Content and Solubility of Collagen and Their Relation to Proximate Composition and Shear Force of Meat from Different Anatomical Location in Carcass of European Beaver (Castor fiber)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Measurements and Analysis
2.3. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Collagen Fractions and Shear Force
3.3. Correlations
4. Discussion
4.1. Proximate Composition
4.2. Collagen Fractions and Shear Force
4.3. Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Thompson, S.; Vehkaoja, M.; Pellikka, J.; Nummi, P. Ecosystem services provided by beavers Castor spp. Mammal Rev. 2021, 51, 25–39. [Google Scholar] [CrossRef]
- Halley, D.J.; Saveljev, A.P.; Rosell, F. Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev. 2021, 51, 1–24. [Google Scholar] [CrossRef]
- Florek, M.; Drozd, L.; Skałecki, P.; Domaradzki, P.; Litwińczuk, A.; Tajchman, K. Proximate composition and physicochemical properties of European beaver (Castor fiber L.) meat. Meat Sci. 2017, 123, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Klupsaite, D.; Buckiuniene, V.; Sidlauskiene, S.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Klementaviciute, J.; Viskontaite, E.; Bartkiene, E. Comparison studies of the chemical, physical, technological, and microbiological characteristics of the European roe deer, boar, red deer, and beaver hunted wild game meat. Anim. Sci. J. 2020, 91, e13346. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Skałecki, P.; Litwińczuk, A.; Kędzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Juškiene, V. Effect of muscle anatomical location on fatty acid composition of beaver (Castor fiber) females. Czech J. Food Sci. 2019, 37, 106–111. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šveistienė, R.; Švirmickas, G.J. Compositional characteristics and nutritional quality of Eurasian beaver (Castor fiber) meat. Czech J. Food Sci. 2011, 29, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Strazdina, V.; Sterna, V.; Jemeljanovs, A.; Jansons, I.; Ikauniece, D. Investigation of beaver meat obtained in Latvia. Agron. Res. 2015, 13, 1096–1103. [Google Scholar]
- Florek, M.; Domaradzki, P.; Drozd, L.; Skałecki, P.; Tajchman, K. Chemical composition, amino acid and fatty acid contents, and mineral concentrations of European beaver (Castor fiber L.) meat. J. Food Meas. Charact. 2017, 11, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Ziomek, M.; Drozd, Ł.; Gondek, M.; Pyz-Łukasik, R.; Pedonese, F.; Florek, M.; Domaradzki, P.; Skałecki, P. Microbiological changes in meat and minced meat from beavers (Castor fiber L.) during refrigerated and frozen storage. Foods 2021, 10, 1270. [Google Scholar] [CrossRef]
- Żochowska-Kujawska, J.; Lachowicz, K.; Sobczak, M.; Bienkiewicz, G. Compositional characteristics and nutritional quality of European beaver (Castor fiber L.) meat and its utility for sausage production. Czech J. Food Sci. 2016, 34, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Lepetit, J.; Culioli, J. Mechanical properties of meat. Meat Sci. 1994, 36, 203–237. [Google Scholar] [CrossRef]
- Nakamura, Y.N.; Tsuneishi, E.; Kamiya, M.; Yamada, A. Histological contribution of collagen architecture to beef toughness. J. Food Sci. 2010, 75, E73–E77. [Google Scholar] [CrossRef]
- Lepetit, J. Collagen contribution to meat toughness: Theoretical aspects. Meat Sci. 2008, 80, 960–967. [Google Scholar] [CrossRef]
- Dransfield, E. Intramuscular composition and texture of beef muscles. J. Sci. Food Agric. 1977, 28, 833–842. [Google Scholar] [CrossRef]
- Light, N.; Champion, A.E.; Voyle, C.; Bailey, A.J. The role of the epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Sci. 1985, 13, 137–149. [Google Scholar] [CrossRef]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef]
