Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of U. pinnatifida Samples
2.3. Conditions of Cooking Methods
2.4. Quality Characteristics
2.4.1. Color Analysis
2.4.2. Texture Profile Analysis
2.4.3. Low-Field Nuclear Magnetic Resonance (LF-NMR) Measurement
2.4.4. Scanning Electron Microscope (SEM)
2.5. Bioactive Nutrients
2.5.1. Total Phenol
2.5.2. Fucoxanthin
2.5.3. Chlorophyll A
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Cooking Methods on Quality Characteristics of U. pinnatifida
3.1.1. Color of U. pinnatifida in Different Cooking Methods
3.1.2. Effects of Cooking Methods on Texture of U. pinnatifida
3.1.3. LF-NMR Analysis
3.1.4. Scanning Electron Microscopy (SEM)
3.2. Effects of Different Cooking Methods on TPC of U. pinnatifida
3.3. Effects of Different Cooking Methods on Fucoxanthin Content of U. pinnatifida
3.4. Effects of Different Cooking Methods on Chlorophyll A Content of U. pinnatifida
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.B.; Hayashi, K.; Hashimoto, M.; Nakano, T.; Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 2004, 52, 1091–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulom, S.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem. 2014, 161, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y.; White, W.; Lu, J. Extracts from New Zealand Undaria pinnatifida Containing Fucoxanthin as Potential Functional Biomaterials against Cancer in Vitro. J. Funct. Biomater. 2014, 5, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzeo, T.; Paciulli, M.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Ganino, T.; Pellegrini, N. Impact of the industrial freezing process on selected vegetables -Part II. Colour and bioactive compounds. Food Res. Int. 2015, 75, 89–97. [Google Scholar] [CrossRef]
- Gu, R.; Chang, X.; Bai, G.; Li, X.; Di, Y.; Liu, X.; Sun, L.; Wang, Y. Effects of household cooking methods on changes of tissue structure, phenolic antioxidant capacity and active component bioaccessibility of quinoa. Food Chem. 2021, 350, 129138. [Google Scholar] [CrossRef]
- Feng, Q.; Jiang, S.; Feng, X.; Zhou, X.; Wang, H.; Li, Y.; Wang, J.; Tang, S.; Chen, Y.; Zhao, Y. Effect of different cooking methods on sensory quality assessment and in vitro digestibility of sturgeon steak. Food Sci. Nutr. 2020, 8, 1957–1967. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Wu, X.; Shi, W. Effects of four cooking methods on sensory and taste quality of Portunus trituberculatus. Food Sci. Nutr. 2020, 8, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Schlörmann, W.; Zetzmann, S.; Wiege, B.; Haase, N.U.; Greiling, A.; Lorkowski, S.; Dawczynski, C.; Glei, M. Impact of different roasting conditions on chemical composition, sensory quality and physicochemical properties of waxy-barley products. Food Funct. 2019, 10, 5436–5445. [Google Scholar] [CrossRef]
- Iborra-Bernad, C.; Tárrega, A.; García-Segovia, P.; Martínez-Monzó, J. Advantages of sous-vide cooked red cabbage: Structural, nutritional and sensory aspects. LWT—Food Sci. Technol. 2014, 56, 451–460. [Google Scholar] [CrossRef]
- Akdaş, Z.Z.; Bakkalbaşı, E. Influence of different cooking methods on color, bioactive compounds, and antioxidant activity of kale. Int. J. Food Prop. 2017, 20, 877–887. [Google Scholar] [CrossRef]
- Barakat, H.; Rohn, S. Effect of different cooking methods on bioactive compounds in vegetarian, broccoli-based bars. J. Funct. Foods 2014, 11, 407–416. [Google Scholar] [CrossRef]
- Murador, D.; Braga, A.R.; Da Cunha, D.; De Rosso, V. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Crit. Rev. Food Sci. 2018, 58, 169–177. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rufián-Henares, J.Á.; Pastoriza, S. Effect of home cooking on the antioxidant capacity of vegetables: Relationship with Maillard reaction indicators. Food Res. Int. 2019, 121, 514–523. [Google Scholar] [CrossRef]
