Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified Peanut Protein
2.3. Determination of Protein Solubility
2.4. Determination of Main Protein Fractions
2.5. Determining the Stability of Protein Solution
2.6. Measurement of Particle Size
2.7. Determination of Zeta-Potential
2.8. Determination of Surface Hydrophobicity
2.9. Determination of Secondary Structure of Protein
2.10. Observing Microstructure
2.11. Statistical Analysis
3. Results and Discussion
3.1. Protein Solubility
3.2. Morphology of Modified Peanut Proteins
3.3. SDS–PAGE Analysis
3.4. Physical Stability in Aqueous Solution Analyzed by Turbiscan
3.5. Zeta-Potential
3.6. Particle Size Distribution
3.7. Surface Hydrophobicity
3.8. Change in Peanut Proteins’ Secondary Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, B.; Shi, A.; Wang, Q.; Binks, B.P. High-internal-phase pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications. Angew. Chem. Int. Ed. 2018, 130, 9418–9422. [Google Scholar] [CrossRef]
- Faisal, S.; Zhang, J.; Meng, S.; Shi, A.; Liu, L.; Wang, Q.; Maleki, S.; Adhikari, B. Effect of high-moisture extrusion and addition of transglutaminase on major peanut allergens content extracted by three step sequential method. Food Chem. 2022, 385, 132569. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.J.; Shi, A.M.; Liu, H.Z.; Liu, L.; Hu, H.; Adhikari, B.; Wang, Q. Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. J. Food Eng. 2016, 170, 33–40. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Zhu, S.; Wang, Q. Texturisation behaviour of peanut–soy bean/wheat protein mixtures during high moisture extrusion cooking. Int. J. Food Sci. Technol. 2018, 53, 2535–2541. [Google Scholar] [CrossRef]
- Hu, Y.; Sun-Waterhouse, D.; Liu, L.; He, W.; Zhao, M.; Su, G. Modification of peanut protein isolate in glucose-containing solutions during simulated industrial thermal processes and gastric-duodenal sequential digestion. Food Chem. 2019, 295, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Etemadian, Y.; Ghaemi, V.; Shaviklo, A.R.; Pourashouri, P.; Mahoonak, A.R.S.; Rafipour, F. Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. J. Clean. Prod. 2021, 278, 123219. [Google Scholar] [CrossRef]
- Riveros, C.G.; Martin, M.P.; Aguirre, A.; Grosso, N.R. Film preparation with high protein defatted peanut flour: Characterization and potential use as food packaging. Int. J. Food Sci. Technol. 2018, 53, 969–975. [Google Scholar] [CrossRef]
- Miglietta, N.; Battisti, E.; Campanella, F. Value maximization and open innovation in food and beverage industry: Evidence from US market. Br. Food J. 2017, 119, 2477–2492. [Google Scholar] [CrossRef]
- Oltman, A.E.; Lopetcharat, K.; Bastian, E.; Drake, M.A. Identifying key attributes for protein beverages. J. Food Sci. 2015, 80, S1383–S1390. [Google Scholar] [CrossRef]
- Lin, Y.; Mouratidou, T.; Vereecken, C.; Kersting, M.; Bolca, S.; de Moraes, A.C.F.; Cuenca-García, M.; Moreno, L.A.; González-Gross, M.; Valtueña, J.; et al. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study. Nutr. J. 2015, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, Y.; Zhao, M.; Ren, J.; Yang, B. Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem. 2011, 127, 1438–1443. [Google Scholar] [CrossRef]
- Tan, M.; Nawaz, M.A.; Buckow, R. Functional and food application of plant proteins—A review. Food Rev. Int. 2021, 38, 1–29. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, S.P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016, 53, 46–61. [Google Scholar] [CrossRef]
- Qin, Y. Bioactive seaweeds for food applications. In Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products; Qin, Y., Ed.; Academic Press Inc.: New York, NY, USA, 2018; pp. 135–152. [Google Scholar]
- Jiao, B.; Shi, A.M.; Liu, H.Z.; Sheng, X.J.; Liu, L.; Adhikari, B.; Wang, Q. Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocoll. 2018, 77, 329–335. [Google Scholar] [CrossRef]