- Bailey, A.J. The basis of meat texture. J. Sci. Food Agric. 1972, 23, 995–1007. [Google Scholar] [CrossRef]
- Marsh, B.B.; Leet, N.G. Studies in meat tenderness III. The effects of cold shortening on tenderness. J. Food Sci. 1966, 31, 450–459. [Google Scholar] [CrossRef]
- Purslow, P.P. New Developments on the Role of Intramuscular Connective Tissue in Meat Toughness. Annu. Rev. Food Sci. Technol. 2014, 5, 133–153. [Google Scholar] [CrossRef]
- Nishimura, T. The role of intramuscular connective tissue in meat texture. Anim. Sci. J. 2010, 81, 21–27. [Google Scholar] [CrossRef]
- McCormick, R.J. The flexibility of the collagen compartment of muscle. Meat Sci. 1994, 36, 79–91. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Nogalski, Z.; Kwiatkowska, A. The influence of crossbreeding on collagen solubility and tenderness of Infraspinatus and Semimembranosus muscles of semi-intensively reared young bulls. Anim. Sci. J. 2016, 87, 1312–1321. [Google Scholar] [CrossRef]
- Nishimura, T.; Ojima, K.; Liu, A.; Hattori, A.; Takahashi, K. Structural changes in the intramuscular connective tissue during development of bovine semitendinosus muscle. Tissue Cell 1996, 28, 527–536. [Google Scholar] [CrossRef]
- Torrescano, G.; Sánchez-Escalante, A.; Giménez, B.; Roncalés, P.; Beltrán, J.A. Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat Sci. 2003, 64, 85–91. [Google Scholar] [CrossRef]
- Korzeniowski, W.; Kwiatkowska, A.; Jankowska, B.; Żmijewski, T. The yield and quality of meat as the function of weight and sex of slaughtered beavers. Acta Sci. Pol. Technol. Aliment. 2002, 1, 75–83. [Google Scholar]
- Jankowska, B.; Żmijewski, T.; Kwiatkowska, A.; Korzeniowski, W. The composition and properties of beaver (Castor fiber) meat. Eur. J. Wildl. Res. 2005, 51, 283–286. [Google Scholar] [CrossRef]
- European Council. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, L139, 55–205. [Google Scholar]
- PN-ISO 1442; Meat and Meat Products—Determination of Moisture Content (Reference Method). The Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-ISO 936; Meat and Meat Products—Determination of Total Ash. The Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04018; Agricultural Food Products—Determination of Nitrogen by Kjeldahl Method and Expressing as Protein. The Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-ISO 1444; Meat and Meat Products—Determination of Free Fat Content. The Polish Committee for Standardization: Warsaw, Poland, 2000.
- Hansen, R.G.; Wyse, B.W.; Sorenson, A.W. Nutrition Quality Index of Food; AVI Publishing Co.: Westport, CT, USA, 1979. [Google Scholar]
- European Council. Regulation (EC) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Annex XIII. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- PN-ISO 3496; Meat and Meat Products—Determination of Hydroxyproline Content. The Polish Committee for Standardization: Warsaw, Poland, 2000.
- Nowakowicz-Dębek, B.; Wlazło, Ł.; Czech, A.; Kowalska, D.; Bielański, P.; Ryszkowska-Siwko, M.; Łukaszewicz, M.; Florek, M. Effects on the gastrointestinal morphometry and meat quality of rabbits (Oryctolagus cuniculus) fed diets with fermented rapeseed meal. Livest. Sci. 2021, 251, 104663. [Google Scholar] [CrossRef]
- Palka, K. Changes in intramuscular connective tissue and collagen solubility of bovine m. semitendinosus during retorting. Meat Sci. 1999, 53, 189–194. [Google Scholar] [CrossRef]
- Florek, M.; Junkuszew, A.; Bojar, W.; Skałecki, P.; Greguła-Kania, M.; Litwińczuk, A.; Gruszecki, T.M. Effect of vacuum ageing on instrumental and sensory textural properties of meat from Uhruska lambs. Ann. Anim. Sci. 2016, 16, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Korzeniowski, W.; Żmijewski, T.; Jankowska, B.; Kwiatkowska, A. The slaughter value of farm growed beavers. Acta Sci. Pol. Technol. Aliment. 2002, 1, 67–73. [Google Scholar]
