | 0.9562 | |||
Mean | 39.99 | Adj R-Squared | 0.8998 | |||
C.V.% | 5.88 | Pred R-Squared | 0.4169 | |||
Press | 515.23 | Adeq Precision | 13.6019 |
Samples | Acid Value (mg KOH/g) | Peroxide Value (meq/kg) | Sesamin (mg/100 g) | Asarinin (mg/100 g) | Red Value | Yellow Value |
---|---|---|---|---|---|---|
CSO | 1.95 ± 0.05 a | 0.80 ± 0.02 b | 489.74 ± 2.89 a | Nd | 1.25 ± 0.07 a | 4.60 ± 0.14 a |
CTA | 2.06 ± 0.16 a | 1.82 ± 0.03 a | 497.20 ± 2.24 b | Nd | 0.90 ± 0.14 b | 3.75 ± 0.21 b |
CTAH | 1.92 ± 0.00 a | 0.14 ± 0.00 c | 358.99 ± 0.83 c | 83.52 ± 0.52 a | 0.55 ± 0.07 c | 1.45 ± 0.07 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Wang, X.-D.; Liu, H.-M.; Ma, Y.-X. Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil. Foods 2022, 11, 1225. https://doi.org/10.3390/foods11091225
Yu Q, Wang X-D, Liu H-M, Ma Y-X. Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil. Foods. 2022; 11(9):1225. https://doi.org/10.3390/foods11091225
Chicago/Turabian StyleYu, Qiong, Xue-De Wang, Hua-Min Liu, and Yu-Xiang Ma. 2022. "Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil" Foods 11, no. 9: 1225. https://doi.org/10.3390/foods11091225
APA StyleYu, Q., Wang, X. -D., Liu, H. -M., & Ma, Y. -X. (2022). Preparation and Characterization of Solid Acid Catalysts for the Conversion of Sesamin into Asarinin in Sesame Oil. Foods, 11(9), 1225. https://doi.org/10.3390/foods11091225