- Girgih, A.T.; Chao, D.; Lin, L.; He, R.; Jung, S.; Aluko, R.E. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chem. 2015, 188, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, T.; Johnson, L.A. Effect of alkali on the refunctionalization of soy protein by hydrothermal cooking. J. Am. Oil Chem. Soc. 2005, 82, 451–456. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Johnson, L.A. Mechanism for refunctionalizing heat-denatured soy protein by alkaline hydrothermal cooking. J. Am. Oil Chem. Soc. 2006, 83, 39–45. [Google Scholar] [CrossRef]
- Xia, N.; Wang, J.; Yang, X.; Yin, S.; Qi, J.; Hu, L. Preparation and characterization of protein from heat-stabilized rice bran using hydrothermal cooking combined with amylase pretreatment. J. Food Eng. 2012, 110, 95–101. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, H.; Wang, Q.; Liu, H. A novel process for peanut tofu gel: Its texture, microstructure and protein behavioral changes affected by processing conditions. LWT 2018, 96, 140–146. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Urban, T.; Nosal, A. Comparison of stability properties of poly (acrylic acid) adsorbed on the surface of silica, alumina and mixed silica-alumina nanoparticles—Application of turbidimetry method. Open Chem. 2014, 12, 476–479. [Google Scholar] [CrossRef]
- Lam, M.; Shen, R.; Paulsen, P.; Corredig, M. Pectin stabilization of soy protein isolates at low pH. Food Res. Int. 2007, 40, 105–110. [Google Scholar] [CrossRef]
- Bianchi-Hall, C.M.; Keys, R.D.; Stalker, H.T.; Murphy, J.P. Diversity of seed storage protein patterns in wild peanut (Arachis, Fabaceae) species. Plant Syst. Evol. 1993, 186, 1–15. [Google Scholar] [CrossRef]
- He, X.H.; Liu, H.Z.; Liu, L.; Zhao, G.L.; Wang, Q.; Chen, Q.L. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocoll. 2014, 36, 123–129. [Google Scholar] [CrossRef]
- Feng, X.L.; Liu, H.Z.; Shi, A.M.; Liu, L.; Wang, Q.; Adhikari, B. Effects of transglutaminase catalyzed crosslinking on physicochemical characteristics of arachin and conarachin-rich peanut protein fractions. Food Res. Int. 2014, 62, 84–90. [Google Scholar] [CrossRef]
- Blanc, F.; Vissers, Y.M.; Adel-Patient, K.; Rigby, N.M.; Mackie, A.R.; Gunning, A.P.; Mills, E.C. Boiling peanut Ara h 1 results in the formation of aggregates with reduced allergenicity. Mol. Nutr. Food Res. 2011, 55, 1887–1894. [Google Scholar] [CrossRef]
- Rao, H.; Tian, Y.; Tao, S.; Tang, J.; Li, X.; Xue, W.T. Key factors affecting the immunoreactivity of roasted and boiled peanuts: Temperature and water. LWT-Food Sci. Technol. 2016, 72, 492–500. [Google Scholar] [CrossRef]
Samples | D (4,3) (μm) |
---|---|
PP | 74.82 ± 0.57 c |
HPH | 24.18 ± 0.32 a |
HPH-E | 23.65 ± 0.39 ab |
HPH-E-HTC | 21.74 ± 0.17 b |
Samples | PP | HPH | HPH-E | HPH-E-HTC |
---|---|---|---|---|
H0 | 644.41 ± 4.68 a | 582.67 ± 2.11 b | 346.20 ± 1.15 c | 297.45 ± 0.75 d |
Samples | PP | HPH | HPH-E | HPH-E-HTC |
---|---|---|---|---|
Helix | 43.41 ± 0.86 a | 36.02 ± 1.06 b | 21.08 ± 0.85 c | 19.72 ± 0.73 d |
Beta-turn | 14.36 ± 0.78 a | 10.92 ± 0.97 b | 19.96 ± 0.80 c | 25.34 ± 0.53 d |
Beta-sheet | 25.18 ± 0.46 a | 34.82 ± 0.52 b | 30.05 ± 0.62 c | 45.93 ± 0.47 d |
Random | 17.05 ± 0.67 a | 18.24 ± 0.69 b | 28.90 ± 0.76 c | 9.00 ± 0.89 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shi, A.; Liu, H.; Hu, H.; Wang, Q.; Adhikari, B.; Jiao, B.; Pignitter, M. Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods 2022, 11, 1289. https://doi.org/10.3390/foods11091289
Li J, Shi A, Liu H, Hu H, Wang Q, Adhikari B, Jiao B, Pignitter M. Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods. 2022; 11(9):1289. https://doi.org/10.3390/foods11091289
Chicago/Turabian StyleLi, Jiaxiao, Aimin Shi, Hongzhi Liu, Hui Hu, Qiang Wang, Benu Adhikari, Bo Jiao, and Marc Pignitter. 2022. "Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH" Foods 11, no. 9: 1289. https://doi.org/10.3390/foods11091289
APA StyleLi, J., Shi, A., Liu, H., Hu, H., Wang, Q., Adhikari, B., Jiao, B., & Pignitter, M. (2022). Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods, 11(9), 1289. https://doi.org/10.3390/foods11091289