- Korbelová, J.; Vorel, A.; Uhlíková, J. Biology and Ecology of Beavers. In Handbook for Coexisting with Beavers; Vorel, A., Korbelová, J., Eds.; Czech University of Life Sciences Prague: Prague, Czech Republic, 2016; pp. 98–117. [Google Scholar]
- Purslow, P.P. The structure and functional significance of variations in the connective tissue within muscle. Comp. Biochem. Physiol. Part A 2002, 133, 947–966. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Valusso, R.; Morgante, M.; Pittia, P.; Piasentier, E. Meat quality in male fallow deer (Dama dama); effects of age and supplementary feeding. Meat Sci. 2003, 65, 555–562. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Janiszewski, P.; Wajda, S. Quality characteristics of meat from wild red deer (Cervus elaphus L.) hinds and stags. J. Muscle Foods 2009, 20, 428–448. [Google Scholar] [CrossRef]
- Bailey, A.J.; Light, N.D. Connective Tissue in Meat and Meat Products; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Dubost, A.; Micol, D.; Meunier, B.; Lethias, C.; Listrat, A. Relationships between structural characteristics of bovine intramuscular connective tissue assessed by image analysis and collagen and proteoglycan content. Meat Sci. 2013, 93, 378–386. [Google Scholar] [CrossRef]
- Domaradzki, P.; Skałecki, P.; Florek, M.; Litwińczuk, Z. Relationship of collagen with chosen technological parameters of calf meat. Żywn. Nauka Technol. Jakość 2010, 71, 50–62. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Litwińczuk, A. Total and soluble collagen contents in skeletal muscles of different cattle categories of Polish Holstein-Friesian breed. Episteme Czas. Nauk.-Kult. 2013, 21, 177–185. [Google Scholar]
- Girard, I.; Bruce, H.L.; Basarab, J.A.; Larsen, I.L.; Aalhus, J.L. Contribution of myofibrillar and connective tissue components to the Warner–Bratzler shear force of cooked beef. Meat Sci. 2012, 92, 775–782. [Google Scholar] [CrossRef]
- Nakamura, Y.N.; Iwamoto, H.; Shiba, N.; Miyach, H.; Tabata, S.; Nishimura, S. Developmental states of the collagen content, distribution and architecture in the pectoralis, iliotibialis lateralis and puboischiofemoralis muscles of male Red Cornish x New Hampshire and normal broilers. Br. Poult. Sci. 2003, 45, 31–40. [Google Scholar] [CrossRef]
- Pascual, M.; Pla, M. Changes in collagen, texture and sensory properties of meat when selecting rabbits for growth rate. Meat Sci. 2008, 78, 375–380. [Google Scholar] [CrossRef]
- Young, O.A.; Braggins, T.J. Tenderness of ovine semimembranosus: Is collagen concentration or solubility the critical factor? Meat Sci. 1993, 35, 213–222. [Google Scholar] [CrossRef]
- Nakamura, Y.N.; Iwamoto, H.; Tabata, S.; Ono, Y.; Shiba, N.; Nishimura, S. Comparison of collagen content, distribution and architecture among the pectoralis, iliotibialis lateralis and puboischiofemoralis muscles with different myofiber composition in Silky cocks. Anim. Sci. J. 2003, 74, 119–128. [Google Scholar] [CrossRef]
- Oshima, I.; Iwamoto, H.; Nakamura, Y.N.; Takayama, K.; Ono, Y.; Murakami, T.; Shiba, N.; Tabata, S.; Nishimura, S. Comparative study of the histochemical properties, collagen content and architecture of the skeletal muscles of wild boar crossbred pigs and commercial hybrid pigs. Meat Sci. 2009, 81, 382–390. [Google Scholar] [CrossRef]
- Lefaucheur, L. A second look into fibre typing—Relation to meat quality. Meat Sci. 2010, 84, 257–270. [Google Scholar] [CrossRef]