- Qi, X.; Cheng, L.; Li, X.; Zhang, D.; Wu, G.; Zhang, H.; Wang, L.; Qian, H.; Wang, Y. Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chem. 2019, 274, 444–451. [Google Scholar] [CrossRef]
- Giusti, F.; Capuano, E.; Sagratini, G.; Pellegrini, N. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chem. 2019, 285, 458–467. [Google Scholar] [CrossRef]
- Koç, M.; Baysan, U.; Devseren, E.; Okut, D.; Atak, Z.; Karataş, H.; Kaymak-Ertekin, F. Effects of different cooking methods on the chemical and physical properties of carrots and green peas. Innov. Food Sci. Emerg. 2017, 42, 109–119. [Google Scholar] [CrossRef]
- Managa, M.G.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of moist cooking blanching on colour, phenolic metabolites and glucosinolate content in Chinese cabbage (Brassica rapa L. Sub sp. Chinensis). Foods 2019, 8, 399. [Google Scholar] [CrossRef] [Green Version]
- Armesto, J.; Gómez-Limia, L.; Carballo, J.; Martínez, S. Effects of different cooking methods on some chemical and sensory properties of Galega kale. Int. J. Food Sci. Technol. 2016, 51, 2071–2080. [Google Scholar] [CrossRef]
- Peng, J.; Yi, J.; Bi, J.; Chen, Q.; Wu, X.; Zhou, M.; Liu, J. Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature. LWT—Food Sci. Technol. 2018, 89, 365–373. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Song, H.; Ren, J.; Zhao, B.; Zhu, T.; Yu, C.; Qi, H. Influence of Domestic Cooking on Quality, Nutrients and Bioactive Substances of Undaria pinnatifida. Foods 2021, 10, 2786. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant activity from brown seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef]
- Sui, Y.; Gu, Y.; Lu, Y.; Yu, C.; Zheng, J.; Qi, H. Fucoxanthin@Polyvinylpyrrolidone Nanoparticles Promoted Oxidative Stress-Induced Cell Death in Caco-2 Human Colon Cancer Cells. Mar. Drugs 2021, 19, 92. [Google Scholar] [CrossRef]
- Havlíková, L.; Šatínský, D.; Opletal, L.; Solich, P. A Fast Determination of Chlorophylls in Barley Grass Juice Powder Using HPLC Fused-Core Column Technology and HPTLC. Food Anal. Method 2014, 7, 629–635. [Google Scholar] [CrossRef]
- Mashiane, P.; Mashitoa, F.M.; Slabbert, R.M.; Sivakumar, D. Impact of household cooking techniques on colour, antioxidant and sensory properties of African pumpkin and pumpkin leaves. Int. J. Gastron. Food Sci. 2021, 23, 100307. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef]
- Zhong, X.; Dolan, K.D.; Almenar, E. Effect of steamable bag microwaving versus traditional cooking methods on nutritional preservation and physical properties of frozen vegetables: A case study on broccoli (Brassica oleracea). Innov. Food Sci. Emerg. 2015, 31, 116–122. [Google Scholar] [CrossRef]
- Ikoko, J.; Kuri, V. Osmotic pretreatment effect on fat intake reduction and eating quality of deep-fried plantain. Food Chem. 2007, 102, 523–531. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tran, T.Y.; Lam, D.; Bach, L.; Nguyen, D.C. Effects of microwave blanching conditions on the quality of green asparagus (Asparagus officinalis L.) butt segment. Food Sci. Nutr. 2019, 7, 3513–3519. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.; Howes, T.; Bhandari, B.R.; Truong, V. Stickiness in Foods: A Review of Mechanisms and Test Methods. Int. J. Food Prop. 2001, 4, 1–33. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Yang, P. Combination of LF-NMR and BP-ANN to monitor water states of typical fruits and vegetables during microwave vacuum drying. LWT—Food Sci. Technol. 2019, 116, 108548. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.U.H.; Karim, M.A. Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. 2016, 38, 252–261. [Google Scholar] [CrossRef]