- Kwiatkowska, A.; Żmijewski, T.; Cierach, M. Utility value of carcass of European deer (Cervus elaphus) and its meat evaluation. Pol. J. Food Nutr. Sci. 2009, 59, 151–156. [Google Scholar]
- Dominik, P.; Pavlík, Z.; Steinhauserová, I.; Saláková, A.; Buchtová, H.; Steinhauser, L. The effect of soluble collagen on the texture of fallow deer meat. Maso Int. Brno 2011, 1, 57–61. [Google Scholar] [CrossRef]
- Żmijewski, T.; Modzelewska-Kapituła, M. The influence of age and sex on carcass characteristics and chemical composition of the longissimus thoracis et lumborum muscle in wild boars (Sus scrofa). Arch. Anim. Breed. 2021, 64, 199–210. [Google Scholar] [CrossRef]
- Zając, M.; Midura, A.; Palka, K.; Węsierska, E.; Krzysztoforski, K. Chemical composition, solubility of intramuscular collagen, and texture of selected beef muscles. Żywn. Nauka Technol. Jakość 2011, 77, 103–116. [Google Scholar] [CrossRef]
- Christensen, M.; Ertbjerg, P.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Williams, J.L. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2011, 87, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Kołczak, T.; Krzysztoforski, K.; Palka, K. Effect of post-mortem ageing, method of heating and reheating on collagen solubility, shear force and texture parameters of bovine muscles. Pol. J. Food Nutr. Sci. 2008, 58, 27–32. [Google Scholar]
- Silva, C.C.G.; Rego, O.A.; Simões, E.R.E.; Rosa, H.J.D. Consumption of high energy maize diets is associated with increased soluble collagen in muscle of Holstein bulls. Meat Sci. 2010, 86, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Wojtysiak, D. Effect of breed on microstructure and tenderness of porcine semimembranosus muscle. Ann. Anim. Sci. 2014, 14, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Nishimura, T.; Takahashi, K. Relationship between structural properties of intramuscular connective tissue and toughness of various chicken skeletal muscles. Meat Sci. 1996, 43, 43–49. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Kwiatkowska, A.; Jankowska, B.; Dąbrowska, E. Water holding capacity and collagen profile of bovine m. infraspinatus during postmortem ageing. Meat Sci. 2015, 100, 209–216. [Google Scholar] [CrossRef]
- Palka, K. The influence of post-mortem ageing and roasting on the microstructure, texture and collagen solubility of bovine semitendinosus muscle. Meat Sci. 2003, 64, 191–198. [Google Scholar] [CrossRef]
- Voutila, L.; Mullen, A.M.; Ruusunen, M.; Troy, D.; Puolanne, E. Thermal stability of connective tissue from porcine muscles. Meat Sci. 2007, 76, 474–480. [Google Scholar] [CrossRef]
- Harris, P.V.; Shorthose, W.R. Meat texture. In Developments in Meat Science; Lawrie, R., Ed.; Elsevier Applied Science: London, UK, 1988; pp. 245–296. [Google Scholar]
- Bouton, P.E.; Harris, P.V.; Ratcliff, D. Effect of cooking temperature and time on the shear properties of meat. J. Food Sci. 1981, 46, 1082–1087. [Google Scholar] [CrossRef]
- Møller, A.J. Analysis of Warner–Bratzler shear pattern with regard to myofibrillar and connective tissue components of tenderness. Meat Sci. 1980, 5, 247–260. [Google Scholar] [CrossRef]
- Kovanen, V.; Suominen, H.; Peltonen, L. Effects of aging and life-long physical training on collagen in slow and fast skeletal muscle in rats. A morphometric and immune-histochemical study. Cell Tissue Res. 1987, 248, 247–255. [Google Scholar] [CrossRef]
- Tikkanen, H.O.; Naveri, H.K.; Harkonen, M.H. Alteration of regulatory enzyme activities in fast-twitch and slow-twitch muscles and muscle fibres in low-intensity endurance-trained rats. Eur. J. Appl. Physiol. 1995, 70, 281–287. [Google Scholar] [CrossRef]
- García-Esponda, C.M.; Candela, A.M. Hindlimb musculature of the largest living rodent Hydrochoerus hydrochaeris (Caviomorpha): Adaptations to semiaquatic and terrestrial styles of life. J. Morphol. 2016, 277, 286–305. [Google Scholar] [CrossRef]
- Nishimura, T.; Fang, S.; Wakamatsu, J.; Takahashi, K. Relationships between physical and structural properties of intramuscular connective tissue and toughness of raw pork. Anim. Sci. J. 2009, 80, 85–90. [Google Scholar] [CrossRef]
- Brooks, J.C.; Savell, J.W. Perimysium thickness as an indicator of beef tenderness. Meat Sci. 2004, 67, 329–334. [Google Scholar] [CrossRef]
- Fang, S.H.; Nishimura, T.; Takahashi, K. Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs. J. Anim. Sci. 1999, 77, 120–130. [Google Scholar] [CrossRef]
- Hocquette, J.F.; VanWezemael, L.; Chriki, S.; Legrand, I.; Verbeke, W.; Farmer, L.; Scollan, N.D.; Polkinghorne, R.; Rødbotten, R.; David, P.A. Modelling of beef sensory quality for a better prediction of palatability. Meat Sci. 2014, 97, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.J.; Purslow, P.P. The strength and stiffness of perimysial connective tissue isolated from cooked beef muscle. Meat Sci. 1989, 26, 255–269. [Google Scholar] [CrossRef]
- Lewis, G.J.; Purslow, P.P.; Rice, A.E. The effect of conditioning on the strength of perimysial connective tissue dissected from cooked meat. Meat Sci. 1991, 30, 1–12. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Bendall, J.R. The elastin content of various muscles of beef animals. J. Sci. Food Agric. 1967, 18, 553–558. [Google Scholar] [CrossRef]
- Dransfield, E.; Martin, J.F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Campo, M.M.; Santolaria, P.; Sanudo, C.; Lepetit, J.; Olleta, J.L.; Panea, B.; Alberti, P. Assessment of breed type and ageing time effects on beef meat quality using two different texture devices. Meat Sci. 2000, 55, 371–378. [Google Scholar] [CrossRef]
- Jurie, C.; Picard, B.; Hocquette, J.F.; Dransfield, E.; Micol, D.; Listrat, A. Muscle and meat quality characteristics of Holstein and Salers cull cows. Meat Sci. 2007, 77, 459–466. [Google Scholar] [CrossRef]
- Young, O.A.; Braggins, T.J.; Barker, G.J. Pyridinoline in ovine intramuscular collagen. Meat Sci. 1994, 37, 297–303. [Google Scholar] [CrossRef]
- Chriki, S.; Renand, G.; Picard, B.; Micol, D.; Journaux, L.; Hocquette, J.F. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livest. Sci. 2013, 155, 424–434. [Google Scholar] [CrossRef]
- Riley, D.G.; Johnson, D.D.; Chase, C.C., Jr.; West, R.L.; Coleman, S.W.; Olson, T.A.; Hammond, A.C. Factors influencing tenderness in steaks from Brahman cattle. Meat Sci. 2005, 70, 347–356. [Google Scholar] [CrossRef]
- Ngapo, T.M.; Berge, P.; Culioli, J.; Dransfield, E.; De Smet, S.; Claeys, E. Perimysial collagen crosslinking and meat tenderness in Belgian Blue double-muscled cattle. Meat Sci. 2002, 61, 91–102. [Google Scholar] [CrossRef]
- Serra, X.; Guerrero, L.; Guardia, M.D.; Gil, M.; Sanudo, C.; Panea, B.; Campo, M.M.; Olleta, J.L.; Garcia-Cachan, M.D.; Piedrafita, J.; et al. Eating quality of young bulls from three Spanish beef breed-production systems and its relationships with chemical and instrumental meat quality. Meat Sci. 2008, 79, 98–104. [Google Scholar] [CrossRef]
- Tschirhart-Hoelscher, T.E.; Baird, B.E.; King, D.A.; McKenna, D.R.; Savell, J.W. Physical, chemical, and histological characteristics of 18 lambs muscles. Meat Sci. 2006, 73, 48–54. [Google Scholar] [CrossRef]
- Li, C.B.; Zhou, G.H.; Xu, X.L. Comparisons of meat quality characteristics and intramuscular connective tissue between beef longissimus dorsi and semitendinosus muscles from Chinese Yellow bulls. J. Muscle Foods 2007, 18, 143–161. [Google Scholar] [CrossRef]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef] [PubMed]
Trait | Cut | SEM | Total | ||
---|---|---|---|---|---|