- Yang, D.; Wu, G.; Li, P.; Qi, X.; Zhang, H.; Wang, X.; Jin, Q. The effect of fatty acid composition on the oil absorption behavior and surface morphology of fried potato sticks via LF-NMR, MRI, and SEM. Food Chem. 2020, 7, 100095. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Song, Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. J. Agric. Food Chem. 2014, 62, 8982–8989. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.A.; Aliyu, M.M.; Hungerford, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chem. 2015, 173, 462–467. [Google Scholar] [CrossRef]
- Susanto, E.; Fahmi, A.S.; Agustini, T.W.; Rosyadi, S.; Wardani, A.D. Effects of different heat processing on fucoxanthin, antioxidant activity and colour of Indonesian Brown seaweeds. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012063. [Google Scholar] [CrossRef] [Green Version]
- Di Valentin, M.; Meneghin, E.; Orian, L.; Polimeno, A.; Büchel, C.; Salvadori, E. Triplet–triplet energy transfer in fucoxanthin-chlorophyll protein from diatom Cyclotella meneghiniana: Insights into the structure of the complex. BBA—Bioenerg. 2013, 1827, 1226–1234. [Google Scholar] [CrossRef]
- Nie, J.; Chen, D.; Lu, Y.; Dai, Z. Effects of various blanching methods on fucoxanthin degradation kinetics, antioxidant activity, pigment composition, and sensory quality of Sargassum fusiforme. LWT—Food Sci. Technol. 2021, 143, 111179. [Google Scholar] [CrossRef]
- Gonnella, M.; Durante, M.; Caretto, S.; D’Imperio, M.; Renna, M. Quality assessment of ready-to-eat asparagus spears as affected by conventional and sous-vide cooking methods. LWT—Food Sci. Technol. 2018, 92, 161–168. [Google Scholar] [CrossRef]
- Chen, K.; Roca, M. Cooking effects on chlorophyll profile of the main edible seaweeds. Food Chem. 2018, 266, 368–374. [Google Scholar] [CrossRef] [Green Version]
Color Properties | Raw | Blanching | Steaming | Boiling | Baking |
---|---|---|---|---|---|
L* | 23.60 ± 0.56 ab | 23.48 ± 0.90 ab | 24.44 ± 0.98 a | 24.04 ± 0.37 ab | 23.07 ± 0.98 b |
a* | −4.27 ± 0.22 a | −4.35 ± 0.25 a | −3.52 ± 0.30 b | −3.69 ± 0.19 b | −1.04 ± 0.13 c |
b* | 8.58 ± 0.52 a | 8.67 ± 0.57 a | 8.95 ± 1.26 a | 8.51 ± 0.21 a | 1.73 ± 0.47 b |
ΔE | — | 0.91 ± 0.58 a | 1.76 ± 0.85 b | 0.79 ± 0.34 a | 7.65 ± 0.49 c |
Sample color |
Texture Parameters | Raw | Blanching | Steaming | Boiling | Baking |
---|---|---|---|---|---|
Hardness | 1353.11 ± 50.78 a | 1182.27 ± 110.77 b | 1041.11 ± 96.87 c | 1172.61 ± 37.69 b | nd |
Cohesiveness | 16.86 ± 2.98 a | 12.35 ± 1.54 b | 1.03 ± 0.10 c | 1.01 ± 0.02 c | nd |
Chewiness | 16,711.54 ± 3544.40 a | 10,514.54 ± 2108.38 b | 621.74 ± 133.73 c | 800.02 ± 31.39 c | nd |
Resilience | 0.63 ± 0.04 a | 0.53 ± 0.03 b | 0.45 ± 0.05 c | 0.43 ± 0.03 c | nd |
Cooking Methods | Total Phenols mg GAE/g DW | Fucoxanthin µg/g DW | Chlorophyll A µg/g FW |
---|---|---|---|
Raw | 1.91 ± 0.08 a | 206.99 ± 7.43 c | 83.43 ± 9.63 a |
Blanching | 1.43 ± 0.05 c | 229.86 ± 2.24 ab | 62.99 ± 1.27 b |
Steaming | 1.29 ± 0.07 d | 211.85 ± 2.04 bc | 42.28 ± 2.13 c |
Boiling | 1.51 ± 0.07 bc | 244.91 ± 7.67 a | 51.35 ± 1.69 bc |
Baking | 1.62 ± 0.11 b | 216.85 ± 12.27 bc | 27.04 ± 0.98 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Yu, M.; Wang, Y.; Yin, W.; Jiang, P.; Qiu, B.; Qi, H. Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods 2022, 11, 1078. https://doi.org/10.3390/foods11081078
Jiang S, Yu M, Wang Y, Yin W, Jiang P, Qiu B, Qi H. Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods. 2022; 11(8):1078. https://doi.org/10.3390/foods11081078
Chicago/Turabian StyleJiang, Shan, Meiqi Yu, Yingzhen Wang, Wei Yin, Pengfei Jiang, Bixiang Qiu, and Hang Qi. 2022. "Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida" Foods 11, no. 8: 1078. https://doi.org/10.3390/foods11081078
APA StyleJiang, S., Yu, M., Wang, Y., Yin, W., Jiang, P., Qiu, B., & Qi, H. (2022). Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods, 11(8), 1078. https://doi.org/10.3390/foods11081078