Shoulder | Loin | Hind Leg | |||
n = 10 | n = 10 | n = 10 | n = 30 | n = 30 | |
Moisture | 75.85 | 76.15 | 76.20 | 0.10 | 76.07 |
Protein | 21.27 | 21.71 | 21.65 | 0.12 | 21.54 |
Fat | 1.65 b | 1.11 a | 1.20 ab | 0.09 | 1.32 |
Ash | 1.19 | 1.19 | 1.18 | 0.01 | 1.19 |
M/P | 3.57 | 3.51 | 3.52 | 0.02 | 3.53 |
Collagen | 1.26 B | 0.87 A | 0.72 A | 0.06 | 0.95 |
C/P | 5.95 B | 4.04 A | 3.34 A | 0.28 | 4.44 |
Energy | 99.9 | 96.8 | 97.4 | 0.59 | 98.1 |
NQI P | 8.52 a | 8.97 b | 8.90 ab | 0.08 | 8.80 |
NQI F | 0.47 b | 0.33 a | 0.35 ab | 0.02 | 0.38 |
Trait | Cut | SEM | Total | ||
---|---|---|---|---|---|
Shoulder | Loin | Hind Leg | |||
n = 10 | n = 10 | n = 10 | n = 30 | n = 30 | |
Raw muscle tissue | |||||
Total collagen | 12.61 B | 8.70 A | 7.20 A | 0.57 | 9.50 |
Soluble collagen | 3.32 | 2.95 | 2.67 | 0.18 | 2.99 |
Insoluble collagen | 9.29 B | 5.75 A | 4.51 A | 0.46 | 6.52 |
Cooked meat | |||||
Total collagen | 14.02 c | 10.10 b | 7.74 a | 0.85 | 10.62 |
Soluble collagen | 2.32 b | 1.95 ab | 1.53 a | 0.14 | 1.93 |
Insoluble collagen | 11.76 c | 8.16 b | 6.21 a | 0.73 | 8.69 |
Trait | Cut | SEM | Total | ||
---|---|---|---|---|---|
Shoulder | Loin | Hind Leg | |||
n = 10 | n = 10 | n = 10 | n = 30 | n = 30 | |
W–B shear force | 78.8 C | 37.2 A | 53.0 B | 3.60 | 56.4 |
W–B shear energy | 0.32 C | 0.13 A | 0.24 B | 0.02 | 0.23 |
Trait | Moisture | Protein | Fat | Ash | M/P |
---|---|---|---|---|---|
Total collagen | −0.051 | −0.541 ** | 0.688 *** | 0.148 | 0.465 ** |
Insoluble collagen | −0.077 | −0.472 ** | 0.601 *** | 0.083 | 0.402 * |
Soluble collagen | 0.033 | −0.508 ** | 0.645 *** | 0.255 | 0.445 * |
Trait | W–B Shear Force | W–B Shear Energy |
---|---|---|
Raw muscle tissue | ||
Total collagen (mg/g) | 0.499 ** | 0.324 |
Soluble collagen (mg/g) | 0.057 | −0.019 |
Soluble collagen (%) | −0.594 *** | −0.457 * |
Insoluble collagen (mg/g) | 0.597 *** | 0.411 * |
Insoluble collagen (%) | 0.594 *** | 0.457 * |
Cooked meat | ||
Total collagen (mg/g) | 0.310 | 0.339 |
Soluble collagen (mg/g) | 0.093 | 0.143 |
Soluble collagen (%) | −0.317 | −0.282 |
Insoluble collagen (mg/g) | 0.341 | 0.366 |
Insoluble collagen (%) | 0.313 | 0.274 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florek, M.; Domaradzki, P.; Skałecki, P.; Ryszkowska-Siwko, M.; Ziomek, M.; Tajchman, K.; Gondek, M.; Pyz-Łukasik, R. Content and Solubility of Collagen and Their Relation to Proximate Composition and Shear Force of Meat from Different Anatomical Location in Carcass of European Beaver (Castor fiber). Foods 2022, 11, 1288. https://doi.org/10.3390/foods11091288
Florek M, Domaradzki P, Skałecki P, Ryszkowska-Siwko M, Ziomek M, Tajchman K, Gondek M, Pyz-Łukasik R. Content and Solubility of Collagen and Their Relation to Proximate Composition and Shear Force of Meat from Different Anatomical Location in Carcass of European Beaver (Castor fiber). Foods. 2022; 11(9):1288. https://doi.org/10.3390/foods11091288
Chicago/Turabian StyleFlorek, Mariusz, Piotr Domaradzki, Piotr Skałecki, Małgorzata Ryszkowska-Siwko, Monika Ziomek, Katarzyna Tajchman, Michał Gondek, and Renata Pyz-Łukasik. 2022. "Content and Solubility of Collagen and Their Relation to Proximate Composition and Shear Force of Meat from Different Anatomical Location in Carcass of European Beaver (Castor fiber)" Foods 11, no. 9: 1288. https://doi.org/10.3390/foods11091288
APA StyleFlorek, M., Domaradzki, P., Skałecki, P., Ryszkowska-Siwko, M., Ziomek, M., Tajchman, K., Gondek, M., & Pyz-Łukasik, R. (2022). Content and Solubility of Collagen and Their Relation to Proximate Composition and Shear Force of Meat from Different Anatomical Location in Carcass of European Beaver (Castor fiber). Foods, 11(9), 1288. https://doi.org/10.3390/foods11091288